
Thermodynamics of strongly-coupled
lattice QCD in the chiral limit

Hélvio Vairinhos

in collaboration with:
Philippe de Forcrand,

Paul Romatschke,
Wolfgang Unger

University of Southampton
29 Jul 2016



Introduction

Let us consider U(Nc) lattice QCD, with Nf = 1 massless staggered fermion, on a
N3
s ×Nt lattice, at finite temperature.

I The Goldstone boson, associated with the spontaneous breaking of the
remnant U(1) chiral symmetry, is interacting (f2

π 6= 0). But, in the T � fπ
regime, it is essentially a free particle. At low temperatures, it is expected to
behave like a Stefan-Boltzmann gas.

I We study the thermal properties of U(3) and SU(3) lattice QCD, in the
strong lattice coupling limit (β = 0) and chiral limit (mq = 0), with a focus
on the expected (near) ideal gas behavior.

I Possibility of using algorithms (of the worm type), which are very efficient in
strong and chiral limits, and at low temperatures.

I Precursor to an extensive precision study of the equation of state of lattice
QCD, in the strong coupling limit: finite quark mass, baryon density, etc.



Thermodynamics of a free massless boson on the lattice

The thermal properties of free massless bosons on a N3
s ×Nt anisotropic lattice,

with anisotropy γ = a
at

, have been studied in detail. [Karsch-Engels-Satz ’82]

Energy density:

a4(ε− ε0) = −
γ3

N3
sNt

∑
~6=0

sin2 (πj0/Nt)

b2 + γ2 sin2 (πj0/Nt)
, b2 =

3∑
i=1

sin2 (πji/Ns)

a4ε0 =
γ3

N3
s

∑
~

(
b2 + γ2 + b

√
γ2 + b2

)−1

Interaction energy:
(holds on any finite lattice)

ε− 3p = 0

Lessons:

I Finite-size effects are considerable

I For mild lattice corrections, use:
Ns ≥ 2Nt and γ ≥ 2

I Ideal gas behavior in the γ →∞
(continuous time) limit
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U(3) lattice QCD as a monomer-dimer system

Analytical integration over Uxµ and ψx, ψ̄x in U(3) lattice QCD yields the
partition function of a monomer-dimer system: [Rossi-Wolff ’84]

Z =

∫
DUDψDψ̄ e2atmq

∑
x ψ̄xψx+

∑
x,µ γ

δµ0ηxµ(ψ̄xUxµψx+µ̂−h.c.)

=
∑
{n,k}

∏
x,µ

(3− kxµ)!

3!kxµ!

 (2atmq)
NM γ2NDt

nx, kxµ ∈ {0, 1, 2, 3}, NM =
∑
x nx, NDt =

∑
x kx0

I Admissible configurations satisfy Grassmann
constraints:

nx +
∑
±µ
kxµ

!
= 3

I Configurations are generated using a
directed path (worm) algorithm:
very efficient, especially in the chiral limit.
[Adams-Chandrasekharan ’03]



Thermodynamics of U(3) lattice QCD in the chiral limit

We work directly in the chiral limit: mq = 0 ⇐⇒ NM = 0 (dimers only).

Thermodynamical quantities are derived from the partition function:

Z(γ) =
∑
{k}

∏
x,µ

(3− kxµ)!

3!kxµ!

 γ2NDt

which has the bare anisotropy coupling γ as the only free parameter; the physical
anisotropy is parameterized by ξ(γ) = a

at
.

Energy density:

a3at ε = −
a3at

V

∂ logZ

∂T−1

∣∣∣∣
V

=
ξ

γ

dγ

dξ
〈2nDt〉

Pressure:

a3at p = a3atT
∂ logZ

∂V

∣∣∣∣
T

=
ξ

3γ

dγ

dξ
〈2nDt〉

Interaction energy: ε− 3p = 0

Entropy density: s =
4ε

3T



Anisotropy calibration

Grassmann constraints imply locally conserved currents:
[Chandrasekharan-Jiang ’03]

jxµ = σx

(
kxµ −

3

8

)
=⇒

∑
±µ

(jxµ − jx−µ̂,µ) = 0

The variance of the associated conserved charges,

jµ =
∑

x⊥µ̂
jxµ

should coincide in a hypercubic volume, and this provides a very precise method to
calibrate the anisotropy, ξ(γ) = a

at
, with the help of multi-histogram reweighing:

