Resonances in Coupled-Channel Scattering

David Wilson

Lattice 2016 University of Southampton 24-30 July 2016

Coupled-channel scattering

This talk:

Topical report of recent coupled-channel scattering results from the Hadron Spectrum Collaboration

The method:

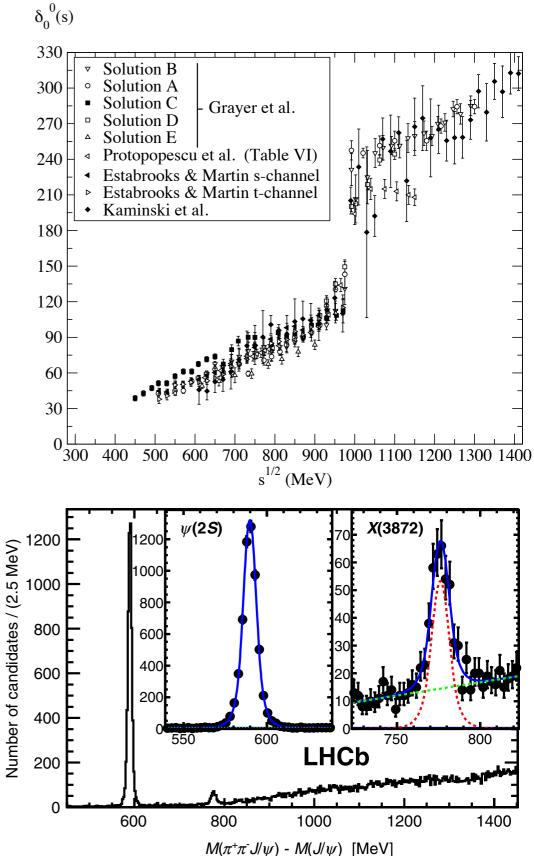
- Build large correlation matrices with a diverse range of operators
- Extract many energy levels using the variational method
- Use these energies with extensions of Lüscher's method to obtain infinite volume scattering amps
- Investigate the poles of the scattering amplitudes to obtain resonance information

Topics I won't cover: The HALQCD method, Finite Volume Hamiltonian, EFTs in a box, etc.

Coupled-channel scattering

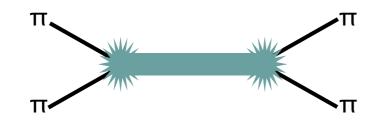
Sounds hard... why bother?

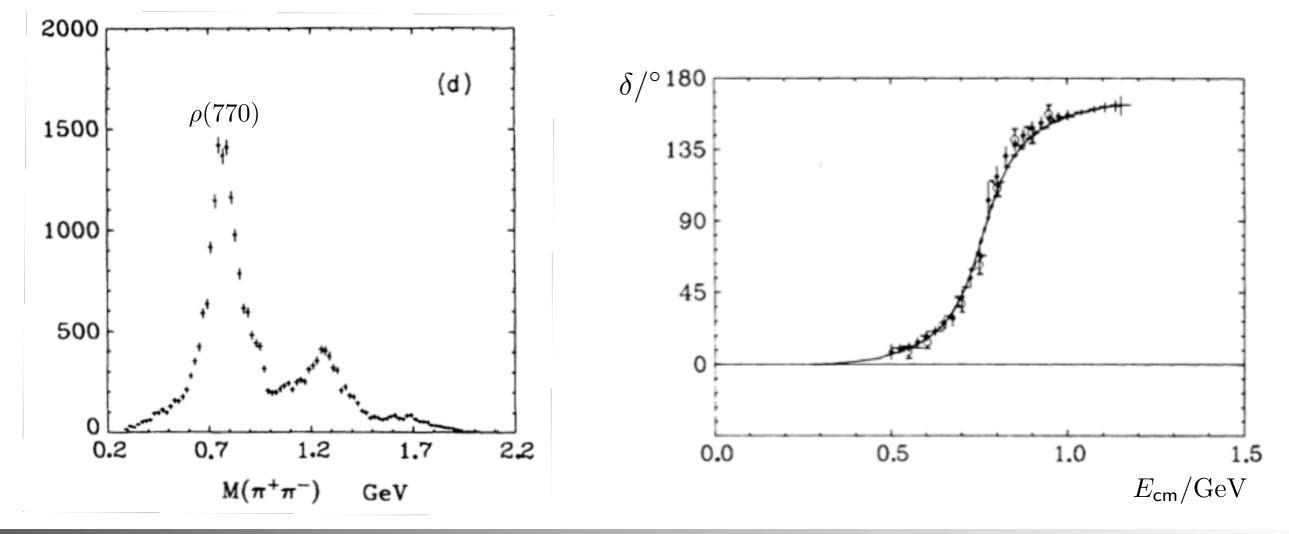
 $a_0(980), f_0(980)$ $a_1(1260)$ X(3872), and other XYZ states $N^{(1440)}, \Lambda(1405), ...$



all decay into multiple final states of all are resonant enhancements in multiple channels to understand these rigorously, we need coupled-channel analyses

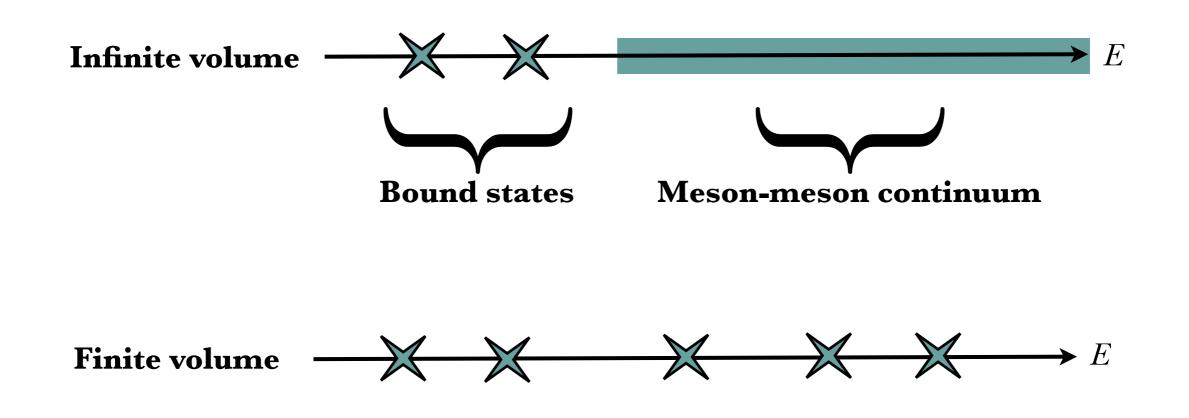
excited states seen as resonant enhancements in the scattering of lighter stable particles





David Wilson

excited states seen as resonant enhancements in the scattering of lighter stable particles

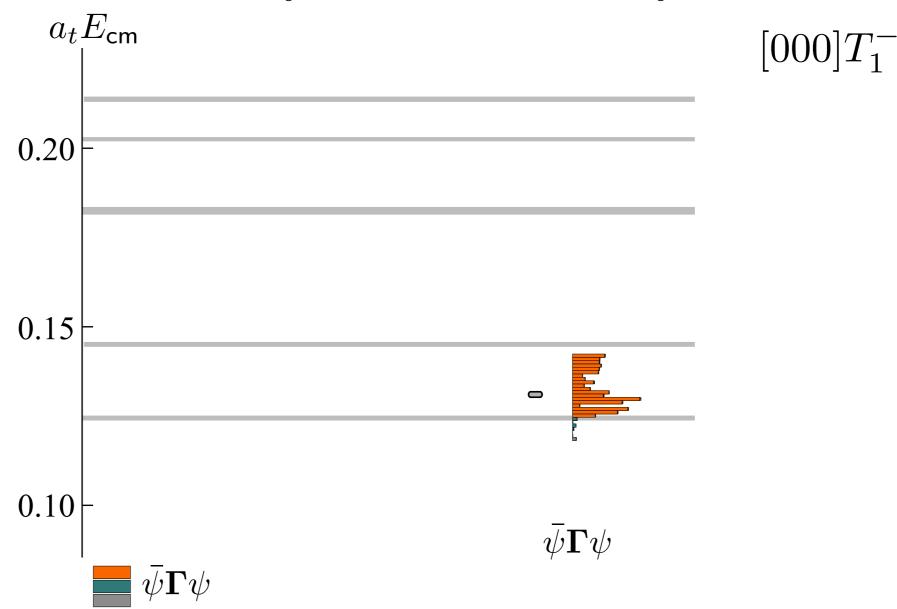


build a large basis of operators: $\mathcal{O}^{\dagger} \sim \bar{\psi} \Gamma \overleftrightarrow{D} \dots \overleftrightarrow{D} \psi$

compute large correlation matrices: $C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0 \rangle$

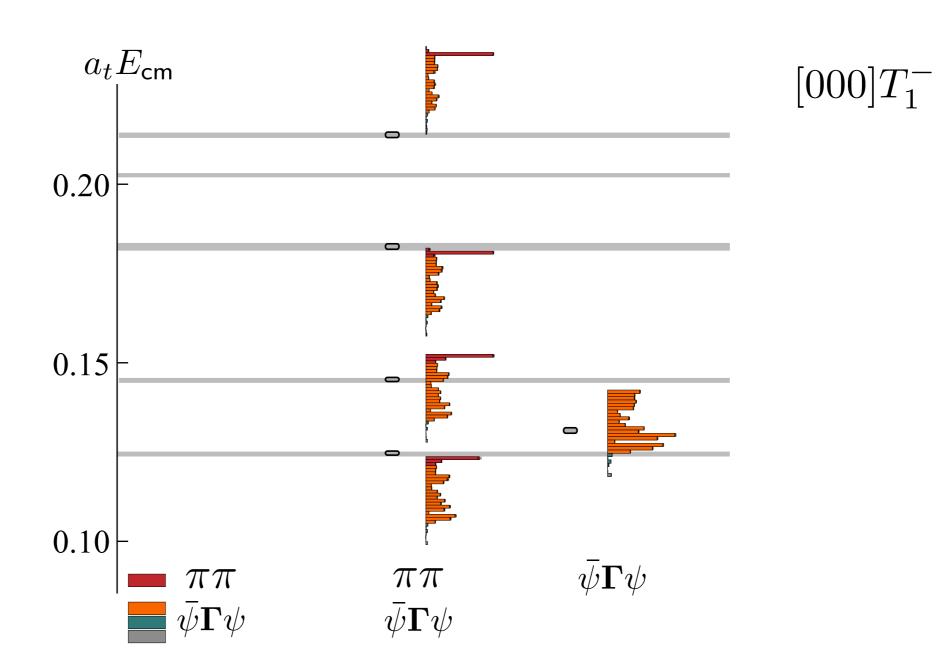
solve GEVP:

 $C_{ij}(t)v_j^{\mathfrak{n}} = \lambda_{\mathfrak{n}}(t,t_0)C_{ij}(t_0)v_j^{\mathfrak{n}}$

