A Worm Algorithm for the Lattice $\mathbb{C}P^{N-1}$ Model

Tobias Rindlisbacher ¹ and Philippe de Forcrand ^{1,2} (advisor)

¹Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland ²CERN, PH-TH, Geneva, Switzerland

Motivation

- 1 Why $\mathbb{C}P^{N-1}$?
- $\rightarrow \ {
 m 2D} \ {\mathbb C} {
 m P}^{N-1}$ is cheap toy model for 4D YM :
 - non-trivial vacuum structure,
 - confinement,
 - asymptotic freedom.
- 2 Why consider (new) worm algorithm?
- ightarrow Dual formulation of \mathbb{CP}^{N-1} lattice model with N^2 d.o.f. per link [Chandrasekharan, PoS 2008]:
 - worm algorithm found to be non-ergodic [Vetter, 2011 (semester thesis)],
 - meantime found solution to ergodicity problem, ← topic of this talk
 - can easily be generalized to finite densities.
- \rightarrow Loop algorithm based on dual formulation with one d.o.f. per link [Wolff, arXiv:1001.2231]:
 - no critical slowing down, but alg. can scale badly in some regions of config. space,
 - (can it be generalized to finite density?)
- \rightarrow Most recent dual formulation in terms of 2 N d.o.f. per link [Bruckmann et al., arXiv:1507.04253]:
 - has not been tested so far,
 - already allows for finite densities,
 - is it more efficient than the N² d.o.f. per link version?

1. The \mathbb{CP}^{N-1} Model: the two standard formulations (continuum)

• $\mathbb{C}P^{N-1}$ model as U(1) gauged non-linear SU(N) sigma model:

in d-dimensional continuous space:

$$S_A = -\frac{1}{g}\int \mathrm{d}^d x \left(\mathrm{D}_\mu z\right)^\dagger \cdot \left(\mathrm{D}_\mu z\right)$$

with:

- $z : \mathbb{R}^d \to \mathbb{C}^N$, a *N*-component complex scalar field with $z^{\dagger} \cdot z = 1$,
- D_µ = ∂_µ + iA_µ: covariant derivative with respect to auxiliary U(1) gauge field A_µ,
- and coupling strength g.

Using Euler-Lagrange equation for auxiliary gauge field \rightarrow Quartic formulation:

in d-dimensional continuous space:

$$S_Q = -\frac{1}{g} \int d^d x \left((\partial_\mu z^\dagger) \cdot (\partial_\mu z) + \frac{1}{4} \left(z^\dagger \cdot (\partial_\mu z) - (\partial_\mu z^\dagger) \cdot z \right)^2 \right)$$

with:

- $z: \mathbb{R}^d \to \mathbb{C}^N, z^{\dagger} \cdot z = 1,$
- coupling strength g.

1. The \mathbb{CP}^{N-1} Model: the two standard formulations (lattice)

• $\mathbb{C}P^{N-1}$ model as U(1) gauged non-linear SU(N) sigma model:

on a d-dimensional lattice:

$$S_A = -\beta \sum_{x,\mu} \left(z^{\dagger}(x) U_{\mu}(x) z(x+\hat{\mu}) + z^{\dagger}(x) U_{\mu}^{\dagger}(x-\hat{\mu}) z(x-\hat{\mu}) - 2 \right)$$

with:

- $z(x) \in \mathbb{C}^N$, a *N*-component complex vector with $z^{\dagger}(x) \cdot z(x) = 1$,
- auxiliary link variable: $U_{\mu}(x) \in U(1)$,
- \blacksquare and dimensionless coupling β .

Quartic formulation:

on a d-dimensional lattice:

$$S_Q = -\beta \sum_{x,\mu} \left| z^{\dagger}(x) \cdot z(x + \widehat{\mu}) \right|^2$$

with:

- $z(x) \in \mathbb{C}^N$, a *N*-component complex vector with $z^{\dagger}(x) \cdot z(x) = 1$,
- and dimensionless coupling β .

Quartic version: [cf. Chandrasekharan, PoS LATTICE 2008 (2008) 003]

Partition function

$$Z_{Q} = \int \mathcal{D}[z^{\dagger}, z] \exp\left(\beta \sum_{x, \mu} |z^{\dagger}(x) \cdot z(x + \widehat{\mu})|^{2}\right)$$

where $\mathcal{D}\big[z^\dagger,z\big] = \prod\limits_x \delta\big(|z(x)|^2-1\big) \mathrm{d}^N \bar{z}(x) \, \mathrm{d}^N z(x)$.

- Quartic version: [cf. Chandrasekharan, PoS LATTICE 2008 (2008) 003]
 - Partition function

$$Z_Q = \int \mathcal{D}[z^*,z] \exp \left(eta \sum_x \sum_{\mu=1}^d \sum_{a,b=1}^N (ar{z}_a(x) z_b(x)) \left(ar{z}_b(x+\widehat{\mu}) z_a(x+\widehat{\mu})
ight)
ight),$$

where $\mathcal{D}[z^{\dagger},z] = \prod_{x} \delta(|z(x)|^2 - 1) d^N \overline{z}(x) d^N z(x)$.

- Quartic version: [cf. Chandrasekharan, PoS LATTICE 2008 (2008) 003]
 - Partition function

$$Z_Q = \int \mathcal{D}[z^{\dagger}, z] \prod_x \prod_{\mu=1}^d \prod_{a,b=1}^N \exp\left(\beta \left(\bar{z}_a(x) z_b(x)\right) \left(\bar{z}_b(x+\hat{\mu}) z_a(x+\hat{\mu})\right)\right),$$

where $\mathcal{D}\big[z^{\dagger},z\big] = \prod_{x} \delta\big(|z(x)|^2 - 1\big) \mathrm{d}^N \bar{z}(x) \, \mathrm{d}^N z(x)$.

Quartic version: [cf. Chandrasekharan, PoS LATTICE 2008 (2008) 003]

Partition function

$$Z_{Q} = \int \mathcal{D}[z^{\dagger}, z] \prod_{x} \prod_{\mu=1}^{d} \prod_{a,b=1}^{N} \sum_{\substack{n_{x,\mu}^{ab} = 0}}^{\infty} \left\{ \frac{\beta^{n_{x,\mu}^{ab}}}{n_{x,\mu}^{ab}} \left(\left(\bar{z}_{a}(x) z_{b}(x) \right) \left(\bar{z}_{b}(x+\hat{\mu}) z_{a}(x+\hat{\mu}) \right) \right)^{n_{x,\mu}^{ab}} \right\}$$

where $\mathcal{D}[z^{\dagger},z] = \prod_{x} \delta(|z(x)|^2 - 1) d^N \bar{z}(x) d^N z(x)$.