Renormalization criterion:

atNt = aNs

⇓〈
j2t
〉

(γc)
!
=
〈
j2s
〉

(γc)
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Anisotropy calibration

Grassmann constraints imply locally conserved currents:
[Chandrasekharan-Jiang ’03]

jxµ = σx

(
kxµ −

3

8

)
=⇒

∑
±µ

(jxµ − jx−µ̂,µ) = 0

The variance of the associated conserved charges,

jµ =
∑

x⊥µ̂
jxµ

should coincide in a hypercubic volume, and this provides a very precise method to
calibrate the anisotropy, ξ(γ) = a

at
, with the help of multi-histogram reweighing:

ξ(γ) ∼ γ2

but the prefactor deviates from
the mean field prediction (ξ = γ2)
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Running anisotropy

At the same time, the running anisotropy, dξ
dγ

, can be computed directly from the

critical value of
〈
j2µ
〉
, and the critical value of their slopes:

ξ
dγ

dξ
=

〈
j2
〉
c(

d
dγ

〈
j2t
〉
− d
dγ
〈j2s 〉

)
γc
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Energy density at T = 0

The T = 0 contribution must be carefully subtracted from the energy density:

a4ε0(ξ) = lim
Ns→∞

ξ2

γ

dγ

dξ
〈2nDt〉

∣∣∣∣
Nt=ξNs (hypercubic)
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a
4
 ε0 = 0.663(14) ξ - 0.480(49)

U(3) dimers

I Linear scaling, similar to the lattice gas of a free massless boson.
[Karsch-Engels-Satz ’82]



Energy density at finite T

We take thermodynamic extrapolations (Ns →∞) of the energy density,
normalized by aTc = 1.8843(1) [Forcrand-Unger ’11], at fixed ξ and Nt, assuming:

ε(Ns, Nt, ξ)− ε0(ξ)

T 4
c

=
ε(T )− ε0

T 4
c

+
c1

N3
s

+
c2

N6
s

+ · · ·

 0

 0.0003

 0.0006

 0.0009

 0.0012

 0.0015

 0.0018

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

(ε
(N

s
) 

- 
ε 0

) 
/ 
T

c
4

1/Ns
3

ξ = 2

Nt = 4

Nt = 6

Nt = 8

Nt = 10

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

(ε
(N

s
) 

- 
ε 0

) 
/ 
T

c
4

1/Ns
3

ξ = 3

Nt = 4

Nt = 6

Nt = 8

Nt = 10

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

(ε
(N

s
) 

- 
ε 0

) 
/ 
T

c
4

1/Ns
3

ξ = 4

Nt = 4

Nt = 6

Nt = 8

Nt = 10

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

(ε
(N

s
) 

- 
ε 0

) 
/ 
T

c
4

1/Ns
3

ξ = 5

Nt = 4

Nt = 6

Nt = 8

Nt = 10

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014  0.016

(ε
(N

s
) 

- 
ε 0

) 
/ 
T

c
4

1/Ns
3

ξ = 6

Nt = 4

Nt = 6

Nt = 8

Nt = 10

We use Ns & 2Nt and ξ ≥ 2, for minimal lattice effects



Energy density at finite T

...and after all extrapolations:
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Preliminary fits are added for illustration:

ε(T )− ε0
T 4
c

≈ c2
(
T

Tc

)2

+ c4

(
T

Tc

)4

+ c6

(
T

Tc

)6

+ c8

(
T

Tc

)8

+ · · ·

I Near Tc: Repulsion between pions ⇒ energy decreases

I At low T : Near-ideal gas of a single massless boson

I At very low T : 1/ξ corrections?



Energy density at finite T , in SU(3) QCD

We perform the same study in SU(3) QCD, for which there is a monomer-
dimer-loop representation of the partition function, and for which the energy
density receives baryonic corrections:

a3at ε = µBρB −
a3at

V

∂ logZ

∂T−1

∣∣∣∣
V,µB

=
ξ

γ

dγ

dξ
〈2nDt + 3nBt〉
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Comparison between U(3) and SU(3)
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I Near Tc:
I U(3): Repulsion between pions ⇒ energy decreases
I SU(3): Energy is higher than in U(3) due to baryonic modes

I At low T : Pion gas is effectively free (up to 1/ξ-corrections?)

I Qualitative consistency with mean field, at large-Nc



Summary and outlook

I In the strong coupling limit, U(Nc) lattice QCD with a massless staggered
quark describes an ideal gas of massless pions, at low temperatures.

I We study the thermodynamics of Nf=1 U(3) and SU(3) lattice QCD, in the
chiral and strong coupling limits, by simulating the dimer representation of
this system with a directed path algorithm.

I We propose a prescription for a very precise renormalization of the bare
anisotropy coupling, and for the determination of its running.

I We determine, with high precision, the dependence of the energy density on
the temperature, thanks to an accurate subtraction of the T = 0 contribution.
In that regime, the system describes a near-ideal pion gas, just spoiled by
massive modes near Tc.