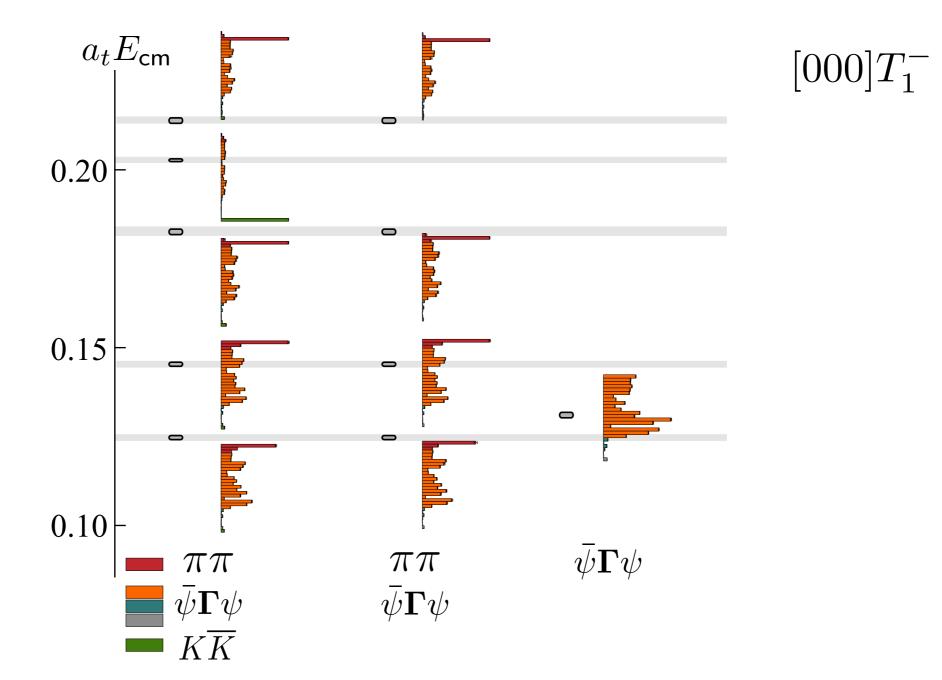


 $m_{\pi} = 236 \text{ MeV}$

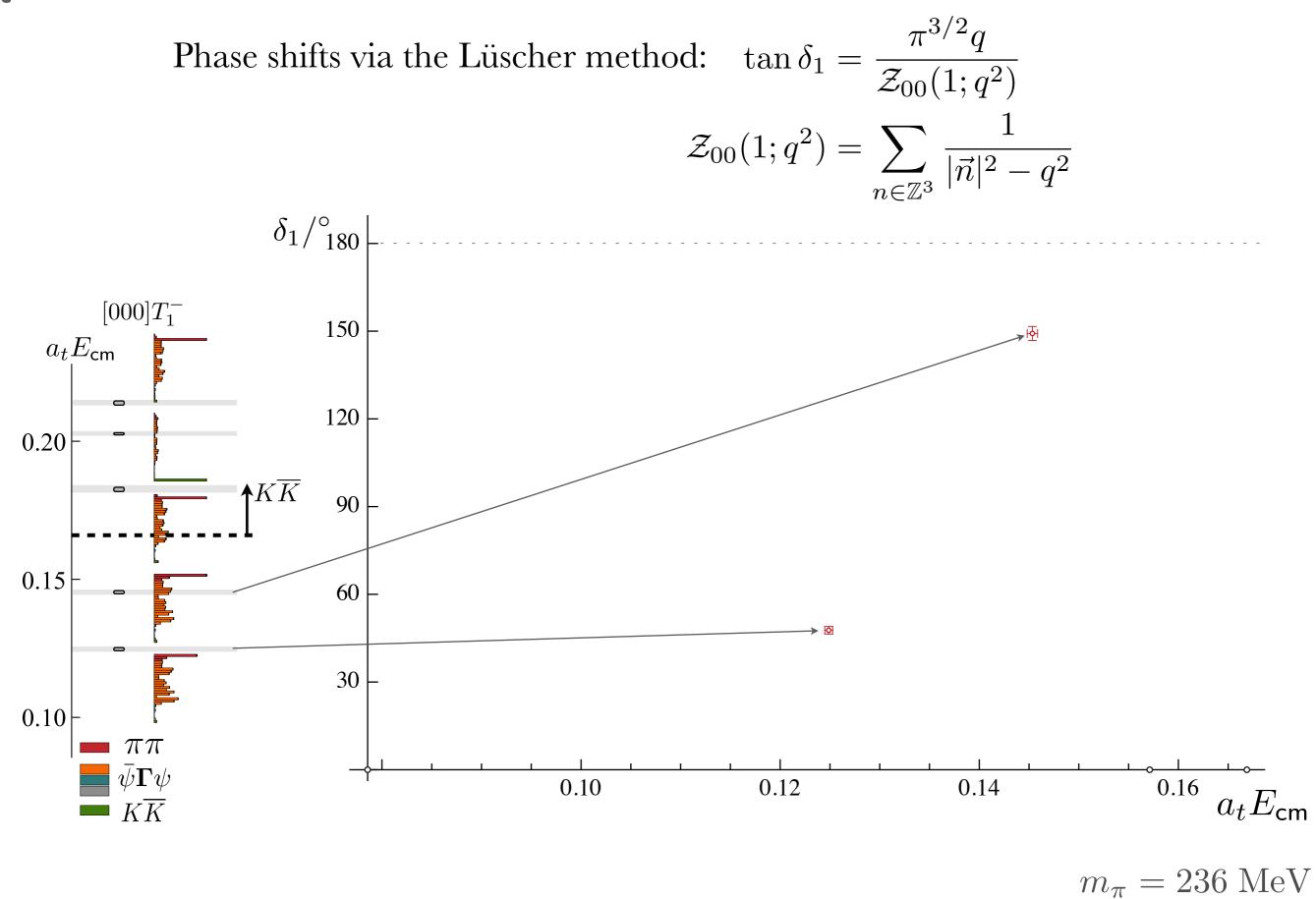
add in $\pi\pi$ operators using a variationally optimal pion $\pi^{\dagger} = \sum_{i} v_{i}^{\pi} \mathcal{O}_{i}^{\dagger}$ combine in pairs $(\pi\pi)^{\dagger} = \sum_{\vec{p_{1}}+\vec{p_{2}}=\vec{P}} \mathcal{C}(\vec{p_{1}},\vec{p_{2}})\pi^{\dagger}(\vec{p_{1}})\pi^{\dagger}(\vec{p_{2}})^{-i}$



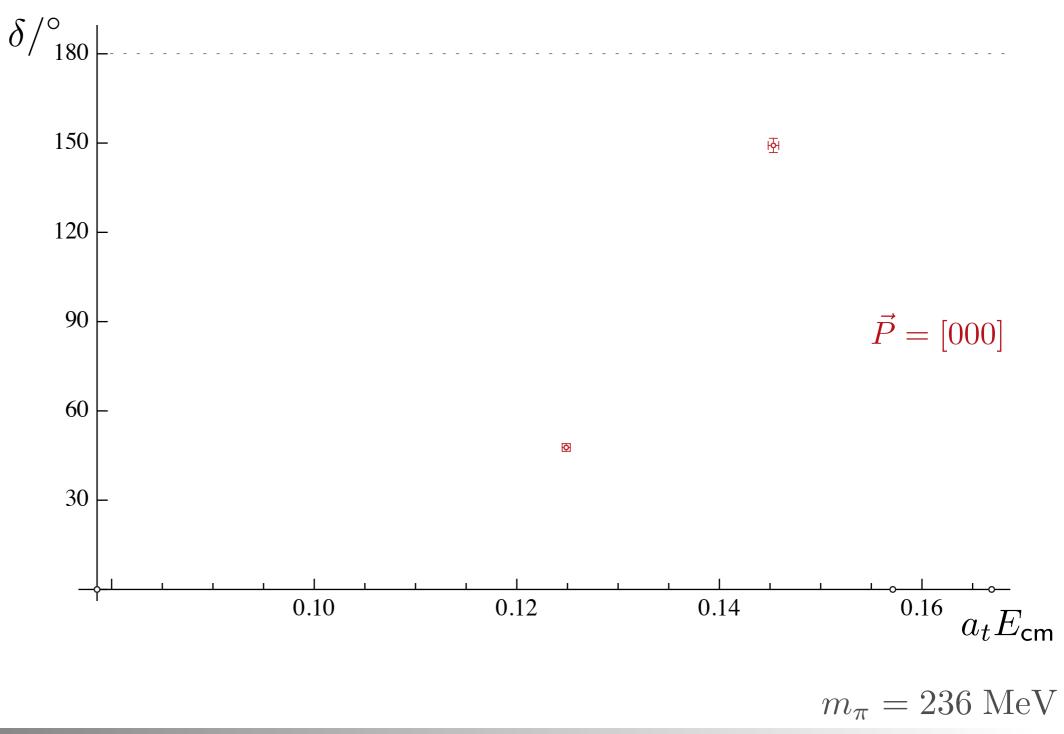
essential to have operators that overlap onto "meson" and "meson-meson" contributions to the physical spectrum



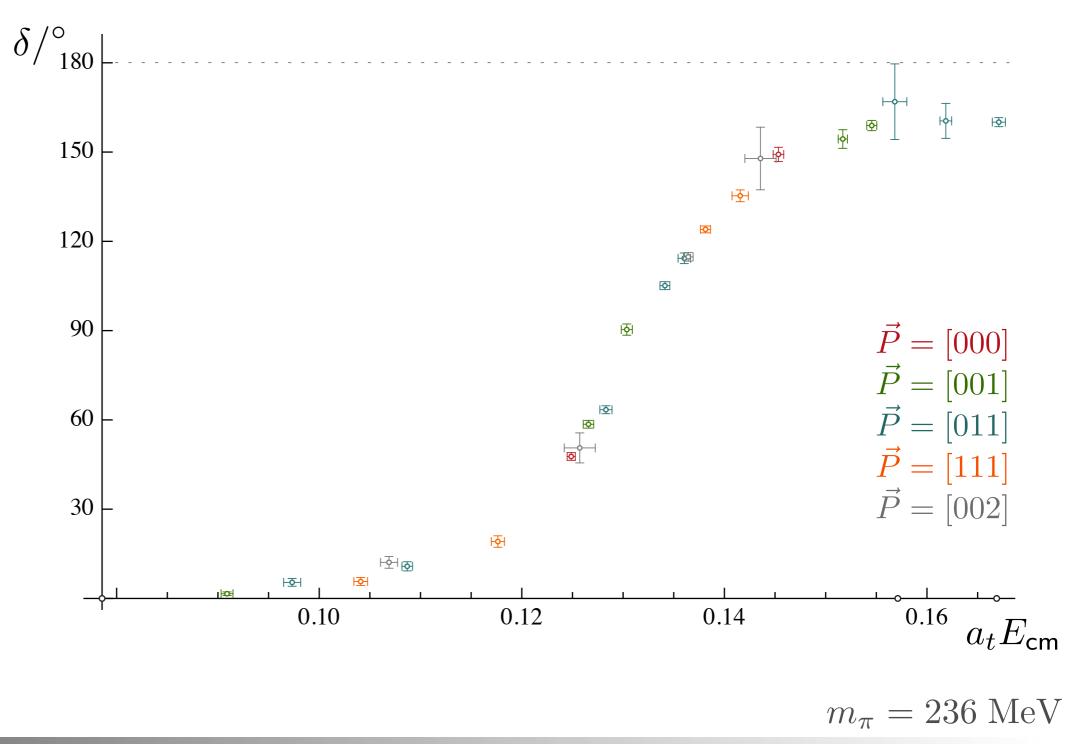
ρ resonance



ρ resonance with moving frames

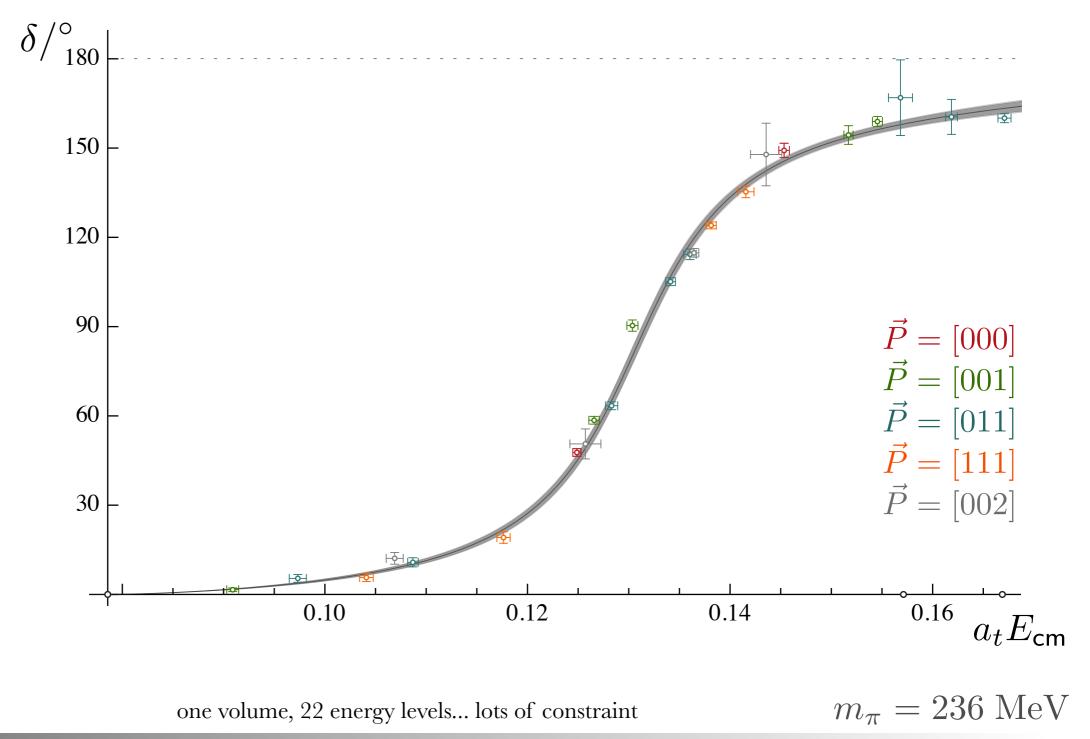


ρ resonance with moving frames



ρ resonance with moving frames

PRD 92 094502, arXiv:1507.02599 - for more see Antoni Woss Tuesday 26 Jul 2016 at 14:40



David Wilson

Coupled-channel scattering

Direct extension of the elastic quantization condition derived by Lüscher

$$\det \left[\mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot \left(\mathbf{1} + i\boldsymbol{\mathcal{M}}(E,L) \right) \right] = 0$$

$$\int_{\text{phase space}} \inf \left[\inf_{\text{t-matrix}} volume \text{ scattering}} \int_{\text{known finite-volume}} \int_{\text{functions}} volume \text{ functions}} \left[\int_{\text{t-matrix}} volume \text{ functions}} volume \text{ functions} \right] = 0$$

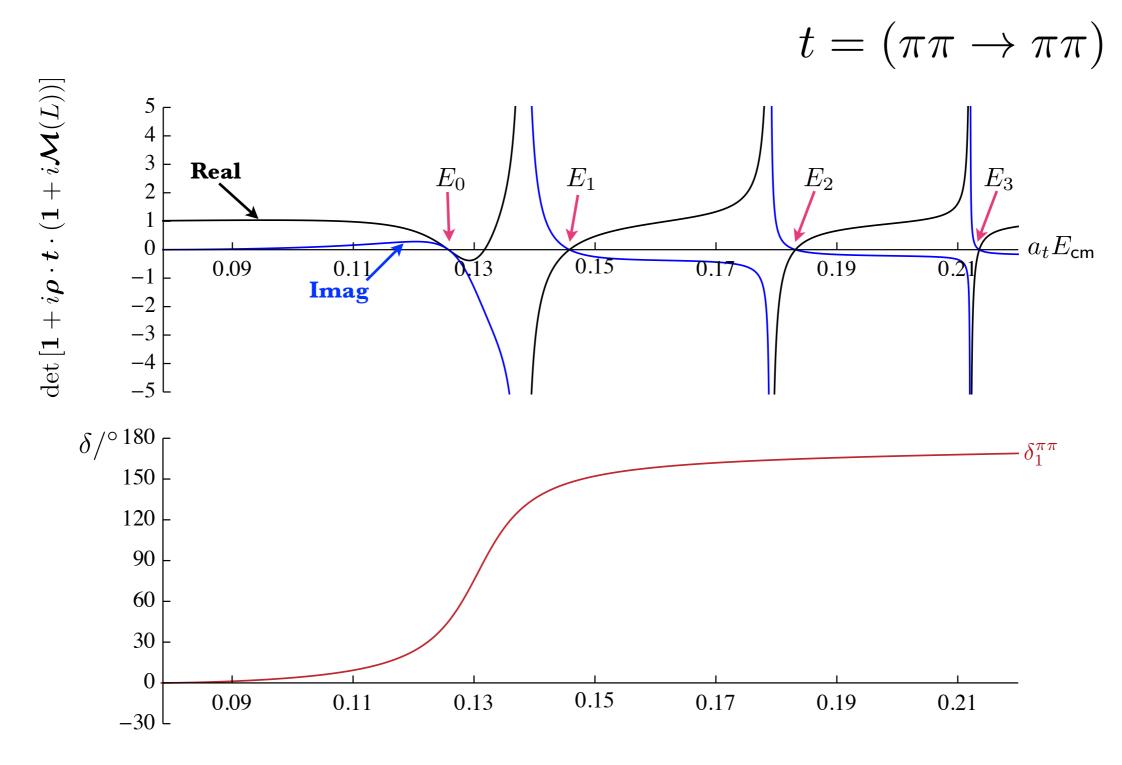
Many derivations, all in agreement:

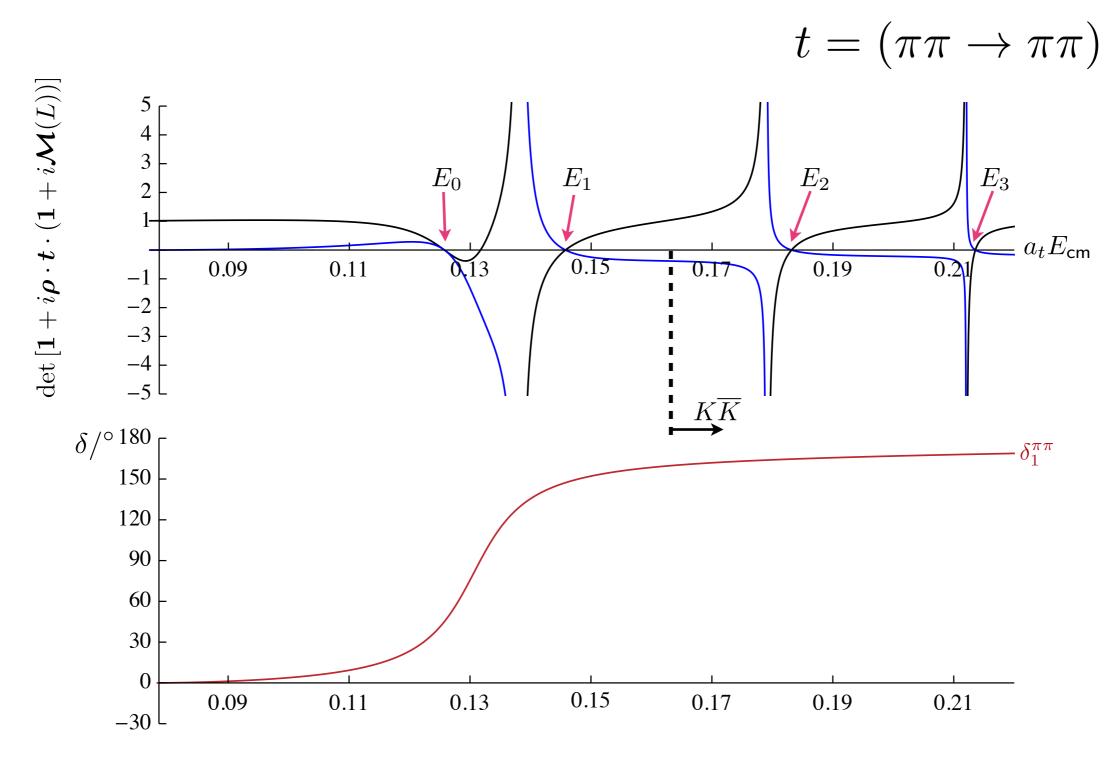
He, Feng, Liu 2005 - two channel QM, strong coupling Hansen & Sharpe 2012 - field theory, multiple two-body channels Briceño & Davoudi 2012 - strongly-coupled Bethe-Salpeter amplitudes Guo et al 2012 - Hamiltonian & Lippmann-Schwinger

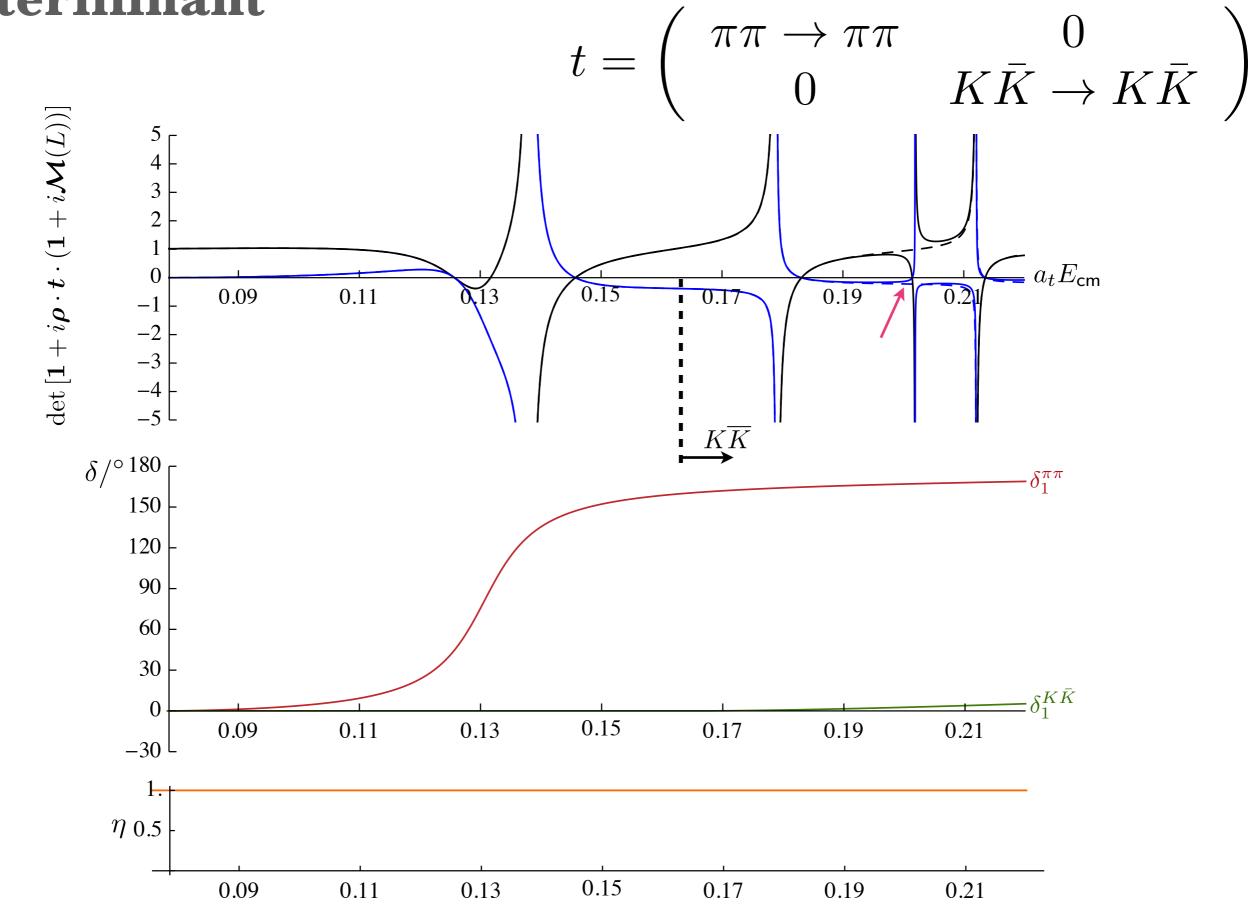
Also derivations in specific channels, or for a specific parameterization of the interactions like NREFT, chiral PT, Finite Volume Hamiltonian, etc.

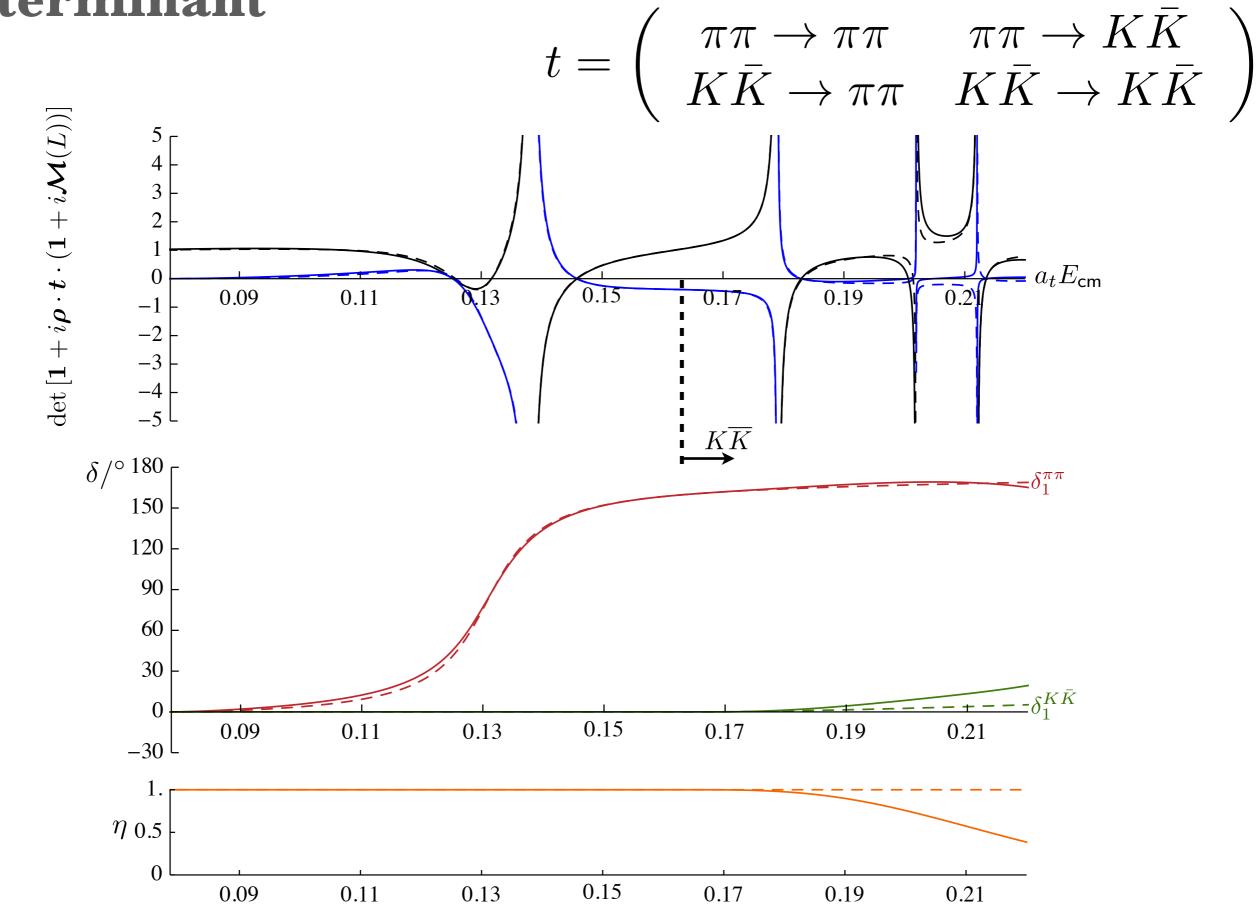
Briceño 2014 - Generalised to scattering of particles with non-zero spin, and spin-1/2.

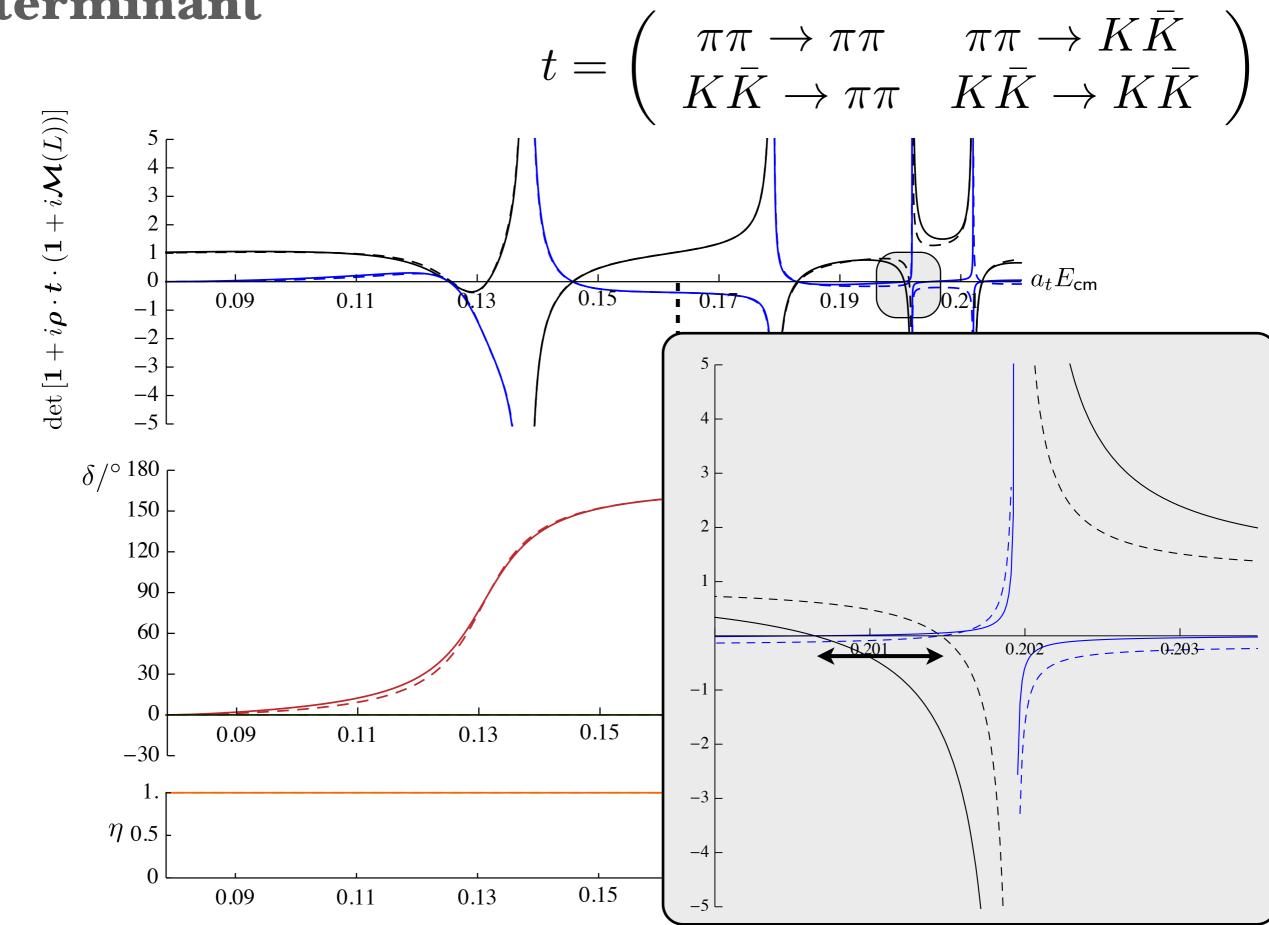
Significant steps towards a general 3-body quantization condition have been made - see Stephen Sharpe on Tuesday 26 Jul 2016 at 15:40 for the latest