• • •

. . .

$$\begin{split} Z_Q &= \sum_{\{k,l\}} \prod_x \left\{ \left(\prod_{\mu=1}^d \prod_{a,b=1}^N \frac{\beta^{\frac{1}{2} (|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}) + l_{x,\mu}^{a})}{(\frac{1}{2} (|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}) + l_{x,\mu}^{ab})!} \right) \\ & \frac{\prod_a^N \left(\delta \left(\sum_{\mu=1}^d \sum_{b=1}^N \left(k_{x,\mu}^{ab} - k_{x-\hat{\mu},\mu}^{ab} \right) \right) \left(\sum_{\mu=1}^d \sum_{b=1}^N \left(\frac{1}{2} (|k_{x,\mu}^{ab}| + |k_{x-\hat{\mu},\mu}^{ab}|) + l_{x,\mu}^{ab} + l_{x-\hat{\mu},\mu}^{ab} \right))! \right)}{\left(N - 1 + \sum_{\mu=1}^d \sum_{c,b=1}^N \left(\frac{1}{2} (|k_{x,\mu}^{cb}| + |k_{x-\hat{\mu},\mu}^{cb}|) + l_{x,\mu}^{cb} + l_{x-\hat{\mu},\mu}^{cb} \right) \right)!} \right\}, \end{split}$$

with:

i.e.

$$n_{x,\mu}^{ab} - n_{x,\mu}^{ba} = k_{x,\mu}^{ab} \in \mathbb{Z}$$
 , $\frac{1}{2} \left(n_{x,\mu}^{ab} + n_{x,\mu}^{ba} - |k_{x,\mu}^{ab}| \right) = l_{x,\mu}^{ab} \in \mathbb{N}_0$,
 $n_{x,\mu}^{ab} = \frac{1}{2} \left(|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab} + l_{x,\mu}^{ab} \right)$.

$$\begin{split} Z_{Q} &= \sum_{\{k,l\}} \prod_{x} \left\{ \left(\prod_{\mu=1}^{d} \prod_{a,b=1}^{N} \frac{\beta^{\frac{1}{2}(|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}) + l_{x,\mu}^{a})}}{(\frac{1}{2}(|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}) + l_{x,\mu}^{ab})!} \right) \\ & \frac{\prod_{a}^{N} \left(\delta\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(k_{x,\mu}^{ab} - k_{x-\hat{\mu},\mu}^{ab} \right) \right) \left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2}(|k_{x,\mu}^{ab}| + |k_{x-\hat{\mu},\mu}^{ab}|) + l_{x,\mu}^{ab} + l_{x-\hat{\mu},\mu}^{ab} \right))! \right)}{(N - 1 + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2}(|k_{x,\mu}^{cb}| + |k_{x-\hat{\mu},\mu}^{cb}|) + l_{x,\mu}^{cb} + l_{x-\hat{\mu},\mu}^{cb} \right))!} \right) \end{split}$$

with:

i.e.

$$n_{x,\mu}^{ab} - n_{x,\mu}^{ba} = k_{x,\mu}^{ab} \in \mathbb{Z}$$
, $\frac{1}{2} \left(n_{x,\mu}^{ab} + n_{x,\mu}^{ba} - |k_{x,\mu}^{ab}| \right) = l_{x,\mu}^{ab} \in \mathbb{N}_0$,

$$n_{x,\mu}^{ab} = \frac{1}{2} \left(\left| k_{x,\mu}^{ab} \right| + k_{x,\mu}^{ab} \right) + l_{x,\mu}^{ab} .$$

■ N(N-1)/2 anti-symmetric $k_{x,\mu}^{ab}$, subject to constraints.

$$Z_{Q} = \sum_{\{k,l\}} \prod_{x} \left\{ \left(\prod_{\mu=1}^{d} \prod_{a,b=1}^{N} \frac{\beta^{\frac{1}{2}(|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}) + l_{x,\mu}^{a})}}{(\frac{1}{2}(|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}) + l_{x,\mu}^{ab})!} \right) \\ \frac{\prod_{a}^{N} \left(\delta\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(k_{x,\mu}^{ab} - k_{x-\hat{\mu},\mu}^{ab} \right) \right) \left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2}(|k_{x,\mu}^{ab}| + |k_{x-\hat{\mu},\mu}^{ab}|) + l_{x,\mu}^{ab} + l_{x-\hat{\mu},\mu}^{ab} \right))!} \right)}{(N - 1 + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2}(|k_{x,\mu}^{cb}| + |k_{x-\hat{\mu},\mu}^{cb}|) + l_{x,\mu}^{cb} + l_{x-\hat{\mu},\mu}^{cb} \right))!} \right) \right\},$$

with:

$$n^{ab}_{x,\mu} - n^{ba}_{x,\mu} = k^{ab}_{x,\mu} \in \mathbb{Z}$$
 , $\frac{1}{2} \left(n^{ab}_{x,\mu} + n^{ba}_{x,\mu} - |k^{ab}_{x,\mu}| \right) = l^{ab}_{x,\mu} \in \mathbb{N}_0$,

i.e.

$$n^{ab}_{x,\mu} = \frac{1}{2} \left(\left| k^{ab}_{x,\mu} \right| + k^{ab}_{x,\mu} \right) + l^{ab}_{x,\mu} \,.$$

■ N(N-1)/2 anti-symmetric $k_{x,\mu}^{ab}$, subject to constraints.

• N(N+1)/2 symmetric $l_{x,\mu}^{ab}$, free from constraints.

$$\begin{split} Z_Q &= \sum_{\{k,l\}} \prod_x \left\{ \left(\prod_{\mu=1}^d \prod_{a,b=1}^N \frac{\beta^{\frac{1}{2} (|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}) + l_{x,\mu}^{a})}}{(\frac{1}{2} (|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}) + l_{x,\mu}^{ab})!} \right) \\ & \frac{\prod_a^N \left(\delta \left(\sum_{\mu=1}^d \sum_{b=1}^N \left(k_{x,\mu}^{ab} - k_{x-\hat{\mu},\mu}^{ab} \right) \right) \left(\sum_{\mu=1}^d \sum_{b=1}^N \left(\frac{1}{2} (|k_{x,\mu}^{ab}| + |k_{x-\hat{\mu},\mu}^{ab}|) + l_{x,\mu}^{ab} + l_{x-\hat{\mu},\mu}^{ab} \right))! \right)}{\left(N - 1 + \sum_{\mu=1}^d \sum_{c,b=1}^N \left(\frac{1}{2} (|k_{x,\mu}^{cb}| + |k_{x-\hat{\mu},\mu}^{cb}|) + l_{x,\mu}^{cb} + l_{x-\hat{\mu},\mu}^{cb} \right) \right)!} \right\}, \end{split}$$

with:

$$n^{ab}_{x,\mu} - n^{ba}_{x,\mu} = k^{ab}_{x,\mu} \in \mathbb{Z}$$
 , $\frac{1}{2} \left(n^{ab}_{x,\mu} + n^{ba}_{x,\mu} - |k^{ab}_{x,\mu}| \right) = l^{ab}_{x,\mu} \in \mathbb{N}_0$,

i.e.

$$n_{x,\mu}^{ab} = \frac{1}{2} \left(\left| k_{x,\mu}^{ab} \right| + k_{x,\mu}^{ab} \right) + l_{x,\mu}^{ab} \,.$$

• N(N-1)/2 anti-symmetric $k_{x,\mu}^{ab}$, subject to constraints.

• N(N+1)/2 symmetric $l_{x,\mu}^{ab}$, free from constraints.

 \rightarrow in total N^2 degrees of freedom per link.

- Auxiliary U(1) version v1:
 - Partition function

$$Z_A = \int \mathcal{D}[z^{\dagger},z,U] \exp \left(eta \sum_{x,\mu} \left(z^{\dagger}(x) U_{\mu}(x) z(x+\widehat{\mu}) + z^{\dagger}(x) U_{\mu}^{\dagger}(x-\widehat{\mu}) z(x-\widehat{\mu})
ight)
ight),$$

where

■ $dU_{\mu}(x)$: U(1) Haar measure for link variable $U_{\mu}(x)$.

