Weak E	FT.
00000	00

Towards a non-perturbative calculation of the weak Hamiltonian Wilson coefficients

Mattia Bruno (RBC/UKQCD)

Brookhaven Natl. Laboratory, High Energy Theory

34th International Symposium on Lattice Field Theory -University of Southampton

July 28, 2016

Mattia Bruno

Towards non-perturbative Wilson Coefficients

Lattice 2016, Southampton

/eak EFT 000000	The calculation	Results	Conclusions O
Th	e RBC & UKQCD collal	<u>borations</u>	
BNL and RBRC	Greg McGlynn	<u>Peking University</u>	
Mattia Bruno Tomomi Ishikawa	Jiqun Tu	Xu Feng	
Taku Izubuchi	University of Connecticut	Plymouth University	
Christoph Lehner	Tom Blum	Nicolas Garron	
Taichi Kawanai	Edinburgh University	University of Southam	<u>oton</u>
Anoshi Ohki Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn	Peter Boyle Guido Cossu Luigi Del Debbio Bichard Kenway	Jonathan Flynn Vera Guelpers James Harrison Andreas Luettner	
<u>CERN</u>	Julia Kettle Ava Khamseh	Andrew Lawson Edwin Lizarazo	
Marina Marinkovic	Brian Pendleton Antonin Portelli	Chris Sachrajda Francesco Sanfilinno	
<u>Columbia University</u>	Oliver Witzel	Matthew Spraggs	
Ziyuan Bai Norman Christ			
Luchang Jin Christopher Kelly	<u>KEK</u>	York University (Toroni	<u>to)</u>
Bob Mawhinney	Julien Frison	Renwick Hudspith	

Towards non-perturbative Wilson Coefficients

Lattice 2016, Southampton

V

Mattia Bruno

Weak EFT	The calculation	Results	Conclusions
000000			

Weak Effective Hamiltonian

Weak decays of hadrons: typical hadronic scale $O(\Lambda_{\rm OCD})$ mediated by W boson

An effective theory of weak interactions

Example: $c \rightarrow su\bar{d}$ only current-current operators (no penguins)

integrate out W boson generates four-quark vertices

higher order operators $O(1/M_w^k)$

operator mixing in the EFT

 $\mathcal{H}_{\mathrm{eff}} \propto G_{\mathrm{F}} \sum_{i} C_{i} Q_{i} \quad
ightarrow \quad i = 1, 2 \text{ in our example}$

Long distance $\langle Q_i \rangle \rightarrow$ Lattice Wilson Coefficients $C_i \rightarrow$ PT

Weak EFT	The calculation	Results	Conclusions
000000			
Drecent colo	ulations		
Present Calc	ulations		

 $\Delta S=1$ transitions:

RBC/UKQCD calculations of $K \rightarrow \pi\pi$ (I = 0 and 2) Matrix elements up to 2 GeV from lattice [C.Kelly's talk] Running From 2 GeV up to M_W perturbative Wilson Coefficients at M_W not yet largest systematic errors

 $\Delta B = 1$ transitions:

Recent results B-decays [Fermilab+MILC '16] impact for more precise Wilson Coefficients

A lattice calculation can provide an all-order-in- α_s result

Weak EFT	The calculation	Results	Conclusions
0000000			
Perturbative	reculte l		

[Buchalla, Buras, Lautenbacher '95]

By matching the full and effective theory at one loop in $\overline{\mathrm{MS}}$:

 $C_1 = -b_0 \alpha_s \log(M_W^2/\mu^2)$ $C_2 = 1 + b_1 \alpha_s \log(M_W^2/\mu^2)$

 b_0, b_1 positive coefficients

 μ is the matching scale \rightarrow large logs \downarrow Renormalization group improvement

Weak EFT	The calculation	Results	Conclusions
0000000			
Dorturbative	reculte II		

Initial conditions C1 and C2Anomalous Dimension Matrix (ADM) $C_1(M_W) \approx 0.44 \alpha_s(M_W)$ U solution of RG equations $C_2(M_W) = 1 + 0.15 \alpha_s(M_W)$ $\vec{C}(\mu) = U(M_W, \mu) \vec{C}(M_W)$

[Buchalla, Buras, Lautenbacher '95]

Resummation of large logs at scale μ

Example: $\mu = 40 \text{ GeV}$ and 70 GeV $< M_W < 90 \text{ GeV}$:

 C_1 varies by 40%, C_2 varies by less than 1% using 2-loop $lpha_s$

Physical observable, e.g. $K \rightarrow \pi\pi$ amplitude (estimated) error from $C_1(M_W)$, $C_2(M_W)$ around 3-5%.

urbalive results

Weak EFT ○○○○○●○	The calculation	Results	Conclusions O

Window problem

 μ is the matching scale:

Present study is focused on unphysically small $m_{\rm W} \approx 2~{
m GeV}$

Weak EFT	The calculation	Results	Conclusions
000000	000	00000	0
Renormaliza	tion scheme		

With a momentum-subtraction scheme:

pertubative calculations known to NLO off-shell external quark states with momentum p \downarrow gauge-dependent operators $O(p^2/M_{\rm W}^2)$

exceptional scheme \rightarrow chiral symmetry breaking effects

The limit
$$p^2/M_W^2 \rightarrow 0$$
:

crucial to reduce some systematic uncertainties problematic for an exceptional scheme