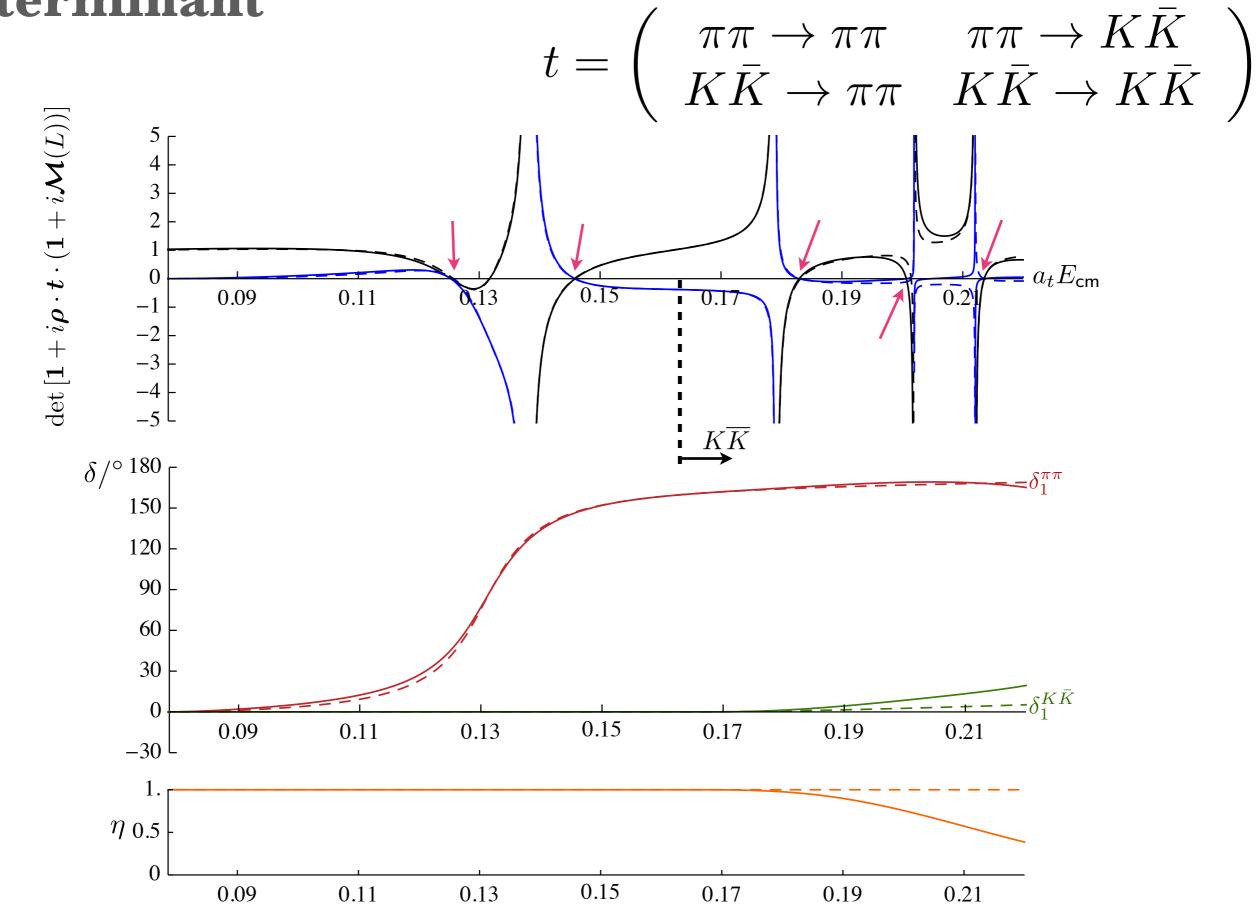












Amplitude parameterization

$$\mathbf{t} = \begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to K\bar{K} \\ K\bar{K} \to \pi\pi & K\bar{K} \to K\bar{K} \end{pmatrix}$$

$$\det \left[\mathbf{1} + i\boldsymbol{\rho}(E) \cdot \boldsymbol{t}(E) \cdot (\mathbf{1} + i\boldsymbol{\mathcal{M}}(E,L)) \right] = 0$$

determinant condition:

- several unknowns at each value of energy
- energy levels typically do not coincide
- underconstrained problem for a single energy

one solution: use energy dependent parameterizations

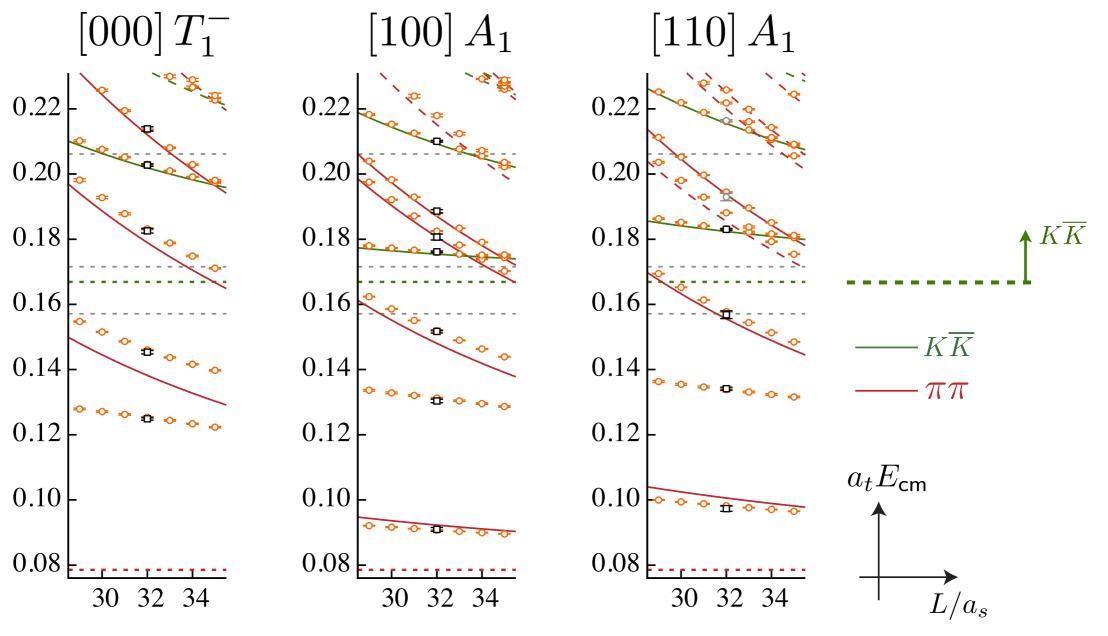
- Constrained problem when #(energy levels) > #(parameters)
- Essential amplitudes respect unitarity of the S-matrix

$$\mathbf{S}^{\dagger}\mathbf{S} = \mathbf{1} \quad \rightarrow \quad \operatorname{Im} \mathbf{t}^{-1} = -\boldsymbol{\rho} \qquad \rho_{ij} = \delta_{ij} \frac{2k_i}{E_{\mathsf{cm}}}$$

K-matrix approach:

$$\mathbf{t}^{-1} = \mathbf{K}^{-1} - i\boldsymbol{\rho} \qquad \text{e.g.: } K_{ij} = \frac{g_i g_j}{m^2 - s} + \gamma_{ij}$$

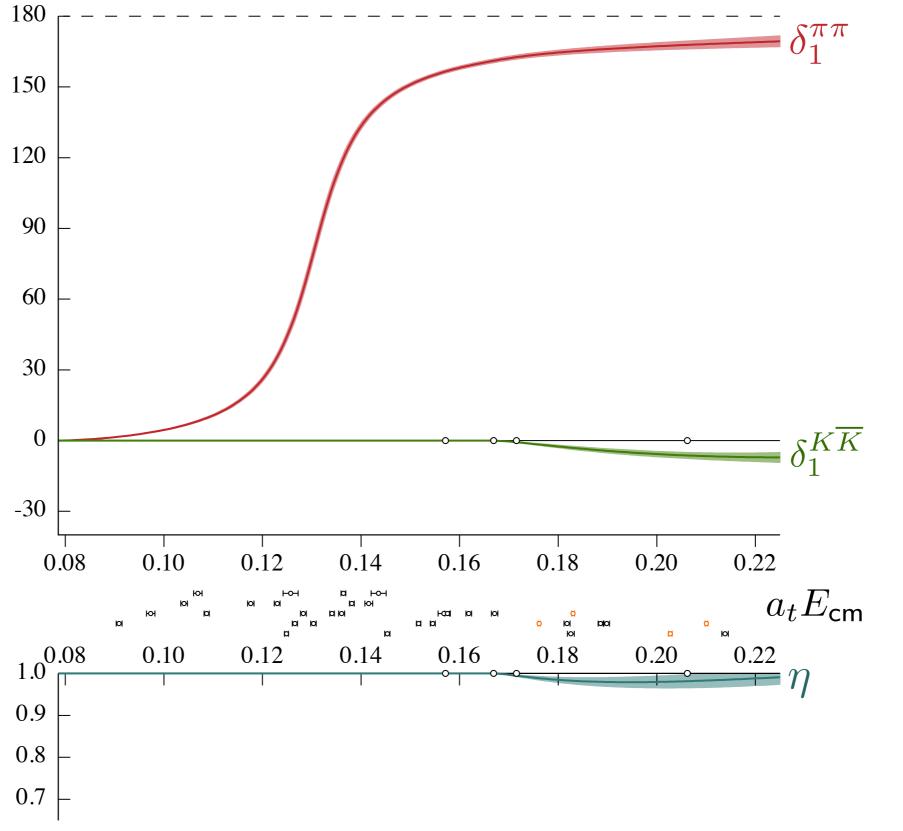
ρ resonance into the coupled-channel region



 $m_{\pi} = 236 \text{ MeV}$

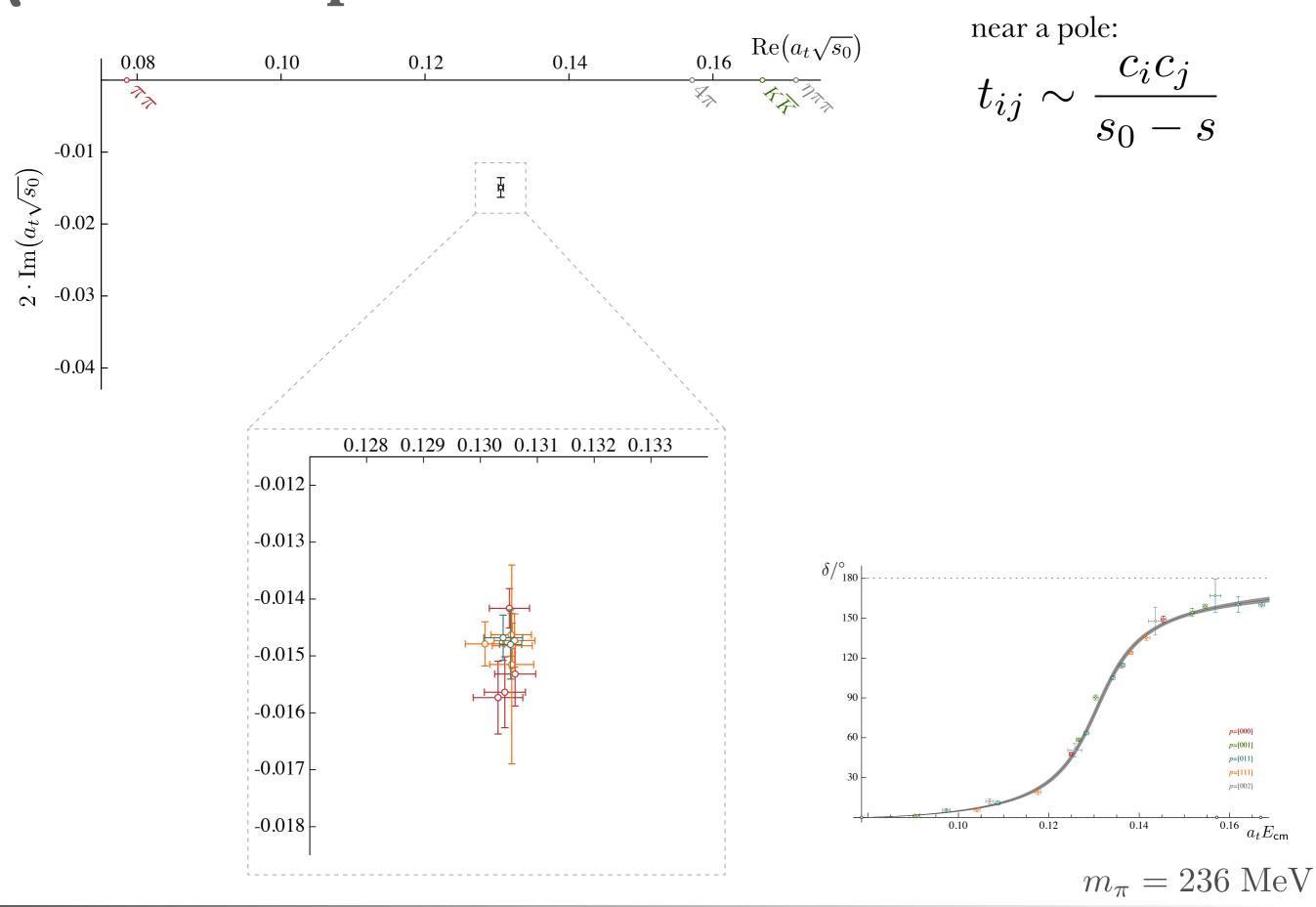
ρ resonance into the coupled-channel region