- Auxiliary U(1) version v1:
 - Partition function

$$Z_{A,v1} = \int \mathcal{D}[z^{\dagger},z] \prod_{x,\mu} \{ I_0(2\beta | z^{\dagger}(x) \cdot z(x+\hat{\mu}) |) e^{-2\beta} \},$$

where

• have used
$$e^{x(t+1/t)} = \sum_{k=-\infty}^{\infty} I_k(2x) t^k$$
 and integrated out $U_{\mu}(x) = e^{i\theta_{x,\mu}}$

- Auxiliary U(1) version v1:
 - Partition function

$$\begin{split} Z_{A,v1} &= \sum_{\{k,l\}} \prod_{x} \left\{ \left(\prod_{\mu=1}^{d} \frac{\mathrm{e}^{-2\beta}}{\left(\sum\limits_{a,b=1}^{N} \left(\frac{1}{2} | k_{x,\mu}^{ab} | + l_{x,\mu}^{ab} \right) \right)!} \left(\prod\limits_{a,b=1}^{N} \frac{\beta^{(|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab}| + 2l_{x,\mu}^{ab}}}{\left(\frac{1}{2} (|k_{x,\mu}^{ab}| + k_{x,\mu}^{ab} | + l_{x,\mu}^{ab}) \right)!} \right) \right) \\ & \frac{\prod\limits_{a}^{N} \delta\left(\sum\limits_{\mu=1}^{D} \sum\limits_{b=1}^{N} \left(k_{x,\mu}^{ab} - k_{x-\hat{\mu},\mu}^{ab} \right)\right) \left(\sum\limits_{\mu=1}^{d} \sum\limits_{b=1}^{N} \left(\frac{1}{2} (|k_{x,\mu}^{ab}| + |k_{x-\hat{\mu},\mu}^{ab}|) + l_{x,\mu}^{ab} + l_{x-\hat{\mu},\mu}^{ab} \right) \right)!}{\left(N - 1 + \sum\limits_{\mu=1}^{d} \sum\limits_{c,b=1}^{N} \left(\frac{1}{2} (|k_{x,\mu}^{cb}| + |k_{x-\hat{\mu},\mu}^{cb}|) + l_{x,\mu}^{cb} + l_{x-\hat{\mu},\mu}^{cb} \right) \right)!} \right\}. \end{split}$$

- same as Z_Q except for additional link weight .
- In total also N² degrees of freedom per link.

- Auxiliary U(1) version v2: [Bruckmann et al., arXiv:1507.04253]
 - Partition function

$$\begin{split} Z_{A,\nu2} &= \sum_{\{k,l\}} \left\{ \prod_{x} \left(\prod_{\nu} \mathrm{e}^{-2\beta} \,\delta(\sum_{a} k^{a}_{x,\nu}) \prod_{a} \mathrm{e}^{\hat{\mu}_{a} k^{a}_{x,\nu} \delta_{\nu,d}} \, \frac{\beta^{|k^{a}_{x,\nu}| + 2l^{a}_{x,\nu}}}{(|k^{a}_{x,\nu}| + l^{a}_{x,\nu})! l^{a}_{x,\nu}!} \right) \\ & \cdot \frac{\prod_{a} \delta(\sum_{\nu} (k^{a}_{x,\nu} - k^{a}_{x-\hat{\nu}})) \left(\sum_{\nu} \left(\frac{1}{2} \left(|k^{a}_{x,\nu}| + |k^{a}_{x-\hat{\nu},\nu}|\right) + l^{a}_{x,\nu} + l^{a}_{x-\hat{\nu},\nu}\right)\right)!}{\left(N - 1 + \sum_{a} \sum_{\nu} \left(\frac{1}{2} \left(|k^{a}_{x,\nu}| + |k^{a}_{x-\hat{\nu},\nu}|\right) + l^{a}_{x,\nu} + l^{a}_{x-\hat{\nu},\nu}\right)\right)!} \right\}. \end{split}$$

- Auxiliary U(1) version v2: [Bruckmann et al., arXiv:1507.04253]
 - Partition function

$$\begin{split} Z_{A,v2} &= \sum_{\{k,l\}} \left\{ \prod_{x} \left(\prod_{v} \mathrm{e}^{-2\beta} \delta(\sum_{a} k^{a}_{x,v}) \prod_{a} \mathrm{e}^{\tilde{\mu}_{a} k^{a}_{x,v} \delta_{v,d}} \; \frac{\beta^{|k^{a}_{x,v}| + 2l^{a}_{x,v}}}{(|k^{a}_{x,v}| + l^{a}_{x,v})! l^{a}_{x,v}!} \right) \\ & \cdot \frac{\prod_{a} \delta(\sum_{v} (k^{a}_{x,v} - k^{a}_{x-\hat{v}})) (\sum_{v} (\frac{1}{2} (|k^{a}_{x,v}| + |k^{a}_{x-\hat{v},v}|) + l^{a}_{x,v} + l^{a}_{x-\hat{v},v}))!}{(N - 1 + \sum_{a} \sum_{v} (\frac{1}{2} (|k^{a}_{x,v}| + |k^{a}_{x-\hat{v},v}|) + l^{a}_{x,v} + l^{a}_{x-\hat{v},v}))!} \right\}. \end{split}$$

In total only 2 N degrees of freedom per link: N constrained $k_{x,\nu}^a$ and N unconstrained $l_{x,\nu}^a$ variables.

- Auxiliary U(1) version v2: [Bruckmann et al., arXiv:1507.04253]
 - Partition function

$$\begin{split} Z_{A,\nu2} &= \sum_{\{k,l\}} \left\{ \prod_{x} \left(\prod_{\nu} \mathrm{e}^{-2\beta} \delta\left(\sum_{a} k^{a}_{x,\nu}\right) \prod_{a} \mathrm{e}^{\tilde{\mu}_{a} k^{a}_{x,\nu} \delta_{\nu,d}} \; \frac{\beta^{|k^{a}_{x,\nu}| + 2l^{a}_{x,\nu}}}{(|k^{a}_{x,\nu}| + l^{a}_{x,\nu})!l^{a}_{x,\nu}!} \right) \\ &\cdot \frac{\prod_{a} \delta\left(\sum_{\nu} (k^{a}_{x,\nu} - k^{a}_{x-\tilde{\nu}})\right) \left(\sum_{\nu} \left(\frac{1}{2} \left(|k^{a}_{x,\nu}| + |k^{a}_{x-\tilde{\nu},\nu}|\right) + l^{a}_{x,\nu} + l^{a}_{x-\tilde{\nu},\nu}\right)\right)!}{\left(N - 1 + \sum_{a} \sum_{\nu} \left(\frac{1}{2} \left(|k^{a}_{x,\nu}| + |k^{a}_{x-\tilde{\nu},\nu}|\right) + l^{a}_{x,\nu} + l^{a}_{x-\tilde{\nu},\nu}\right)\right)!} \right\}. \end{split}$$

- In total only 2 N degrees of freedom per link: N constrained $k_{x,v}^a$ and N unconstrained $l_{x,v}^a$ variables.
- Two types of constraints: new on-link constraint and usual on-site constraint.