Two-step strategy

1) matching at sufficiently small μ and 2) step-scale up to $M_{
m W}$

Weak EFT	The calculation	Results	Conclusions
	000		

The calculation - I

Restriction to current-current diagrams (no penguins)

Green's function $G(Q_i)$ $Q_1 = (\bar{s}_i c_j)_{V-A} (\bar{u}_j d_i)_{V-A}$ $Q_2 = (\bar{s}_i c_i)_{V-A} (\bar{u}_j d_j)_{V-A}$

Exceptional scheme:

$$p_1 = -p_2 = p_3 = -p_4$$

Compute amputated Green's functions $\Gamma(Q_i)$

$$P_{1} = \delta_{ik}\delta_{jl}(\gamma_{\mu}\otimes\gamma_{\mu}+\gamma_{\mu}\gamma_{5}\otimes\gamma_{\mu}\gamma_{5})$$
$$P_{2} = \delta_{ij}\delta_{kl}(\gamma_{\mu}\otimes\gamma_{\mu}+\gamma_{\mu}\gamma_{5}\otimes\gamma_{\mu}\gamma_{5})$$

Define
$$M_{ij} = P_j[\Gamma(Q_i)]$$

RI renormalization conditions $M_{ik}^{\rm RI} = Z_{ij}^{\rm RI} M_{jk}^{\rm bare} = M_{ik}^{\rm tree}$

Weak EFT	The calculation	Results	Conclusions
	000		
The calcula	tion - II		
i ne calcula	tion - II		

W boson in Unitary gauge

use identical momentum configuration as before

weak vertex factor $\propto g$

Compute the Amputated Green's function $\Gamma_{\rm SM}$

Define the vector $W_i = P_i(\Gamma_{SM})$

RI renormalization conditions for the Wilson Coefficients $G_{\rm F}C_i^{\rm RI}M_{ij}^{\rm RI} \equiv W_j^{\rm RI} \rightarrow C_i^{\rm RI} = G_{\rm F}^{-1}W_j^{\rm RI}[M^{\rm tree}]_{ji}^{-1}$ with $G_{\rm F} = \frac{g^2}{8M_{\rm W}^2}$ and g the weak coupling constant

Weak EFT	The calculation	Results	Conclusions
The calculati	on III		

Step-scaling to M_W :

From invariance of $\langle \mathcal{H}_{\text{eff}} \rangle$ $\vec{C}_{\text{RI}}^T(M_{\text{W}})M^{\text{RI}}(M_{\text{W}}) = \vec{C}_{\text{RI}}^T(\mu)M^{\text{RI}}(\mu)$ \downarrow $\Sigma(M_{\text{W}},\mu) = Z^{\text{RI}}(\mu)[Z^{\text{RI}}(M_{\text{W}})]^{-1}$ \downarrow $\vec{C}_{M_{\text{W}}}^T(\mu) \equiv \vec{C}^T(\mu)\Sigma(M_{\text{W}},\mu)$ Σ step-scaling function at finite a

 C_i at $M_{\rm W} \approx 2$ GeV:

chiral symmetry breaking effects reduced comparison with PT safer

Towards non-perturbative Wilson Coefficients

Weak EFT	The calculation	Results	Conclusions
0000000		●0000	O

Ensembles and methods

Two ensembles (different volumes):

 $N_{\rm f}=2+1$ Shamir Domain-Wall fermions $a^{-1}\approx 1.7~{
m GeV}\approx 0.11~{
m fm}$ $L\approx 1.8~{
m AND}~2.6~{
m fm}$

zMobius accelaration to compute necessary propagators RI scheme with external p between 0.5 and 1.7 GeV Artificially small $M_{\rm W} \in [1.4, 2.1]$ GeV $\rightarrow 0.8 < a M_{\rm W} < 1.2$

Current goal: preliminary study to investigate (some of) the systematic uncertainties and undestand what kind of lattices are needed to safely accomodate all the relevant scales.

Weak EFT	The calculation	Results	Conclusions
000000	000	0000	0

Step-scaling function

PT curve: NLO ADM, 2-loop α_s , $\Lambda_{\overline{MS}}^{(3)} = 332(14)$ MeV [Sommer's talk]

Measured step-scaling function:

finite volume errors below 4-5 % no evident deviations from PT at small momenta discretization errors to be investigated

Weak EFT 0000000	The calculation	Results ○○●○○	Conclusions

Wilson Coefficients C_1 and C_2

PT is in this limit

Blue bands: NLO PT $\vec{C}^{\text{RI}}(M_{\text{W}})$ $C_1 = O(\alpha_s), \ C_2 = 1 + O(\alpha_s)$ $M_{\text{W}} = a^{-1} \sim 1.73 \text{ GeV}$

Weak EFT	The calculation	Results	Conclusions
0000000		○○○●○	○
$M_{\rm W}$ depend	ence - C_1		

Observation of about 15% effects due to $O(\mu^2/M_W^2)$

Weak EFT	The calculation	Results ○○○○●	Conclusions o
$M_{ m W}$ depende	ence - $C_2 - 1$		

 $Lpprox 72~{
m MeV}^{-1}$, $aM_{
m W}\in[0.8,1.0,1.2]$

Milder effects of $O(\mu^2/M_W^2)$ terms

Weak EFT	The calculation	Results	Conclusions
			\bullet
Conclusions			
Conclusions			

window in $\mu^2/M_{
m W}^2$ with 1σ agreement with PT

Future plans:

study non-exceptional schemes improve statistical uncertainty repeat the calculation at finer lattice spacings study extended basis

Thank you for your attention!