PRD 92 094502, arXiv:1507.02599



 $m_{\pi} = 236 \text{ MeV}$

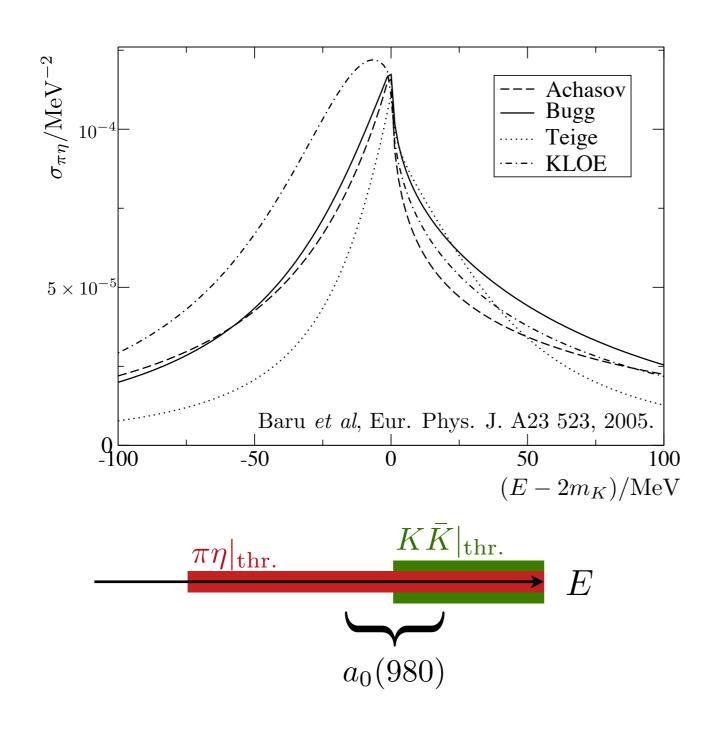
ρ resonance pole

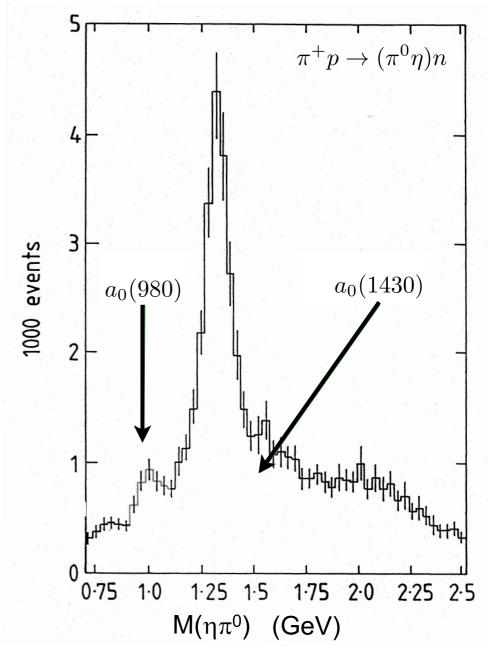


An a₀ resonance

- for more see Jozef Dudek, Tuesday 26 Jul 2016 at 16:50 PRD 93 094506, arXiv:1602.05122

 $\pi \eta - K \bar{K} - \pi \eta'$ $I = 1 \quad J = 0$



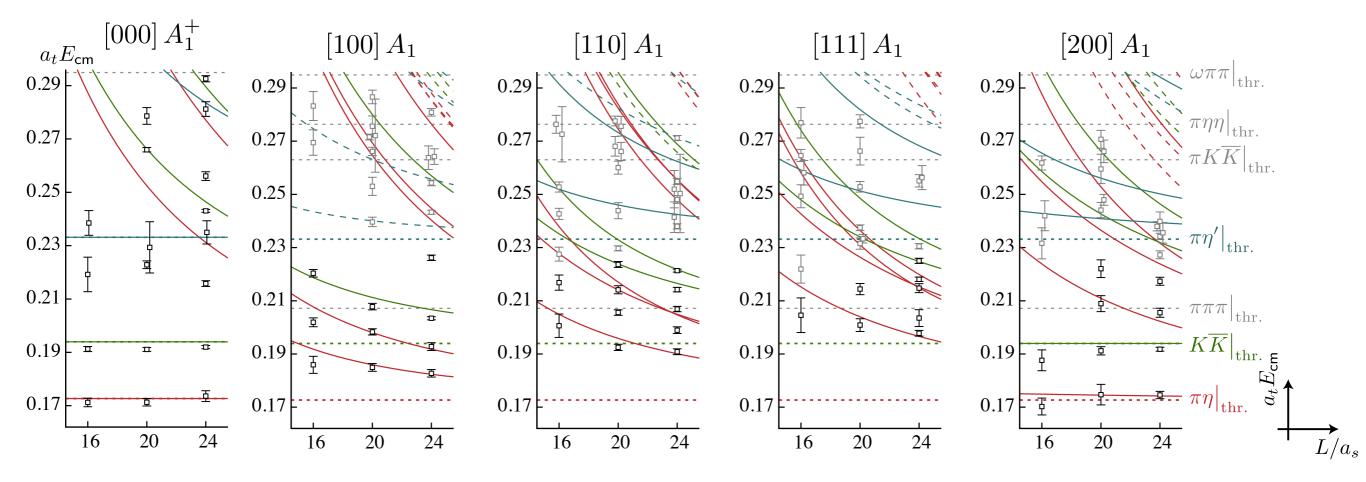


GAMS, Alde et al PLB 203 397, 1988.

 $m_{\pi} = 391 \text{ MeV}$

An a₀ resonance

 $\pi\eta$ - $K\bar{K}$ - $\pi\eta'$



$$m_{\pi} = 391 \text{ MeV}$$

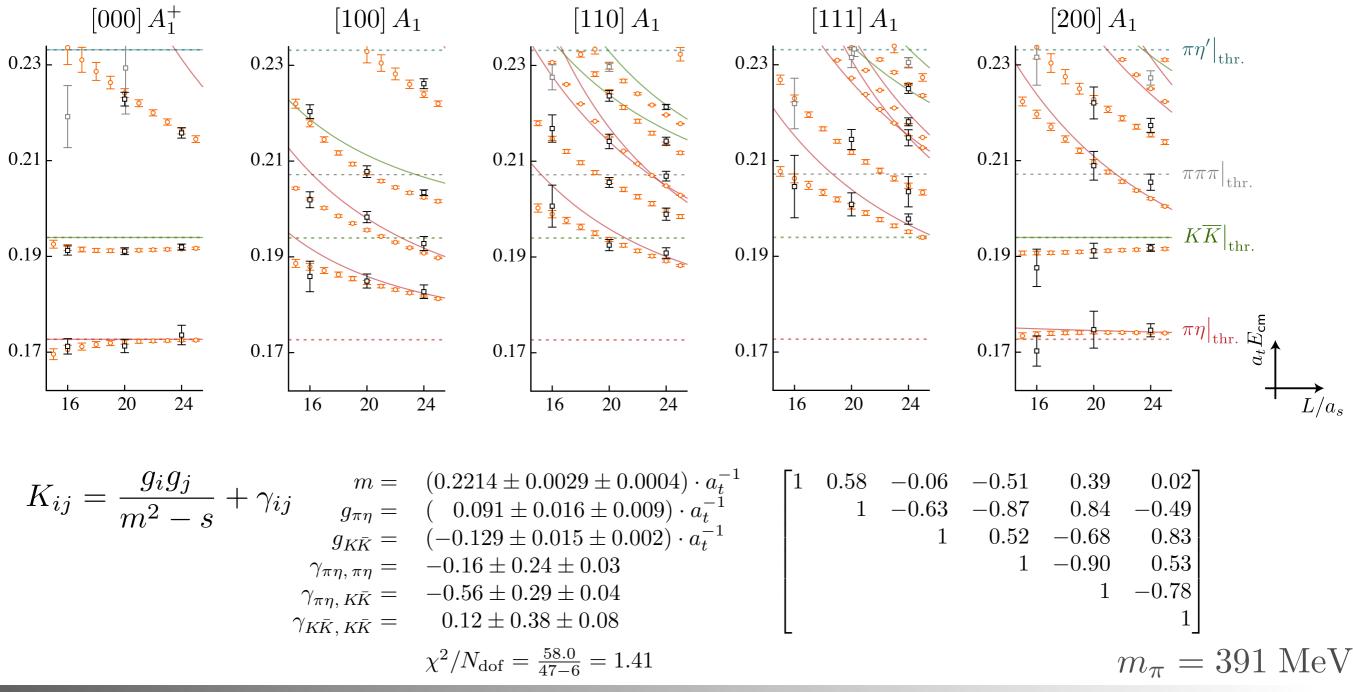
David Wilson

Resonances in coupled-channel scattering

25

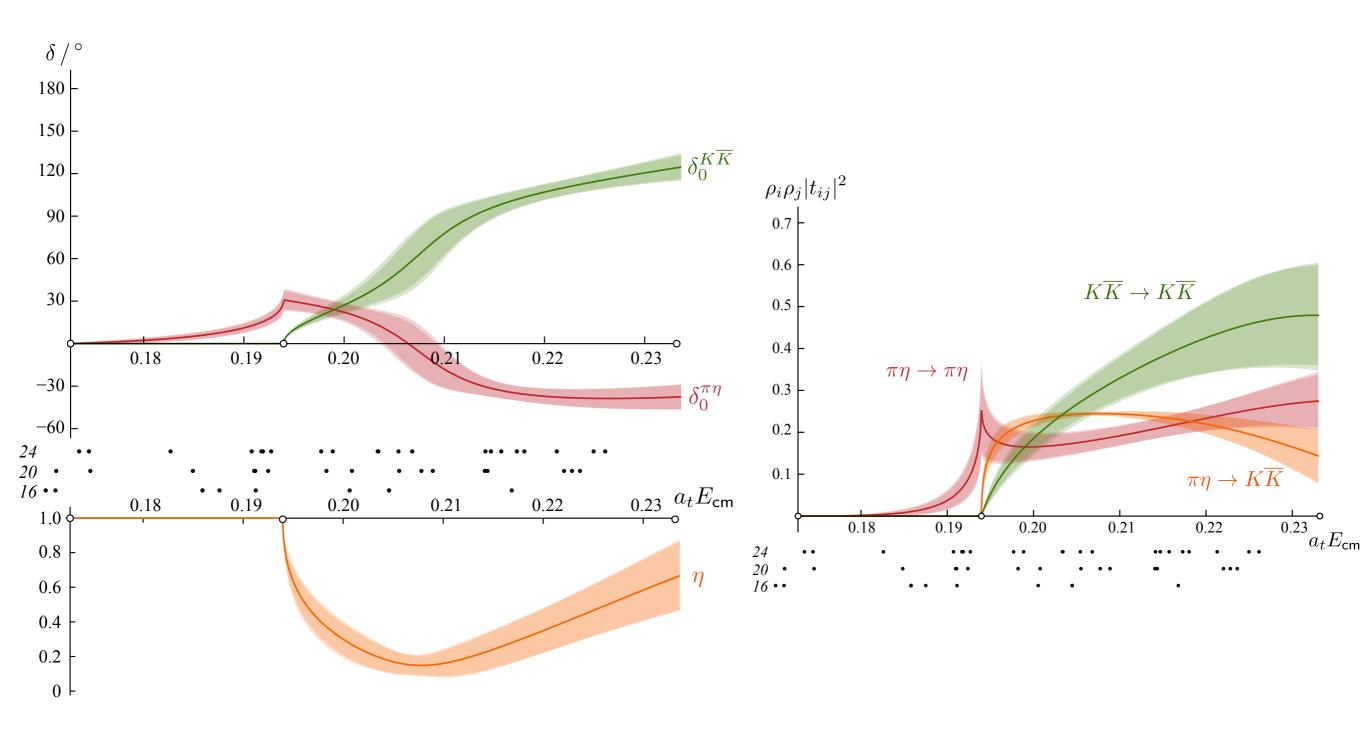
a₀ resonance - two channel region

 $\pi\eta$ - $K\bar{K}$ using 47 energy levels



a₀ resonance - two channel region

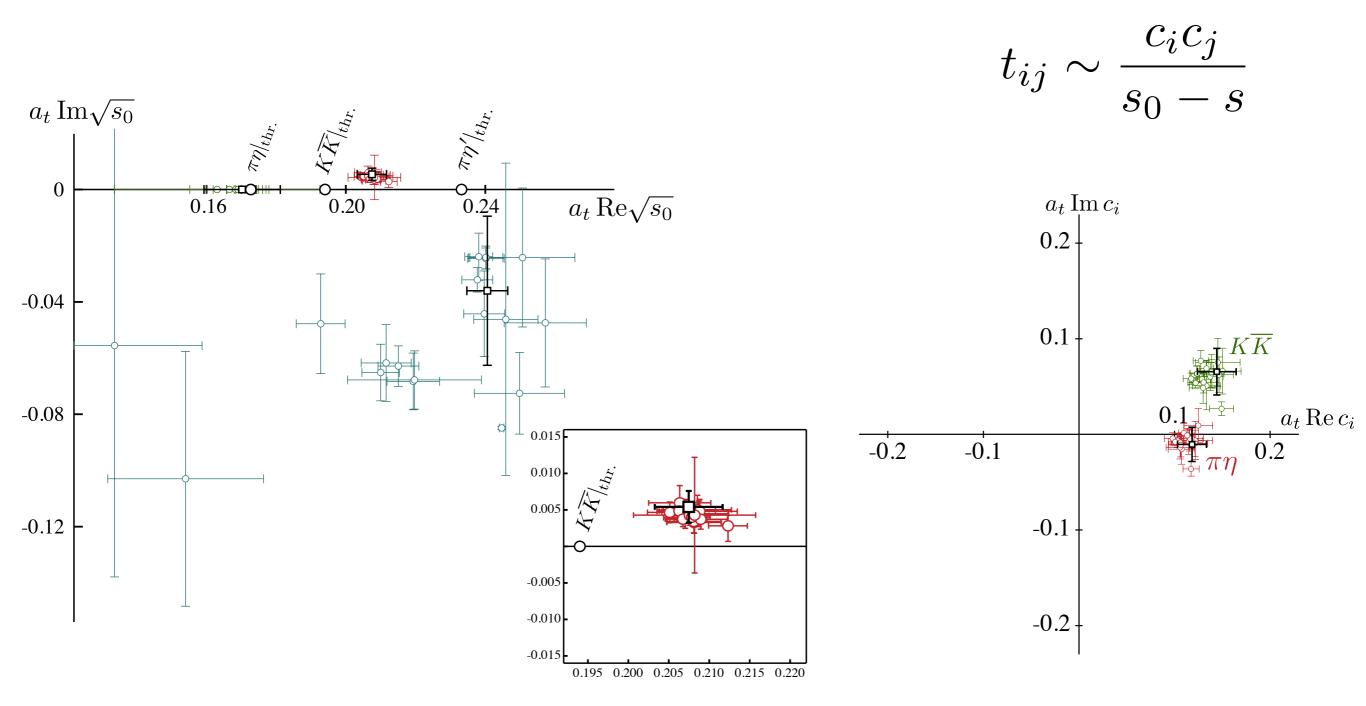
S-wave $\pi\eta$ - $K\bar{K}$ from 47 energy levels



