Towards a non-perturbative calculation of the weak Hamiltonian Wilson coefficients

Mattia Bruno (RBC/UKQCD)

Brookhaven Natl. Laboratory, High Energy Theory

34th International Symposium on Lattice Field Theory - University of Southampton

July 28, 2016
The RBC & UKQCD collaborations

BNL and RBRC
- Mattia Bruno
- Tomomi Ishikawa
- Taku Izubuchi
- Chulwoo Jung
- Christoph Lehner
- Meifeng Lin
- Taichi Kawanai
- Hiroshi Ohki
- Shigemi Ohta (KEK)
- Amarjit Soni
- Sergey Syritsyn

CERN
- Marina Marinkovic

Columbia University
- Ziyuan Bai
- Norman Christ
- Luchang Jin
- Christopher Kelly
- Bob Mawhinney

CERN
- Peter Boyle
- Guido Cossu
- Luigi Del Debbio
- Richard Kenway
- Julia Kettle
- Ava Khamseh
- Brian Pendleton
- Antonin Portelli
- Oliver Witzel
- Azusa Yamaguchi

Peking University
- Greg McGlynn
- David Murphy
- Jiqun Tu

University of Connecticut
- Tom Blum

Edinburgh University
- Nicolaas Garron

University of Southampton
- Jonathan Flynn
- Vera Guelpers
- James Harrison
- Andreas Juettner
- Andrew Lawson
- Edwin Lizardo
- Chris Sachrajda
- Francesco Sanfilippo
- Matthew Spraggs
- Tobias Tsang

CERN
- Julia Kettle
- Ava Khamseh
- Brian Pendleton
- Antonin Portelli
- Oliver Witzel
- Azusa Yamaguchi

KEK
- Julien Frison

York University (Toronto)
- Renwick Hudspith
Weak Effective Hamiltonian

Weak decays of hadrons: typical hadronic scale \(O(\Lambda_{QCD}) \) mediated by \(W \) boson

Example: \(c \to s u d \bar{d} \) only current-current operators (no penguins)

\[
\mathcal{H}_{\text{eff}} \propto G_F \sum_i C_i Q_i \quad \to \quad i = 1, 2 \text{ in our example}
\]

Long distance \(\langle Q_i \rangle \to \text{Lattice} \quad \text{Wilson Coefficients } C_i \to \text{PT} \)
Present calculations

$\Delta S = 1$ transitions:
- RBC/UKQCD calculations of $K \rightarrow \pi\pi$ ($I = 0$ and 2)
- Matrix elements up to 2 GeV from lattice [C.Kelly's talk]
- Running From 2 GeV up to M_W perturbative
- Wilson Coefficients at M_W not yet largest systematic errors

$\Delta B = 1$ transitions:
- Recent results B-decays [Fermilab+MILC '16]
- impact for more precise Wilson Coefficients

A lattice calculation can provide an all-order-in-α_s result
Perturbative results - I

By matching the full and effective theory at one loop in $\overline{\text{MS}}$:

\begin{align*}
C_1 &= -b_0 \alpha_s \log(M_W^2/\mu^2) \\
C_2 &= 1 + b_1 \alpha_s \log(M_W^2/\mu^2)
\end{align*}

b_0, b_1 positive coefficients

μ is the matching scale \rightarrow large logs

\downarrow

Renormalization group improvement

[Buchalla, Buras, Lautenbacher '95]
Perturbative results - II

Initial conditions C_1 and C_2

$C_1(M_W) \approx 0.44\alpha_s(M_W)$

$C_2(M_W) = 1 + 0.15\alpha_s(M_W)$

Anomalous Dimension Matrix (ADM)

U solution of RG equations

$\tilde{C}(\mu) = U(M_W, \mu)\tilde{C}(M_W)$

Resummation of large logs at scale μ

Example: $\mu = 40$ GeV and 70 GeV $< M_W < 90$ GeV:

C_1 varies by 40%, C_2 varies by less than 1% using 2-loop α_s

Physical observable, e.g. $K \rightarrow \pi\pi$ amplitude (estimated) error from $C_1(M_W), C_2(M_W)$ around 3-5%.
Window problem

μ is the matching scale:

\[aM_W \ll 1 \text{ for discretization effects} \]

\[\mu \ll M_W \text{ for higher order operators} \]

\[\mu \gg m, \mu L \gg 1 \text{ for infrared effects} \]

Present study is focused on unphysically small $m_W \approx 2 \text{ GeV}$
Renormalization scheme

With a momentum-subtraction scheme:

- perturbative calculations known to NLO
- off-shell external quark states with momentum p
 \[\downarrow \]
 - gauge-dependent operators $O(p^2/M_W^2)$
 - exceptional scheme \rightarrow chiral symmetry breaking effects

The limit $p^2/M_W^2 \rightarrow 0$:

- crucial to reduce some systematic uncertainties
- problematic for an exceptional scheme

Two-step strategy

1) matching at sufficiently small μ and 2) step-scale up to M_W
The calculation - I