- Auxiliary U(1) version v2: [Bruckmann et al., arXiv:1507.04253]
 - Partition function

$$\begin{split} Z_{A,\nu2} &= \sum_{\{k,l\}} \left\{ \prod_{x} \left(\prod_{\nu} \mathrm{e}^{-2\beta} \delta(\sum_{a} k^{a}_{x,\nu}) \prod_{a} \mathrm{e}^{\tilde{\mu}_{a} k^{a}_{x,\nu} \delta_{\nu,d}} \; \frac{\beta^{|k^{a}_{x,\nu}| + 2l^{a}_{x,\nu}}}{(|k^{a}_{x,\nu}| + l^{a}_{x,\nu})!l^{a}_{x,\nu}!} \right) \\ &\cdot \frac{\prod_{a} \delta(\sum_{\nu} (k^{a}_{x,\nu} - k^{a}_{x-\tilde{\nu}})) \left(\sum_{\nu} \left(\frac{1}{2} \left(|k^{a}_{x,\nu}| + |k^{a}_{x-\tilde{\nu},\nu}|\right) + l^{a}_{x,\nu} + l^{a}_{x-\tilde{\nu},\nu}\right)\right)!}{(N - 1 + \sum_{a} \sum_{\nu} \left(\frac{1}{2} \left(|k^{a}_{x,\nu}| + |k^{a}_{x-\tilde{\nu},\nu}|\right) + l^{a}_{x,\nu} + l^{a}_{x-\tilde{\nu},\nu}\right))!} \right\}. \end{split}$$

- In total only 2 N degrees of freedom per link: N constrained $k_{x,v}^a$ and N unconstrained $l_{x,v}^a$ variables.
- Two types of constraints: new on-link constraint and usual on-site constraint.
- Chemical potentials µ̃_a couple only to k^a_{x,d} variables ⇒ on-site constraint represents charge conservation.

- Auxiliary U(1) version v2: [Bruckmann et al., arXiv:1507.04253]
 - Partition function

$$\begin{split} Z_{A,\nu2} &= \sum_{\{k,l\}} \left\{ \prod_{x} \left(\prod_{\nu} \mathrm{e}^{-2\beta} \delta(\sum_{a} k^{a}_{x,\nu}) \prod_{a} \mathrm{e}^{\tilde{\mu}_{a} k^{a}_{x,\nu} \delta_{\nu,d}} \; \frac{\beta^{|k^{a}_{x,\nu}| + 2l^{a}_{x,\nu}}}{(|k^{a}_{x,\nu}| + l^{a}_{x,\nu})! l^{a}_{x,\nu}!} \right) \\ & \cdot \frac{\prod_{a} \delta(\sum_{\nu} (k^{a}_{x,\nu} - k^{a}_{x-\hat{\nu}})) (\sum_{\nu} (\frac{1}{2} (|k^{a}_{x,\nu}| + |k^{a}_{x-\hat{\nu},\nu}|) + l^{a}_{x,\nu} + l^{a}_{x-\hat{\nu},\nu}))!}{(N - 1 + \sum_{a} \sum_{\nu} (\frac{1}{2} (|k^{a}_{x,\nu}| + |k^{a}_{x-\hat{\nu},\nu}|) + l^{a}_{x,\nu} + l^{a}_{x-\hat{\nu},\nu}))!} \right\}. \end{split}$$

- In total only 2 N degrees of freedom per link: N constrained $k_{x,v}^a$ and N unconstrained $l_{x,v}^a$ variables.
- Two types of constraints: new on-link constraint and usual on-site constraint.
- Chemical potentials µ̃_a couple only to k^a_{x,d} variables ⇒ on-site constraint represents charge conservation.
- Shortcut derivation for how to couple Z_Q and $Z_{A,v1}$ to chemical potentials $\tilde{\mu}_a$: identify $k_{x,v}^a = \sum_i k_{x,v}^{ab}$
 - \Rightarrow additional weight for temporal links:

$$\prod_{a} e^{\tilde{\mu}_{a} \sum_{b}^{k_{x,d}^{ab}}}$$

- Auxiliary U(1) version v2: [Bruckmann et al., arXiv:1507.04253]
 - Partition function

$$\begin{split} Z_{A,\nu2} &= \sum_{\{k,l\}} \left\{ \prod_{x} \left(\prod_{\nu} \mathrm{e}^{-2\beta} \delta\left(\sum_{a} k^{a}_{x,\nu}\right) \prod_{a} \mathrm{e}^{\tilde{\mu}_{a} k^{a}_{x,\nu} \delta_{\nu,d}} \; \frac{\beta^{|k^{a}_{x,\nu}| + 2l^{a}_{x,\nu}}}{(|k^{a}_{x,\nu}| + l^{a}_{x,\nu})!l^{a}_{x,\nu}!} \right) \\ & \cdot \frac{\prod_{a} \delta\left(\sum_{\nu} (k^{a}_{x,\nu} - k^{a}_{x-\hat{\nu}})\right) \left(\sum_{\nu} \left(\frac{1}{2} \left(|k^{a}_{x,\nu}| + |k^{a}_{x-\hat{\nu},\nu}|\right) + l^{a}_{x,\nu} + l^{a}_{x-\hat{\nu},\nu}\right)\right)!}{\left(N - 1 + \sum_{a} \sum_{\nu} \left(\frac{1}{2} \left(|k^{a}_{x,\nu}| + |k^{a}_{x-\hat{\nu},\nu}|\right) + l^{a}_{x,\nu} + l^{a}_{x-\hat{\nu},\nu}\right)\right)!} \right\}. \end{split}$$

- In total only 2 N degrees of freedom per link: N constrained $l_{x,v}^a$ and N unconstrained $l_{x,v}^a$ variables.
- Two types of constraints: new on-link constraint and usual on-site constraint.
- Chemical potentials µ̃_a couple only to k^a_{x,d} variables ⇒ on-site constraint represents charge conservation.
- Shortcut derivation for how to couple Z_Q and $Z_{A,v1}$ to chemical potentials $\tilde{\mu}_a$: identify $k_{x,v}^a = \sum_{i} k_{x,v}^{ab}$
 - ⇒ additional weight for temporal links:

$$\prod_{a} e^{\tilde{\mu}_{a} \sum_{b}^{k_{x,d}^{ab}}}$$

Note: due to anti-symmetry of $K_{x,v}^{ab}$ in indices (a,b), on-link constraint which is present in $Z_{A,v2}$ is automatically satisfied in $Z_{A,v1}$.

$$\begin{aligned} Z_{A,v2} &= \sum_{\{k,l\}} \left\{ \prod_{z} \left(\prod_{v} e^{-2\beta} \,\delta\big(\sum_{c} k_{z,v}^{c}\big) \prod_{c} e^{\hat{\mu}_{c} k_{z,v}^{c} \delta_{v,d}} \, \frac{\beta^{|k_{z,v}^{c}| + l_{z,v}^{c}|}}{(|k_{z,v}^{c}| + l_{z,v}^{c})! l_{z,v}^{c}!} \right) \\ & \cdot \left(\prod_{c} \delta\big(\sum_{v} (k_{z,v}^{c} - k_{z-\tilde{v})}^{c}\big) \big) \right) \\ & \cdot \frac{\prod_{c} (\sum_{v} \left(\frac{1}{2} \left(|k_{z,v}^{c}| + |k_{z-\tilde{v},v}^{c}| \right) + l_{z,v}^{c} + l_{z-\tilde{v},v}^{c} \right) \right)!}{(N - 1 + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k_{z,v}^{c}| + |k_{z-\tilde{v},v}^{c}| \right) + l_{z,v}^{c} + l_{z-\tilde{v},v}^{c} \right) \right)!} \right\} \end{aligned}$$

can be simulated by ordinary worm.