$$m_{\pi} = 391 \text{ MeV}$$

a₀ resonance pole

- for more see Jozef Dudek, Tuesday 26 July 2016 at 16:50

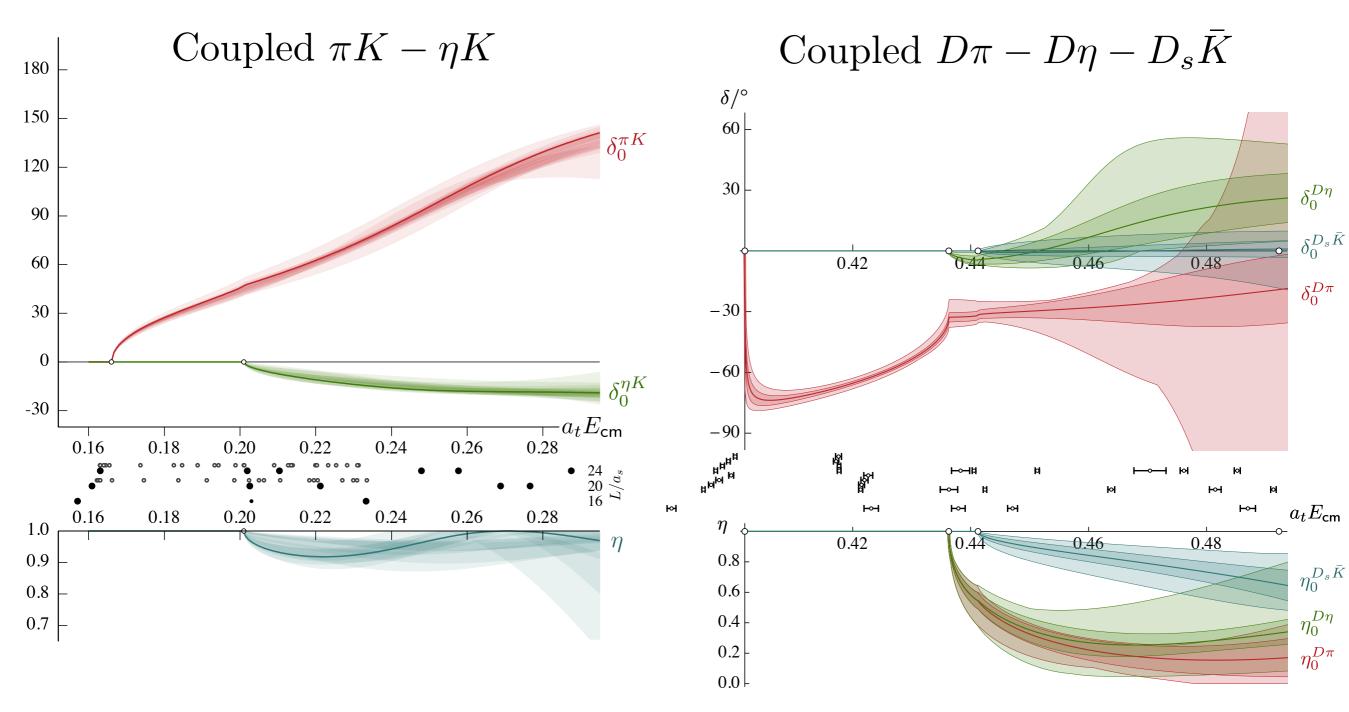


$$m_{\pi} = 391 \text{ MeV}$$

David Wilson

Other calculations

- Graham Moir, Thursday 28 July 2016 at 15:00



Combined S & P-wave analysis 80 energy levels from 3 volumes arXiv:1406.4158, PRL 113 (2014) no.18, 182001 Combined S & P-wave analysis 3 coupled channels in S-wave 47 energy levels from 3 volumes arXiv:1607.????

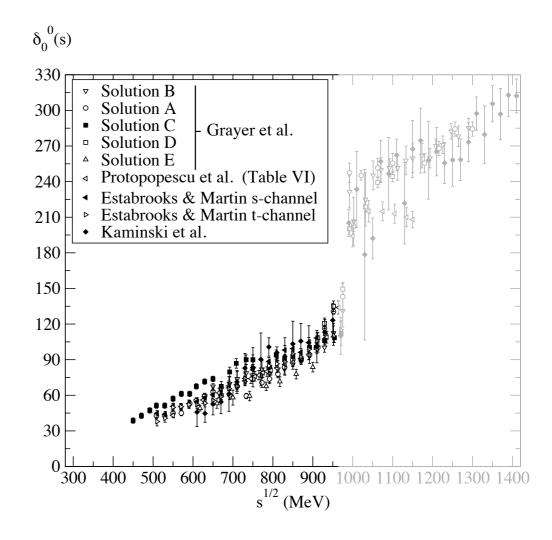
David Wilson

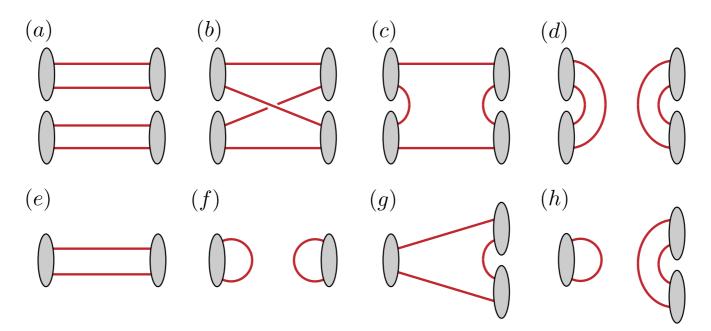
Resonances in coupled-channel scattering