Restriction to current-current diagrams (no penguins)

Green’s function \(G(Q_i) \)

\[Q_1 = (\bar{s}_i c_j)_{V-A} (\bar{u}_j d_i)_{V-A} \]
\[Q_2 = (\bar{s}_i c_i)_{V-A} (\bar{u}_j d_j)_{V-A} \]

Exceptional scheme:

\[p_1 = -p_2 = p_3 = -p_4 \]

Compute amputated Green’s functions \(\Gamma(Q_i) \)

\[P_1 = \delta_{ik} \delta_{jl} (\gamma_\mu \otimes \gamma_\mu + \gamma_\mu \gamma_5 \otimes \gamma_\mu \gamma_5) \]
\[P_2 = \delta_{ij} \delta_{kl} (\gamma_\mu \otimes \gamma_\mu + \gamma_\mu \gamma_5 \otimes \gamma_\mu \gamma_5) \]

Define \(M_{ij} = P_j [\Gamma(Q_i)] \)

RI renormalization conditions \(M_{ik}^{RI} = Z_{ij}^{RI} M_{jk}^{bare} = M_{ik}^{tree} \)
The calculation - II

\[G_{SM} = \left\langle W_{boson\ in\ Unitary\ gauge} \right\rangle \]

Use identical momentum configuration as before

Weak vertex factor \(\propto g \)

Compute the Amputated Green’s function \(\Gamma_{SM} \)

Define the vector \(W_i = P_i (\Gamma_{SM}) \)

RI renormalization conditions for the Wilson Coefficients

\[G_F C_i^{RI} M_{ij}^{RI} \equiv W_j^{RI} \rightarrow C_i^{RI} = G_F^{-1} W_j^{RI} [M_{\text{tree}}]^{-1} \]

With \(G_F = \frac{g^2}{8M_W^2} \) and \(g \) the weak coupling constant
Step-scaling to M_W:

From invariance of $\langle \mathcal{H}_{\text{eff}} \rangle$

$$\vec{C}^T_{\text{RI}}(M_W)M^\text{RI}(M_W) = \vec{C}^T_{\text{RI}}(\mu)M^\text{RI}(\mu)$$

$$\downarrow$$

$$\Sigma(M_W, \mu) = Z^\text{RI}(\mu)[Z^\text{RI}(M_W)]^{-1}$$

$$\downarrow$$

$$\vec{C}^T_{M_W}(\mu) \equiv \vec{C}^T(\mu)\Sigma(M_W, \mu)$$

Σ step-scaling function at finite a

C_i at $M_W \approx 2$ GeV: chiral symmetry breaking effects reduced comparison with PT safer
Ensembles and methods

Two ensembles (different volumes):
\[N_f = 2 + 1 \] Shamir Domain-Wall fermions
\[a^{-1} \approx 1.7 \text{ GeV} \approx 0.11 \text{ fm} \]
\[L \approx 1.8 \text{ AND } 2.6 \text{ fm} \]

zMobius acceleration to compute necessary propagators

RI scheme with external \(p \) between 0.5 and 1.7 GeV

Artificially small \(M_W \in [1.4, 2.1] \text{ GeV} \rightarrow 0.8 < aM_W < 1.2 \)

Current goal: preliminary study to investigate (some of) the systematic uncertainties and understand what kind of lattices are needed to safely accommodate all the relevant scales.
Step-scaling function

\[\Sigma_{11}(m_W, \mu) \]

\[\Sigma_{12}(m_W, \mu) \]

PT curve: NLO ADM, 2-loop \(\alpha_s, \Lambda^{(3)}_{\text{MS}} = 332(14) \text{ MeV} \) [Sommer’s talk]

Measured step-scaling function:
finite volume errors below 4-5 %
no evident deviations from PT at small momenta
discretization errors to be investigated
Wilson Coefficients C_1 and C_2

Blue bands: NLO PT $\vec{C}^{RI}(M_W)$

$$C_1 = O(\alpha_s), \quad C_2 = 1 + O(\alpha_s)$$

$$M_W = a^{-1} \sim 1.73 \text{ GeV}$$

$$\vec{C}^{T}_{M_W}(\mu) = \vec{C}^{T}(\mu) \Sigma(M_W, \mu)$$

$$\mu^2/M_W^2 \rightarrow 0 \text{ exact matching}$$

PT is in this limit
M_W dependence - C_1

$L \approx 72 \text{ MeV}^{-1}$, $aM_W \in [0.8, 1.0, 1.2]$

Observation of about 15% effects due to $O(\mu^2/M_W^2)$
M_W dependence - $C_2 - 1$

$L \approx 72 \text{ MeV}^{-1}$, $aM_W \in [0.8, 1.0, 1.2]$

Milder effects of $O(\mu^2/M_W^2)$ terms
Conclusions

Future plans:

- study non-exceptional schemes
- improve statistical uncertainty
- repeat the calculation at finer lattice spacings
- study extended basis

Thank you for your attention!