$$\begin{aligned} Z_{A,v2} &= \sum_{\{k,l\}} \left\{ \prod_{z} \left(\prod_{v} e^{-2\beta} \,\delta(\sum_{c} k_{z,v}^{c}) \prod_{c} e^{\hat{\mu}_{c} k_{z,v}^{c} \delta_{v,d}} \, \frac{\beta^{|k_{z,v}^{c}| + 2l_{z,v}^{c}}}{(|k_{z,v}^{c}| + l_{z,v}^{c})! l_{z,v}^{c}!} \right) \\ & \cdot \left(\prod_{c} \delta(\sum_{v} (k_{z,v}^{c} - k_{z-\tilde{v}}^{c})) \right) \\ & \cdot \frac{\prod_{c} \left(\sum_{v} \left(\frac{1}{2} \left(|k_{z,v}^{c}| + |k_{z-\tilde{v},v}^{c}| \right) + l_{z,v}^{c} + l_{z-\tilde{v},v}^{c} \right) \right)!}{(N - 1 + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k_{z,v}^{c}| + |k_{z-\tilde{v},v}^{c}| \right) + l_{z,v}^{c} + l_{z-\tilde{v},v}^{c} \right) \right)!} \right\} \end{aligned}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions, e.g.

$$k^a_{x,\nu} \rightarrow k^a_{x,\nu} + 1$$
 , $k^b_{x,\nu} \rightarrow k^b_{x,\nu} - 1$, $a \neq b$.

$$\begin{split} Z^{ab}_{A,r2,2}(x,y) &= \sum_{\{k,l\}} \Big\{ \prod_{z} \bigg(\prod_{v} \mathrm{e}^{-2\beta} \,\delta(\sum_{c} k^{c}_{z,v}) \prod_{c} \mathrm{e}^{\hat{\mu}_{c} k^{c}_{z,v} \delta_{v,d}} \, \frac{\beta^{|k^{c}_{z,v}| + 2l^{c}_{z,v}}}{(|k^{c}_{z,v}| + l^{c}_{z,v})! l^{c}_{z,v}!} \bigg) \\ &\quad \cdot \left(\prod_{c} \delta((\delta^{c,b} - \delta^{c,a}) \left(\delta_{x,z} - \delta_{y,z} \right) + \sum_{v} (k^{c}_{z,v} - k^{c}_{z-\hat{v}}) \right) \right) \\ &\quad \cdot \frac{\prod_{c} \left(\sum_{v} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right) \right)!}{(N - 1 + \delta_{x,z} + \delta_{y,z} + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right))!} \Big\} \end{split}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions.

where
$$\phi_x^{ab} = z_a(x) \bar{z}_b(x)$$

$$\begin{split} Z^{ab}_{A,r2,2}(x,y) &= \sum_{\{k,l\}} \Big\{ \prod_{z} \bigg(\prod_{v} \mathrm{e}^{-2\beta} \,\delta(\sum_{c} k^{c}_{z,v}) \prod_{c} \mathrm{e}^{\hat{\mu}_{c} k^{c}_{z,v} \delta_{v,d}} \, \frac{\beta^{|k^{c}_{z,v}| + 2l^{c}_{z,v}}}{(|k^{c}_{z,v}| + l^{c}_{z,v})! l^{c}_{z,v}!} \bigg) \\ &\quad \cdot \left(\prod_{c} \delta((\delta^{c,b} - \delta^{c,a}) \left(\delta_{x,z} - \delta_{y,z} \right) + \sum_{v} (k^{c}_{z,v} - k^{c}_{z-\hat{v}}) \right) \right) \\ &\quad \cdot \frac{\prod_{c} \left(\sum_{v} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right) \right)!}{(N - 1 + \delta_{x,z} + \delta_{y,z} + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right))!} \Big\} \end{split}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions.

$$\begin{split} Z^{ab}_{A,r2,2}(x,y) &= \sum_{\{k,l\}} \Big\{ \prod_{z} \bigg(\prod_{v} \mathrm{e}^{-2\beta} \,\delta(\sum_{c} k^{c}_{z,v}) \prod_{c} \mathrm{e}^{\hat{\mu}_{c} k^{c}_{z,v} \delta_{v,d}} \, \frac{\beta^{|k^{c}_{z,v}| + 2l^{c}_{z,v}}}{(|k^{c}_{z,v}| + l^{c}_{z,v})! l^{c}_{z,v}!} \bigg) \\ &\quad \cdot \left(\prod_{c} \delta((\delta^{c,b} - \delta^{c,a}) \left(\delta_{x,z} - \delta_{y,z} \right) + \sum_{v} (k^{c}_{z,v} - k^{c}_{z-\hat{v}}) \right) \right) \\ &\quad \cdot \frac{\prod_{c} \left(\sum_{v} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right) \right)!}{(N - 1 + \delta_{x,z} + \delta_{y,z} + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right))!} \Big\} \end{split}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions.

$$k^a_{y,1} \rightarrow k^a_{y,1} + 1$$
 , $k^b_{y,1} \rightarrow k^b_{y,1} - 1$, $y \rightarrow y + \hat{1}$?

$$\begin{split} Z^{ab}_{A,r2,2}(x,y) &= \sum_{\{k,l\}} \Big\{ \prod_{z} \bigg(\prod_{v} \mathrm{e}^{-2\beta} \,\delta(\sum_{c} k^{c}_{z,v}) \prod_{c} \mathrm{e}^{\hat{\mu}_{c} k^{c}_{z,v} \delta_{v,d}} \, \frac{\beta^{|k^{c}_{z,v}| + 2l^{c}_{z,v}}}{(|k^{c}_{z,v}| + l^{c}_{z,v})! l^{c}_{z,v}!} \bigg) \\ &\quad \cdot \left(\prod_{c} \delta((\delta^{c,b} - \delta^{c,a}) \left(\delta_{x,z} - \delta_{y,z} \right) + \sum_{v} (k^{c}_{z,v} - k^{c}_{z-\hat{v}}) \right) \right) \\ &\quad \cdot \frac{\prod_{c} \left(\sum_{v} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right) \right)!}{(N - 1 + \delta_{x,z} + \delta_{y,z} + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right))!} \Big\} \end{split}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions.

$$\begin{split} Z^{ab}_{A,r2,2}(x,y) &= \sum_{\{k,l\}} \Big\{ \prod_{z} \bigg(\prod_{v} \mathrm{e}^{-2\beta} \,\delta(\sum_{c} k^{c}_{z,v}) \prod_{c} \mathrm{e}^{\hat{\mu}_{c} k^{c}_{z,v} \delta_{v,d}} \, \frac{\beta^{|k^{c}_{z,v}| + 2l^{c}_{z,v}}}{(|k^{c}_{z,v}| + l^{c}_{z,v})! l^{c}_{z,v}!} \bigg) \\ &\quad \cdot \left(\prod_{c} \delta((\delta^{c,b} - \delta^{c,a}) \left(\delta_{x,z} - \delta_{y,z} \right) + \sum_{v} (k^{c}_{z,v} - k^{c}_{z-\hat{v}}) \right) \right) \\ &\quad \cdot \frac{\prod_{c} \left(\sum_{v} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right) \right)!}{(N - 1 + \delta_{x,z} + \delta_{y,z} + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right))!} \Big\} \end{split}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions.

$$\begin{split} Z^{ab}_{A,r2,2}(x,y) &= \sum_{\{k,l\}} \Big\{ \prod_{z} \bigg(\prod_{v} \mathrm{e}^{-2\beta} \,\delta(\sum_{c} k^{c}_{z,v}) \prod_{c} \mathrm{e}^{\hat{\mu}_{c} k^{c}_{z,v} \delta_{v,d}} \, \frac{\beta^{|k^{c}_{z,v}| + 2l^{c}_{z,v}}}{(|k^{c}_{z,v}| + l^{c}_{z,v})! l^{c}_{z,v}!} \bigg) \\ &\quad \cdot \left(\prod_{c} \delta((\delta^{c,b} - \delta^{c,a}) \left(\delta_{x,z} - \delta_{y,z} \right) + \sum_{v} (k^{c}_{z,v} - k^{c}_{z-\hat{v}}) \right) \right) \\ &\quad \cdot \frac{\prod_{c} \left(\sum_{v} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right) \right)!}{(N - 1 + \delta_{x,z} + \delta_{y,z} + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k^{c}_{z,v}| + |k^{c}_{z-\hat{v},v}| \right) + l^{c}_{z,v} + l^{c}_{z-\hat{v},v} \right))!} \Big\} \end{split}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions.