 $m_{\pi} = 391 \text{ MeV}$

elastic scattering with vacuum quantum numbers $\pi\pi$ in I = 0, J = 0

- see Raul Briceño, Tuesday 26 July 2016 at 15:20 arXiv:1607.05900

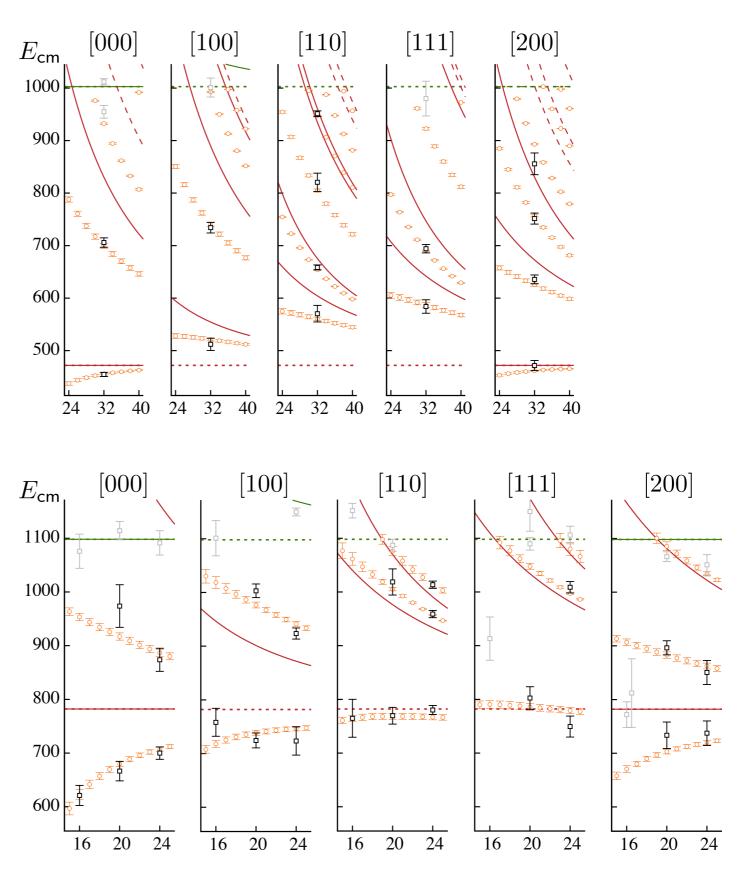




elastic scattering with vacuum quantum numbers $\pi\pi$ in I = 0, J = 0

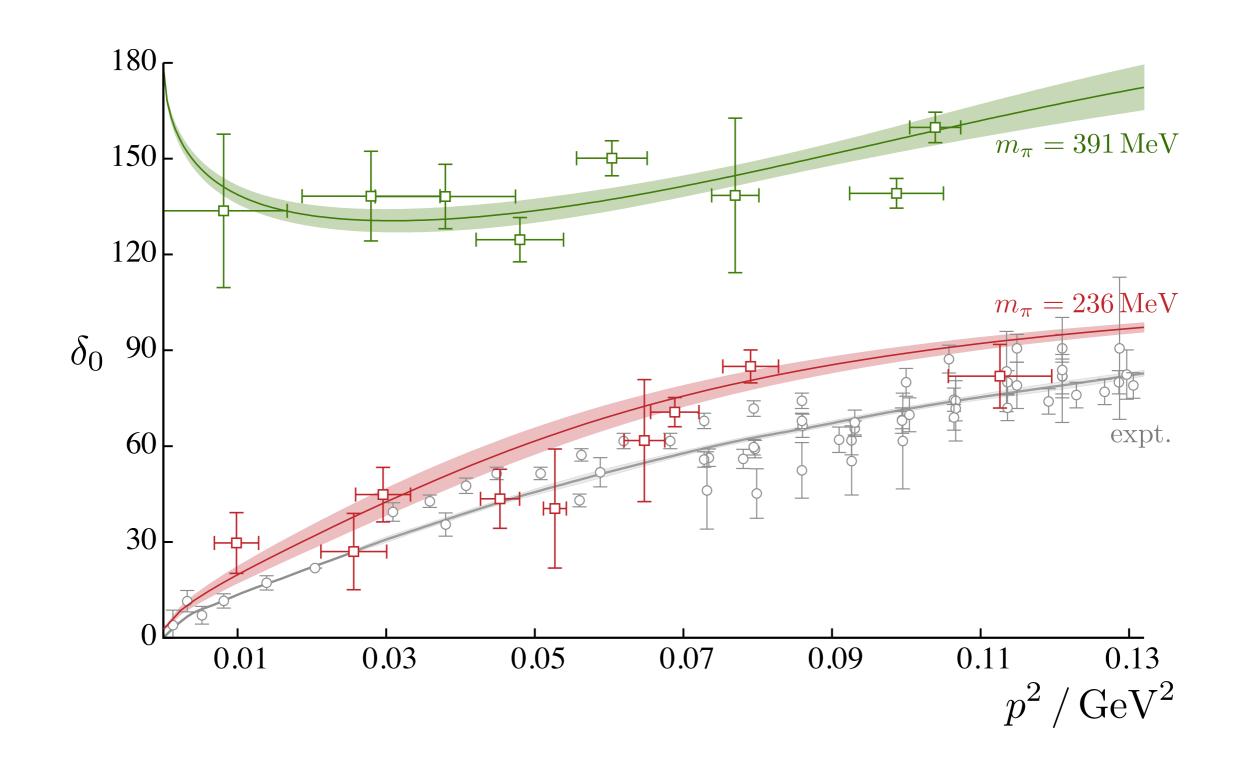
$$m_{\pi} = 236 \text{ MeV}$$

$$m_{\pi} = 391 \text{ MeV}$$



The $f_0(500)/\sigma$ resonance

- see Raul Briceño, Tuesday 26 July 2016 at 15:20 arXiv:1607.05900

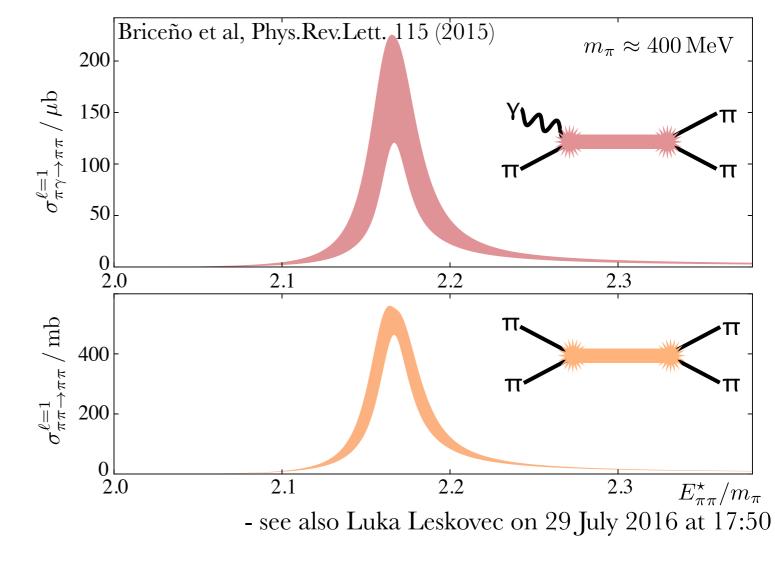


Future directions

two-body coupled-channel

 $f_0(980)$ $D\bar{D}$ $D\bar{D}^*$

- $N\pi$
- $\gamma a \rightarrow bc$

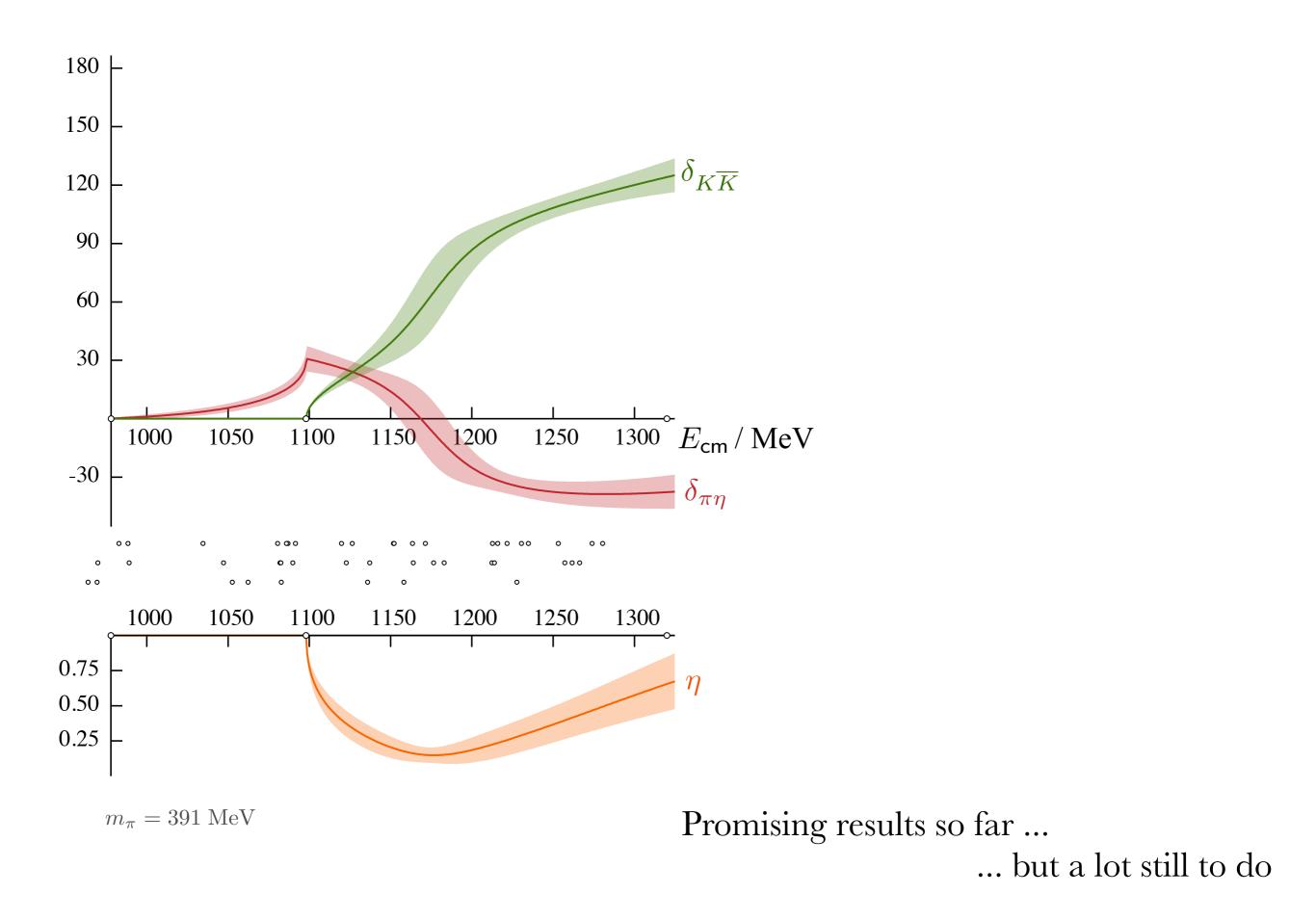


further operator structures - glueball, tetraquark, ... - see Gavin Cheung, Monday 25 July 2016 at 14:55

formalism for three-body and beyond

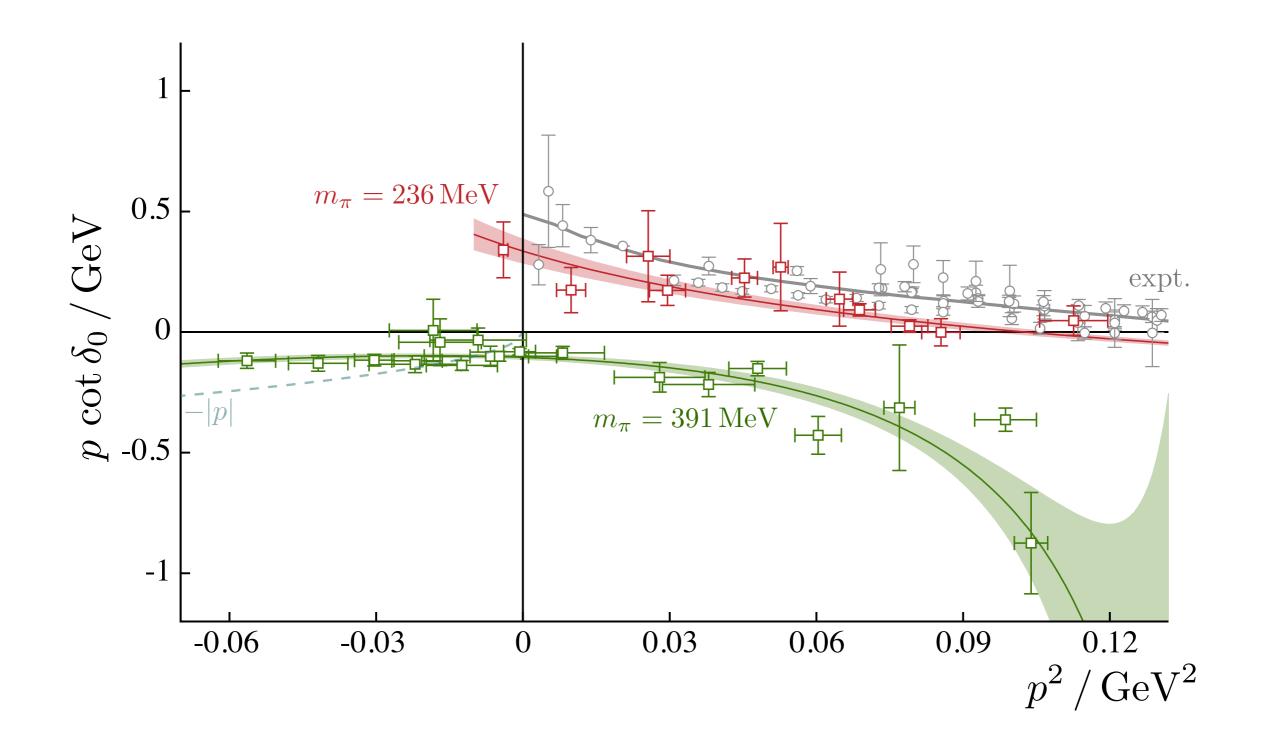
- needed for higher energies
- needed to get closer to the physical mass