Next:

I Measure f2
π , and compare with ChPT predictions.

I Extend the study of the equation of state of U(3) and SU(3) QCD to finite
quark mass, finite baryon density, Nf > 1, etc.



Backup slides



SU(3) lattice QCD as a monomer-dimer-loop system

Analytical integration over Uxµ and ψx, ψ̄x in SU(3) lattice QCD yields the
partition function of a monomer-dimer-loop system: [Rossi-Wolff ’84]

Z =

∫
DUDψDψ̄ e2atmq

∑
x ψ̄xψx+

∑
x,µ γ

δµ0ηxµ

(
e
atµq ψ̄xUxµψx+µ̂−e

−atµq ψ̄xUxµψx+µ̂

)

=
∑

{n,k,C}

σ(C)

N !|C|

(∏
x

3!

nx!

)∏
x,µ

(3− kxµ)!

3!kxµ!

 (2atmq)
NM γ

2NDt+3NBt e
3NtatµqΩ(C)

nx, kxµ ∈ {0, 1, 2, 3}, NDt =
∑
x

kx0, NM =
∑
x

nx

bxµ ∈ {0,±1}, NBt =
∑
x

|bx0|

I Admissible configurations satisfy
Grassmann constraints:

nx +
∑
±µ
kxµ

!
= 3∑

x,µ
|bxµ|

!
= 0

I Baryonic sign problem: σ(C) = ±1

Ω = 1

Ω = 0



Thermodynamics of SU(3) lattice QCD

Thermodynamical quantities are derived from the partition function:

Z =
∑

{n,k,C}
σ(C)

(∏
x

3!

nx!

)∏
x,µ

(3− kxµ)!

3!kxµ!

 (2atmq)
NM γ

2NDt+3NBt e
3NtatµqΩ(C)

Baryon number density: (µB = 3µq)

a3ρB = a3 T

V

∂ logZ

∂µB

∣∣∣∣
V,T

=
〈Ω〉
N3
s

= 〈ω〉

Energy density:

a3at ε = µBρB −
a3at

V

∂ logZ

∂T−1

∣∣∣∣
V,µB

=
ξ

γ

dγ

dξ
〈2nDt + 3nBt〉 − 〈nM 〉

Pressure:

a3at p = a3atT
∂ logZ

∂V

∣∣∣∣
T,µB

=
ξ

3γ

dγ

dξ
〈2nDt + 3nBt〉

Interaction energy: ε− 3p = −〈nM 〉

Entropy density: s =
1

T

(
4ε

3
− µBρB

)



Anisotropy calibration

In the chiral limit, the Grassmann constraints imply locally conserved currents:

jxµ = σx

(
kxµ −

3

2
|bxµ| −

3

8

)
=⇒

∑
±µ

(jxµ − jx−µ̂,µ) = 0

The variances of the associated conserved charges, jµ =
∑
x⊥µ̂ jxµ are used to

calibrate the anisotropy, ξ(γ) = a
at

, just like in the U(3) case.

ξ(γ) ∼ γ2

but the prefactor again deviates
from the mean field prediction
(ξ = γ2)
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Energy density at T = 0 and T > 0

After subtracting the T = 0 contributions:

a4ε0(ξ) = lim
Ns→∞

ξ2

γ

dγ

dξ
〈2nDt + 3nBt〉

∣∣∣∣
Nt=ξNs (hypercubic)

we obtain a similar plot for the energy density at finite T , in units of the SU(3)
critical temperature: aTc = 1.402(2) [Forcrand-Langelage-Philipsen-Unger ’14]
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Measuring of the running anisotropy

The variances of the currents jµ scale with the volume of lattice slices ⊥ µ̂:{〈
j2t
〉
∝ a3〈

j2s
〉
∝ a2at

⇒
〈
j2t
〉

〈j2s 〉
=
Ns

Nt
ξ

The derivative of this ratio wrt the bare anisotropy coupling, at the critical value
γc, is related to the running of the anisotropy coupling:

d

dγ

〈
j2t
〉

〈j2s 〉

∣∣∣∣∣
γc

=
1

〈j2〉c

(
d

dγ

〈
j2t
〉
−

d

dγ

〈
j2s
〉)

γc

=
Ns

Nt

dξ

dγ

∣∣∣∣
γc

=
1

ξ

dξ

dγ

∣∣∣∣
γc

Inverting the relation above, we
finally obtain:

ξ
dγ

dξ
=

〈
j2
〉
c(

d
dγ

〈
j2t
〉
− d
dγ
〈j2s 〉

)
γc
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