$$\begin{split} Z^{ab}_{A,v2,2}(x,y) &= \sum_{\{k,l\}} \Big\{ \prod_{z} \Big(\prod_{\nu} \mathrm{e}^{-2\beta} \,\delta(\sum_{c} k^{c}_{z,\nu}) \prod_{c} \mathrm{e}^{\tilde{\mu}_{c} k^{c}_{z,\nu} \delta_{\nu,d}} \, \frac{\beta^{|k^{c}_{z,\nu}| + 2l^{c}_{z,\nu}}}{(|k^{c}_{z,\nu}| + l^{c}_{z,\nu})! l^{c}_{z,\nu}!} \Big) \\ &\quad \cdot \left(\prod_{c} \delta((\delta^{c,b} - \delta^{c,a}) \, (\delta_{x,z} - \delta_{y,z}) + \sum_{\nu} (k^{c}_{z,\nu} - k^{c}_{z-\tilde{\nu}})) \right) \\ &\quad \cdot \frac{\prod_{c} \left(\sum_{\nu} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} \left(|k^{c}_{z,\nu}| + |k^{c}_{z-\tilde{\nu},\nu}| \right) + l^{c}_{z,\nu} + l^{c}_{z-\tilde{\nu},\nu}) \right)!}{(N - 1 + \delta_{x,z} + \delta_{y,z} + \sum_{c} \sum_{\nu} \left(\frac{1}{2} \left(|k^{c}_{z,\nu}| + |k^{c}_{z-\tilde{\nu},\nu}| \right) + l^{c}_{z,\nu} + l^{c}_{z-\tilde{\nu},\nu}) \right)!} \Big\} \end{split}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions.

$$\begin{aligned} Z_{A,v2} &= \sum_{\{k,l\}} \left\{ \prod_{v} \left(\prod_{v} e^{-2\beta} \delta(\sum_{c} k_{z,v}^{c}) \prod_{c} e^{\hat{\mu}_{c} k_{z,v}^{c} \delta_{v,d}} \frac{\beta^{|k_{z,v}^{c}| + 2l_{z,v}^{c}}}{(|k_{z,v}^{c}| + l_{z,v}^{c})! l_{z,v}^{c}!} \right) \\ & \cdot \left(\prod_{c} \delta(\sum_{v} (k_{z,v}^{c} - k_{z-\tilde{v}}^{c})) \right) \\ & \cdot \frac{\prod_{c} (\sum_{v} \left(\frac{1}{2} \left(|k_{z,v}^{c}| + |k_{z-\tilde{v},v}^{c}| \right) + l_{z,v}^{c} + l_{z-\tilde{v},v}^{c} \right) \right)!}{(N - 1 + \sum_{c} \sum_{v} \left(\frac{1}{2} \left(|k_{z,v}^{c}| + |k_{z-\tilde{v},v}^{c}| \right) + l_{z,v}^{c} + l_{z-\tilde{v},v}^{c} \right) \right)!} \right\} \end{aligned}$$

- can be simulated by ordinary worm.
- Due to on-link constraint: always two k variables of the same link have to be updated simultaneously in opposite directions.

$$\begin{split} Z_{Q} &= \sum_{\{k,l\}} \prod_{z} \left\{ \left(\prod_{\mu=1}^{d} \prod_{c,b=1}^{N} \frac{\beta^{\frac{1}{2} (|k_{2,\mu}^{cb}| + k_{2,\mu}^{cb}) + l_{c,\mu}^{cb}}}{(\frac{1}{2} (|k_{z,\mu}^{cb}| + k_{z,\mu}^{cb}) + l_{z,\mu}^{cb})!} \right) \\ & \cdot \left(\prod_{c}^{N} \delta \left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(k_{z,\mu}^{cb} - k_{z-\bar{\mu},\mu}^{cb} \right) \right) \right) \\ & \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\bar{\mu},\mu}^{cb}| + l_{z,\mu}^{cb} + l_{z-\bar{\mu},\mu}^{cb} \right) \right) \right) \right) \\ & \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\bar{\mu},\mu}^{cb}| + l_{z,\mu}^{cb} + l_{z-\bar{\mu},\mu}^{cb} \right) \right) \right) \right) \\ & \left(N - 1 + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\bar{\mu},\mu}^{cb}| + l_{z,\mu}^{cb} + l_{z-\bar{\mu},\mu}^{cb} \right) \right) \right) \end{split}$$

• could in principle be simulated by same algorithm as $Z_{A,v2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011]

$$\begin{split} Z^{ab}_{Q,2}(x,y) &= \sum_{\{k,l\}} \prod_{z} \left\{ \left(\prod_{\mu=1}^{d} \prod_{c,b=1}^{N} \frac{\beta^{\frac{1}{2} (|k^{c}_{c,\mu}| + k^{cb}_{2,\mu}| + k^{cb}_{2,\mu}) + l^{c}_{2,\mu})}{(\frac{1}{2} (|k^{cb}_{z,\mu}| + k^{cb}_{z,\mu}) + l^{cb}_{z,\mu})!} \right) \\ &\quad \cdot \left(\prod_{c}^{N} \delta((\delta^{c,b} - \delta^{c,a}) (\delta_{x,z} - \delta_{y,z}) + \sum_{\mu=1}^{d} \sum_{b=1}^{N} (k^{c,b}_{z,\mu} - k^{c,b}_{z-\hat{\mu},\mu})) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} (\delta^{c,a} + \delta^{c,b}) (\delta_{x,z} + \delta_{y,z}) + \frac{1}{2} (|k^{c,b}_{z,\mu}| + |k^{cb}_{z-\hat{\mu},\mu}| + l^{c,b}_{z-\hat{\mu},\mu})) \right) \right) \\ &\quad \cdot \frac{(N-1 + \delta_{x,z} + \delta_{y,z} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k^{c,b}_{z,\mu}| + |k^{cb}_{z-\hat{\mu},\mu}|) + l^{c,b}_{z,\mu} + l^{c,b}_{z-\hat{\mu},\mu}) \right)!} \right) \end{split}$$

• could in principle be simulated by same algorithm as $Z_{A,v2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011]

Internal space sub-worm algorithm:

• updates not just k^{ab} but all components of the k-matrices while sampling $Z_{0,2}^{ab}(x,y)$

• could in principle be simulated by same algorithm as $Z_{A,v2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011]

Internal space sub-worm algorithm:

- updates not just k^{ab} but all components of the k-matrices while sampling $Z_{0,2}^{ab}(x,y)$
- before moving head of worm from site x to site $x + \hat{v}$, determine by sub-worm in **internal space** the best combination of $k_{x,v}^{ab}$ variables to propagate defect in delta-functions for $c = a_0, b_0$.