- see Stephen Sharpe, Tuesday 26 July 2016 at 15:40

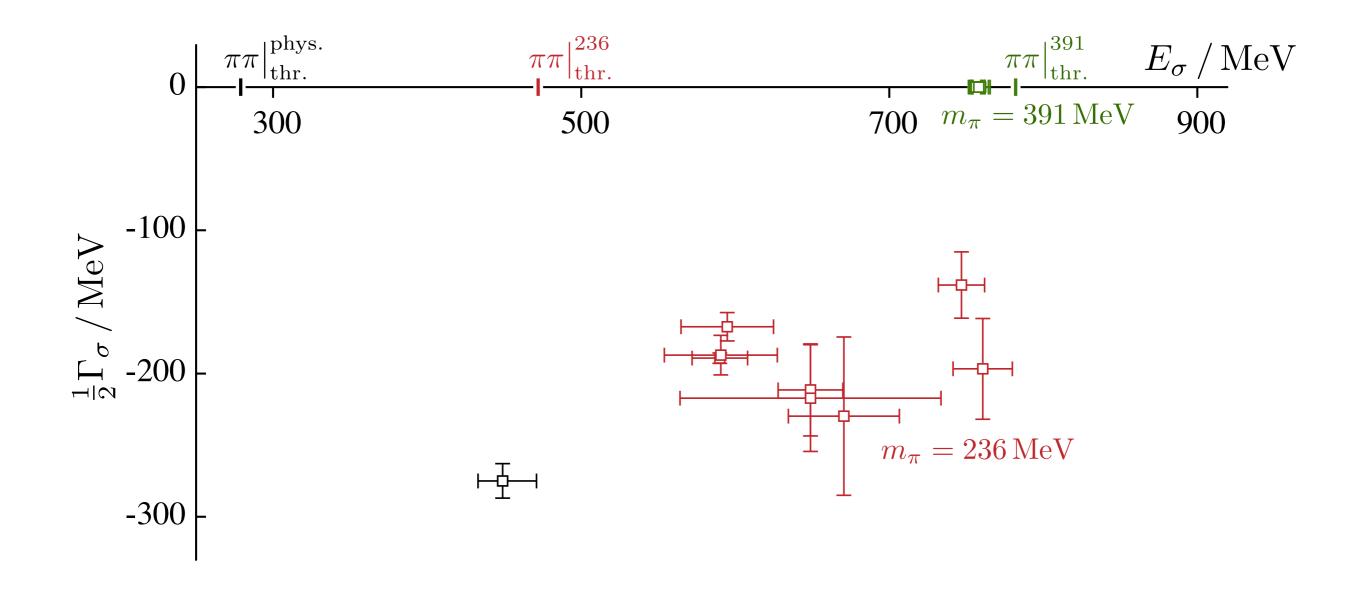


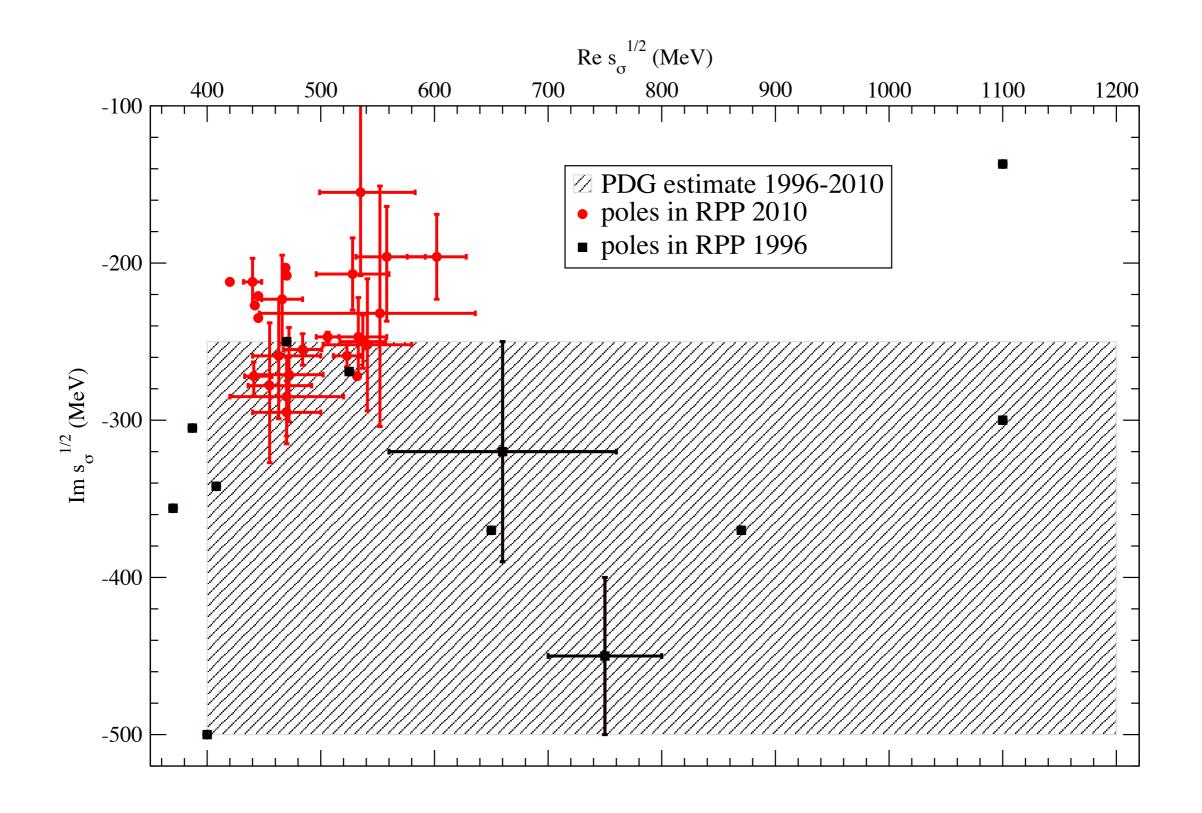
Backup

 $m_{\pi} = 391 \text{ MeV}$

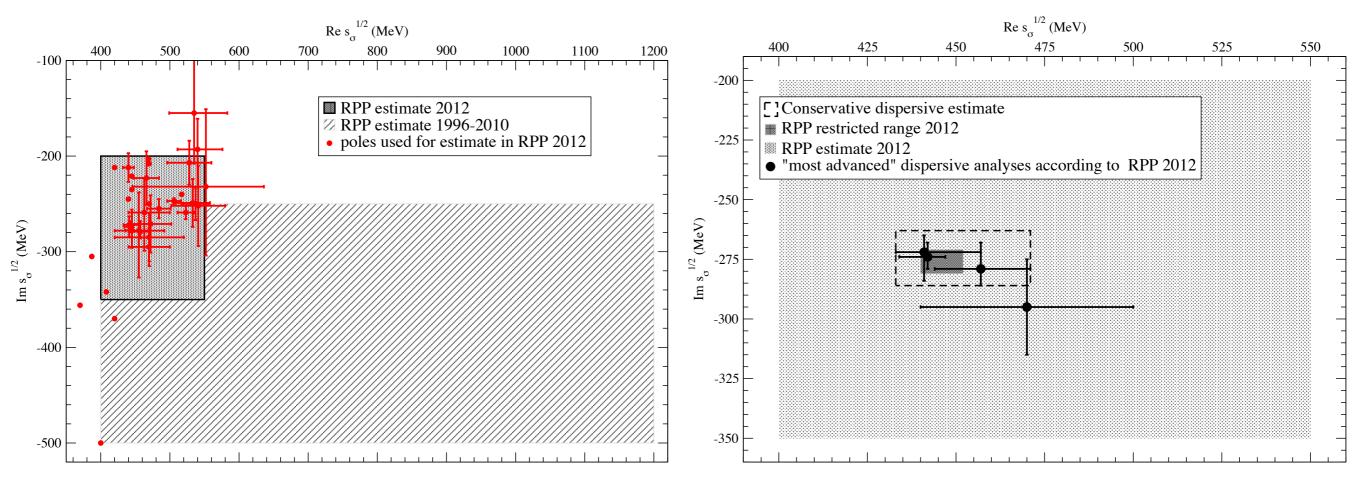


The $f_0(500)/\sigma$ resonance





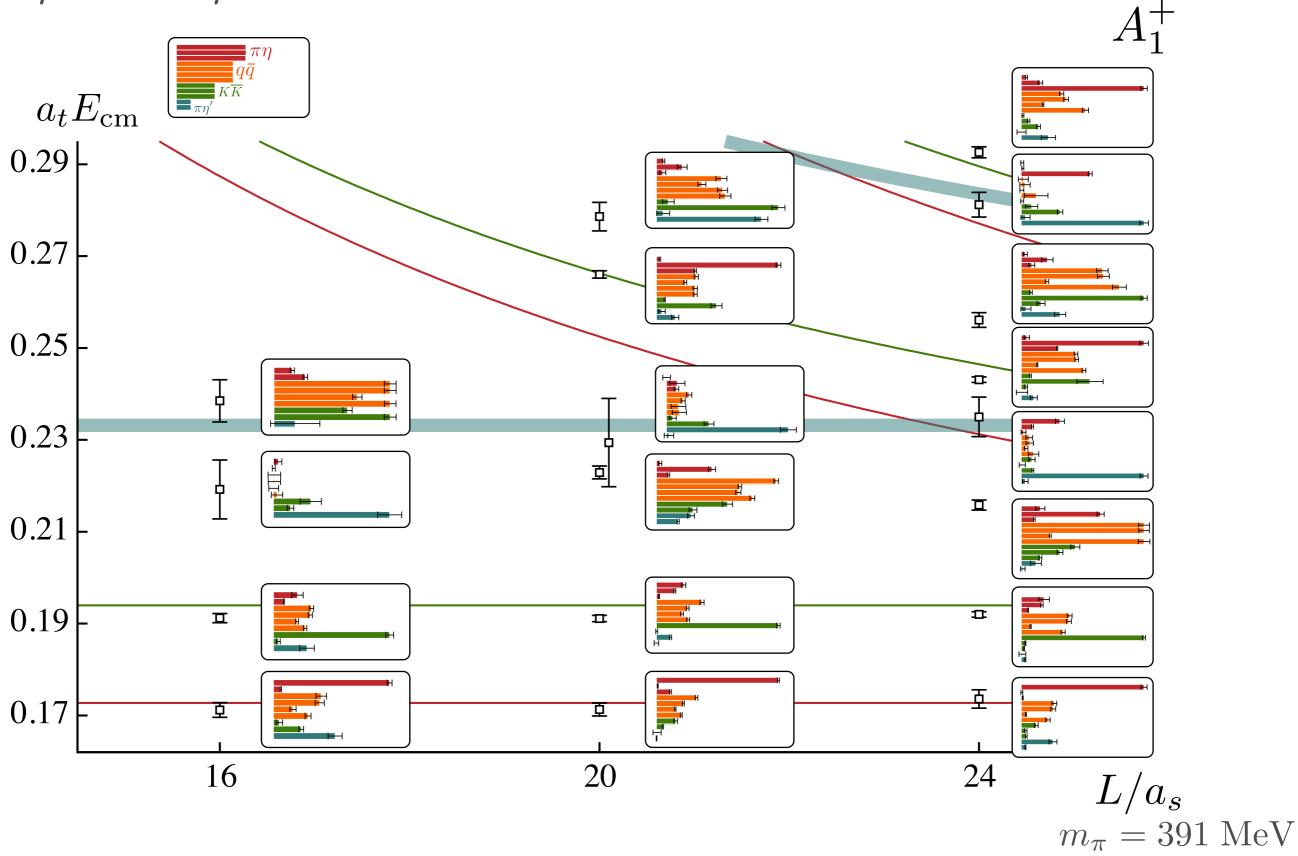
from J. R. Pelaez, arXiv:1510.00653

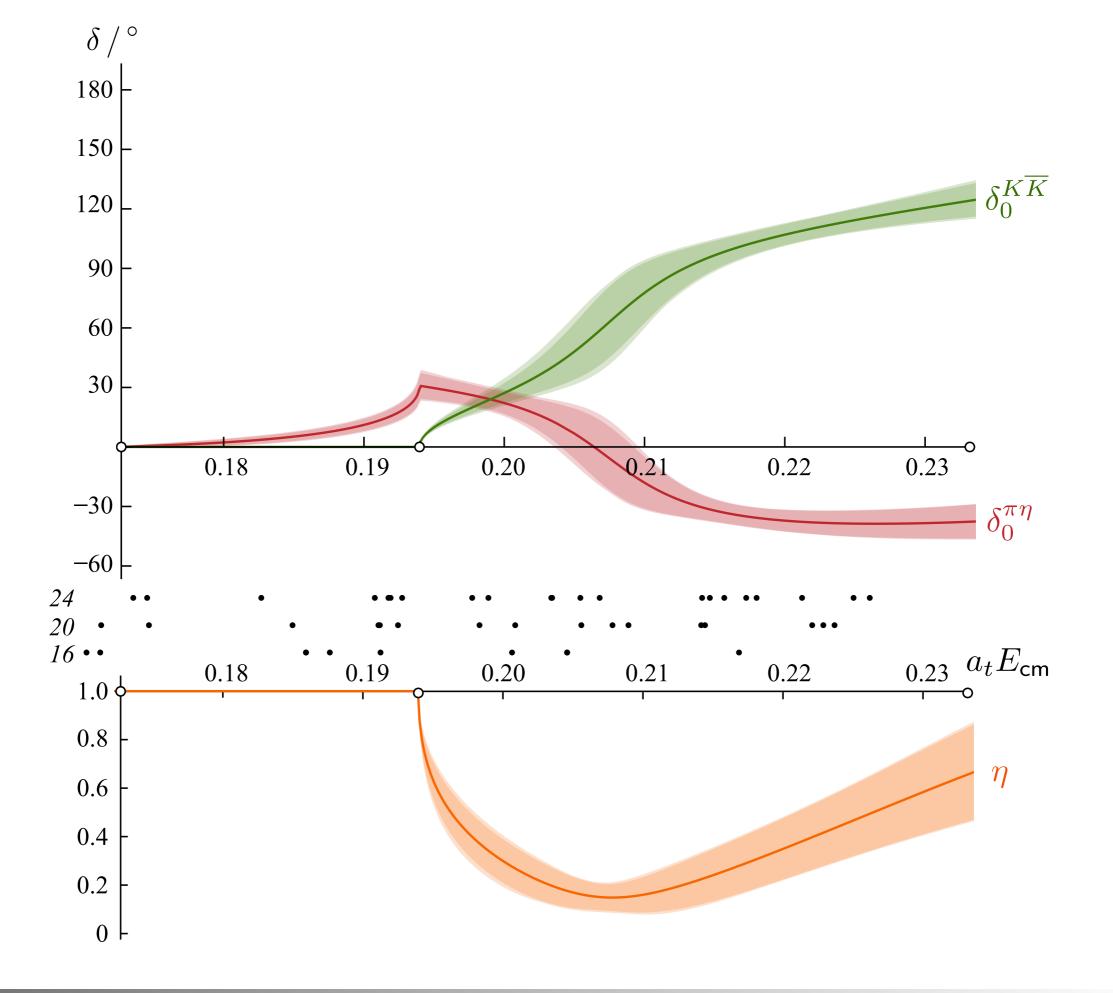


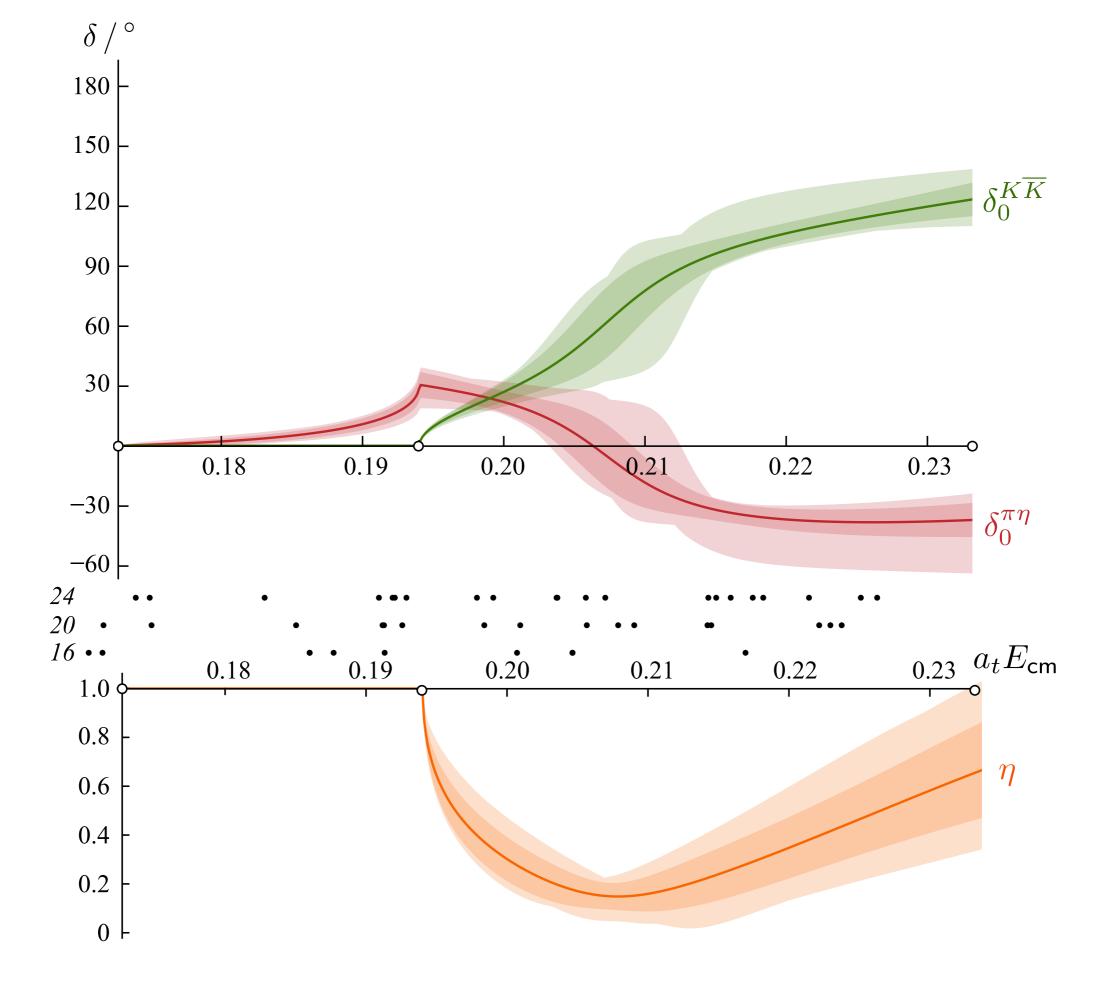
An a₀ resonance

- for more see Jozef Dudek, Tuesday 26 Jul 2016 at 16:50

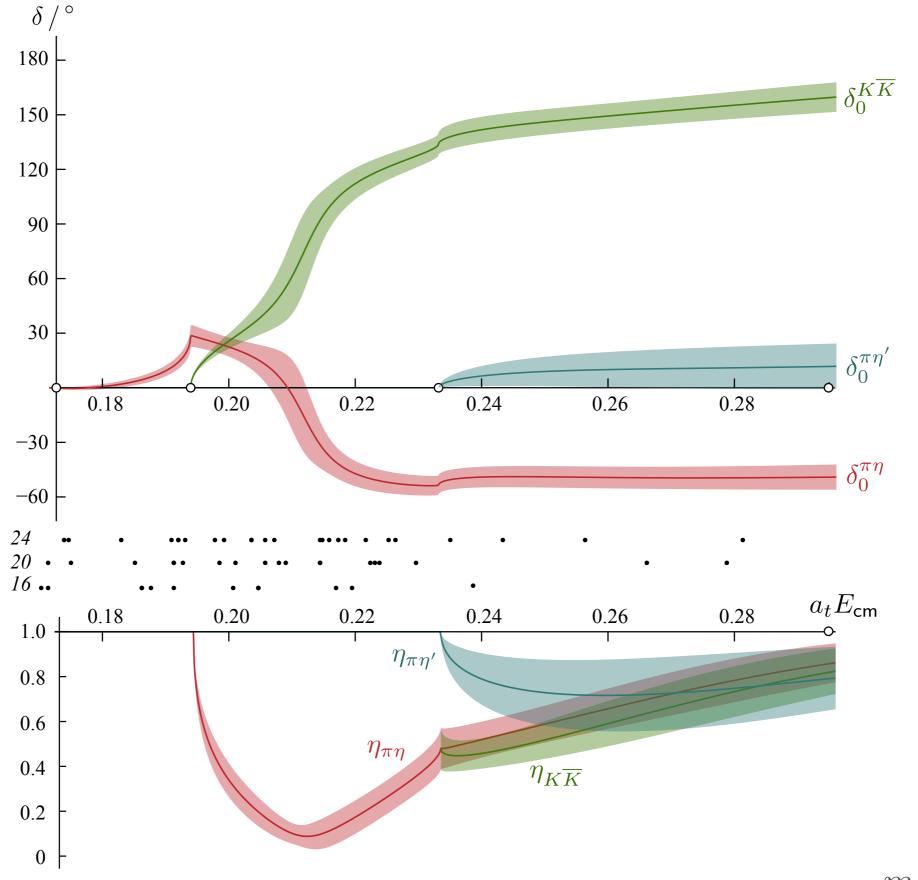
 $\pi\eta$ - $K\bar{K}$ - $\pi\eta'$







An a₀ resonance - three channel region



 $m_{\pi} = 391 \text{ MeV}$