$$\begin{split} Z_{Q2}^{ab}(x,y) &= \sum_{\{k,l\}} \prod_{z} \left\{ \left(\prod_{\mu=1}^{d} \prod_{c,b=1}^{N} \frac{\beta^{\frac{1}{2} (|k_{c,\mu}^{c}| + k_{z,\mu}^{cb}) + l_{z,\mu}^{cb})}{(\frac{1}{2} (|k_{z,\mu}^{c}| + k_{z,\mu}^{cb}) + l_{z,\mu}^{cb})!} \right) \\ &\quad \cdot \left(\prod_{c}^{N} \delta((\delta^{c,b} - \delta^{c,a}) (\delta_{x,z} - \delta_{y,z}) + \sum_{\mu=1}^{d} \sum_{b=1}^{N} (k_{z,\mu}^{cb} - k_{z-\tilde{\mu},\mu}^{cb})) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} (\delta^{c,a} + \delta^{c,b}) (\delta_{x,z} + \delta_{y,z}) + \frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\tilde{\mu},\mu}^{cb}| + l_{z,\mu}^{cb} + l_{z-\tilde{\mu},\mu}^{cb})) \right) \right) \\ &\quad \cdot \frac{(N-1 + \delta_{x,z} + \delta_{y,z} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\tilde{\mu},\mu}^{cb}|) + l_{z,\mu}^{cb} + l_{z-\tilde{\mu},\mu}^{cb}) \right) \right)}{(N-1 + \delta_{x,z} + \delta_{y,z} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\tilde{\mu},\mu}^{cb}|) + l_{z,\mu}^{cb} + l_{z-\tilde{\mu},\mu}^{cb}) \right) \right) \end{split}$$

• could in principle be simulated by same algorithm as $Z_{A,v2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011] \Rightarrow Internal space sub-worm algorithm:

$$\begin{split} Z_{Q2}^{ab}(\mathbf{x},\mathbf{y}) &= \sum_{\{k,l\}} \prod_{z} \left\{ \left(\prod_{\mu=1}^{d} \prod_{c,b=1}^{N} \frac{\beta^{\frac{1}{2} (|k_{c,\mu}^{cb}| + k_{c,\mu}^{cb}) + l_{c,\mu}^{cb})}{(\frac{1}{2} (|k_{c,\mu}^{cb}| + k_{c,\mu}^{cb}) + l_{c,\mu}^{cb})!} \right) \\ &\quad \cdot \left(\prod_{c}^{N} \delta\left(\left(\delta^{c,b} - \delta^{c,a} \right) \left(\delta_{\mathbf{x},\mathbf{z}} - \delta_{\mathbf{y},\mathbf{z}} \right) + \sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(k_{c,\mu}^{cb} - k_{c-\mu,\mu}^{cb} \right) \right) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{\mathbf{x},\mathbf{z}} + \delta_{\mathbf{y},\mathbf{z}} \right) + \frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\mu,\mu}^{cb}| + l_{c,\mu}^{cb} + l_{c-\mu,\mu}^{cb}) \right) \right) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{\mathbf{x},\mathbf{z}} + \delta_{\mathbf{y},\mathbf{z}} \right) + \frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\mu,\mu}^{cb}| + l_{c,\mu}^{cb} + l_{c-\mu,\mu}^{cb}) \right) \right) \right) \\ &\quad \cdot \frac{\left(N - 1 + \delta_{\mathbf{x},\mathbf{z}} + \delta_{\mathbf{y},\mathbf{z}} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\mu,\mu}^{cb}| + l_{c,\mu}^{cb} + l_{c-\mu,\mu}^{cb}) \right) \right) \right) \right\}} \right\} \, . \end{split}$$

• could in principle be simulated by same algorithm as $Z_{A,v2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011] \Rightarrow Internal space sub-worm algorithm:

internal space (on-site constraints)

T. Rindlisbacher & P. de Forcrand

$$\begin{split} Z_{Q2}^{ab}(\mathbf{x}, \mathbf{y}) &= \sum_{\{k,l\}} \prod_{z} \left\{ \left(\prod_{\mu=1}^{d} \prod_{c,b=1}^{N} \frac{\beta^{\frac{1}{2} (|k_{c,\mu}^{cb}| + k_{c,\mu}^{cb}) + l_{c,\mu}^{cb})}{(\frac{1}{2} (|k_{c,\mu}^{cb}| + k_{c,\mu}^{cb}) + l_{c,\mu}^{cb})!} \right) \\ &\quad \cdot \left(\prod_{c}^{N} \delta \left(\left(\delta^{c,b} - \delta^{c,a} \right) \left(\delta_{\mathbf{x},\mathbf{z}} - \delta_{\mathbf{y},\mathbf{z}} \right) + \sum_{\mu=1}^{d} \sum_{b=1}^{N} (k_{c,\mu}^{cb} - k_{c-\bar{\mu},\mu}^{cb})) \right) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{\mathbf{x},\mathbf{z}} + \delta_{\mathbf{y},\mathbf{z}} \right) + \frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{cb}| + l_{c,\mu}^{cb} + l_{c-\bar{\mu},\mu}^{cb})) \right) \right) \\ &\quad \cdot \frac{(N-1+\delta_{\mathbf{x},\mathbf{z}} + \delta_{\mathbf{y},\mathbf{z}} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{cb}|) + l_{c,\mu}^{cb} + l_{c-\bar{\mu},\mu}^{cb}) \right) \right)}{(N-1+\delta_{\mathbf{x},\mathbf{z}} + \delta_{\mathbf{y},\mathbf{z}} + \sum_{\mu=1}^{D} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{cb}|) + l_{c,\mu}^{cb} + l_{c-\bar{\mu},\mu}^{cb}) \right) \right) \\ \end{split}$$

• could in principle be simulated by same algorithm as $Z_{A,v2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011] \Rightarrow Internal space sub-worm algorithm:

T. Rindlisbacher & P. de Forcrand

$$\begin{split} Z_{Q2}^{ab}(\mathbf{x}, \mathbf{y}) &= \sum_{\{k,l\}} \prod_{z} \left\{ \left(\prod_{\mu=1}^{d} \prod_{c,b=1}^{N} \frac{\beta^{\frac{1}{2} (|k_{c,\mu}^{c}| + k_{z,\mu}^{cb}) + l_{z,\mu}^{cb})}{(\frac{1}{2} (|k_{c,\mu}^{c}| + k_{z,\mu}^{cb}) + l_{z,\mu}^{cb})!} \right) \\ & \cdot \left(\prod_{c}^{N} \delta \left(\left(\delta^{c,b} - \delta^{c,a} \right) \left(\delta_{\mathbf{x}, \mathbf{z}} - \delta_{\mathbf{y}, \mathbf{z}} \right) + \sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(k_{z,\mu}^{cb} - k_{z-\hat{\mu},\mu}^{cb} \right) \right) \right) \\ & \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{\mathbf{x}, \mathbf{z}} + \delta_{\mathbf{y}, \mathbf{z}} \right) + \frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\hat{\mu},\mu}^{cb}| + l_{z,\mu}^{c,b} + l_{z-\hat{\mu},\mu}^{c,b})) \right) \right) \\ & \cdot \frac{(N-1 + \delta_{\mathbf{x}, \mathbf{z}} + \delta_{\mathbf{y}, \mathbf{z}} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\hat{\mu},\mu}^{cb}| + l_{z,\mu}^{c,b} + l_{z-\hat{\mu},\mu}^{c,b}) \right) \right)}{(N-1 + \delta_{\mathbf{x}, \mathbf{z}} + \delta_{\mathbf{y}, \mathbf{z}} + \sum_{\mu=1}^{N} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{z,\mu}^{cb}| + |k_{z-\hat{\mu},\mu}^{c,b}| + l_{z,\mu}^{c,b} + l_{z-\hat{\mu},\mu}^{c,b}) \right) \right) \\ & \cdot \left(N - 1 + \delta_{\mathbf{x}, \mathbf{z}} + \delta_{\mathbf{y}, \mathbf{z}} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{z,\mu}^{c,b}| + |k_{z-\hat{\mu},\mu}^{c,b}| + l_{z,\mu}^{c,b} + l_{z-\hat{\mu},\mu}^{c,b}) \right) \right) \right\} \right\}$$

• could in principle be simulated by same algorithm as $Z_{A,v2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011] \Rightarrow Internal space sub-worm algorithm:

T. Rindlisbacher & P. de Forcrand

Worm Algorithm for Lattice \mathbb{CP}^{N-1} Model

$$\begin{split} Z_{Q,2}^{ab}(x,y) &= \sum_{\{k,l\}} \prod_{z} \left\{ \left(\prod_{\mu=1}^{d} \prod_{c,b=1}^{N} \frac{\beta^{\frac{1}{2} (|k_{c,\mu}^{cb}| + k_{c,\mu}^{cb}) + l_{c,\mu}^{cb})}{(\frac{1}{2} (|k_{c,\mu}^{cb}| + k_{c,\mu}^{cb}) + l_{c,\mu}^{cb})!} \right) \\ &\quad \cdot \left(\prod_{c}^{N} \delta \left(\left(\delta^{c,b} - \delta^{c,a} \right) \left(\delta_{x,z} - \delta_{y,z} \right) + \sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(k_{c,\mu}^{cb} - k_{c-\bar{\mu},\mu}^{cb} \right) \right) \right) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{cb}| + l_{c,\mu}^{c,b} + l_{c-\bar{\mu},\mu}^{cb} \right) \right) \right) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{cb}| + l_{c,\mu}^{c,b} + l_{c-\bar{\mu},\mu}^{c,b} \right) \right) \right) \right) \\ &\quad \cdot \frac{(N-1 + \delta_{x,z} + \delta_{y,z} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{c,b}| + l_{c,\mu}^{c,b} + l_{c-\bar{\mu},\mu}^{c,b} \right) \right)!}{(N-1 + \delta_{x,z} + \delta_{y,z} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{c,\mu}^{c,b}| + |k_{c-\bar{\mu},\mu}^{c,b}| + l_{c,\mu}^{c,b} + l_{c-\bar{\mu},\mu}^{c,b} \right) \right)!} \right\} \,. \end{split}$$

• could in principle be simulated by same algorithm as $Z_{A,r2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011] \Rightarrow Internal space sub-worm algorithm:

T. Rindlisbacher & P. de Forcrand

$$\begin{split} Z_{Q,2}^{ab}(x,y) &= \sum_{\{k,l\}} \prod_{z} \left\{ \left(\prod_{\mu=1}^{d} \prod_{c,b=1}^{N} \frac{\beta^{\frac{1}{2} (|k_{c,\mu}^{cb}| + k_{c,\mu}^{cb}) + l_{c,\mu}^{cb})}{(\frac{1}{2} (|k_{c,\mu}^{cb}| + k_{c,\mu}^{cb}) + l_{c,\mu}^{cb})!} \right) \\ &\quad \cdot \left(\prod_{c}^{N} \delta \left(\left(\delta^{c,b} - \delta^{c,a} \right) \left(\delta_{x,z} - \delta_{y,z} \right) + \sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(k_{c,\mu}^{cb} - k_{c-\bar{\mu},\mu}^{cb} \right) \right) \right) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{cb}| + l_{c,\mu}^{c,b} + l_{c-\bar{\mu},\mu}^{cb} \right) \right) \right) \right) \\ &\quad \cdot \frac{\prod_{c}^{N} \left(\left(\sum_{\mu=1}^{d} \sum_{b=1}^{N} \left(\frac{1}{2} \left(\delta^{c,a} + \delta^{c,b} \right) \left(\delta_{x,z} + \delta_{y,z} \right) + \frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{cb}| + l_{c,\mu}^{c,b} + l_{c-\bar{\mu},\mu}^{c,b} \right) \right) \right) \right) \\ &\quad \cdot \frac{(N-1 + \delta_{x,z} + \delta_{y,z} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{c,\mu}^{cb}| + |k_{c-\bar{\mu},\mu}^{c,b}| + l_{c,\mu}^{c,b} + l_{c-\bar{\mu},\mu}^{c,b} \right) \right)!}{(N-1 + \delta_{x,z} + \delta_{y,z} + \sum_{\mu=1}^{d} \sum_{c,b=1}^{N} \left(\frac{1}{2} (|k_{c,\mu}^{c,b}| + |k_{c-\bar{\mu},\mu}^{c,b}| + l_{c,\mu}^{c,b} + l_{c-\bar{\mu},\mu}^{c,b} \right) \right)!} \right\} \,. \end{split}$$

• could in principle be simulated by same algorithm as $Z_{A,r2} \Rightarrow$ ergodicity problem! [R. Vetter, 2011] \Rightarrow Internal space sub-worm algorithm:

T. Rindlisbacher & P. de Forcrand

- Both algorithms for auxiliary U(1) version yield identical results for physical observables!
- ightarrow comparison with some high-precision numerical results from [J. Flynn et al., arXiv:1504.06292] :

L	β		sweeps	Ε	ξ _G	χ_m
72	0.8	[Flynn et al.]	80M	0.6670232(7)	4.5992(12)	28.0595(18)
		N^2 aux $\mathrm{U}(1)$	1M	0.6670233(143)	4.5771(232)	28.0528(531)
		2 N aux. U(1)	10M	0.6670265(37)	4.5958(41)	28.0593(72)
96	0.85	[Flynn et al.]	80M	0.6222715(5)	6.3926(20)	46.863(4)
		N^2 aux $\mathrm{U}(1)$	1M	0.6222872(101)	6.3865(294)	46.863(56)
		2 N aux. U(1)	10M	0.6222721(31)	6.3926(110)	46.845(26)
136	0.9	[Flynn et al.]	80M	0.5838365(3)	8.815(4)	78.202(8)
		N^2 aux U(1)	1M	0.5838202(63)	8.855(81)	78.174(232)
		2N aux. U(1)	3M	0.5838326(29)	8.794(28)	78.191(72)
184	0.95	[Flynn et al.]	100M	0.55026689(20)	12.095(4)	130.707(15)
		N^2 aux U(1)	1M	0.5502642(72)	12.279(149)	131.388(452)
		2N aux. U(1)	1M	0.5502692(36)	12.089(61)	130.824(239)

2. Simulation Methods: cross-check of code

- Both algorithms for auxiliary U(1) version yield identical results for physical observables!
- Comparison with analytic strong and weak coupling results: [Di Vecchia et al., NPB 190 [FS3] (1981) 719-733]

3. Efficiency

Integrated auto-correlation time vs. correlation length:

3. Efficiency

25

1 Conclusion:

- Implemented and tested worm algorithms for two (2 N vs. N² d.o.f. per link) dual formulations of CP^{N-1} model which work at finite densities.
- internal space sub-worm algorithm to solve ergodicity problem in version with N^2 d.o.f. per link.
- Both algorithms show so far essentially no critical slowing down for physical observables ($\langle n \rangle, \langle E \rangle, \chi_m$).
- 2 Outlook:
 - Need results for larger systems to extract dynamical critical exponents.
 - Finite density results.
 - Topological charge and susceptibility (so far only for $\kappa < 0.5$).
 - Finite θ?

Thank you!