| Introduction | Form factor | Lattice computation | Results | Conclusion |
|--------------|-------------|---------------------|---------|------------|
|              |             |                     |         |            |
|              |             |                     |         |            |

# Lattice calculation of the pion transition form factor $\pi^0 ightarrow \gamma^* \gamma^*$

Antoine Gérardin

In collaboration with Harvey Meyer and Andreas Nyffeler

Based on [arXiv:1607.08174]

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

34th International Symposium on Lattice Field Theory - Southampton - July 29, 2016

| Introduction                       | Form factor               | Lattice computation | Results | Conclusion |
|------------------------------------|---------------------------|---------------------|---------|------------|
| Motivations                        |                           |                     |         |            |
|                                    |                           |                     |         |            |
| <ul> <li>One motivation</li> </ul> | : anomalous magnetic      | moment of the muon  |         |            |
| ightarrow one of the n             | nost precise tests of the | e Standard Model    |         |            |

•  $\sim 3 - 4\sigma$  discrepancy between experiment and theory

$$a_{\mu} = \begin{cases} 116 \ 592 \ 091(63) \times 10^{-11} & \text{(Exp.)} \\ 116 \ 591 \ 803(49) \times 10^{-11} & \text{(Theory)} \end{cases}$$

| Introduction     | Form factor       | Lattice computation  | Results | Conclusion |
|------------------|-------------------|----------------------|---------|------------|
| Motivations      |                   |                      |         |            |
|                  |                   |                      |         |            |
| One motivation : | anomalous magneti | c moment of the muon |         |            |

- ightarrow one of the most precise tests of the Standard Model
- $\sim 3 4\sigma$  discrepancy between experiment and theory  $\rightarrow$  Hadronic Vacuum Polarization (HVP) contribution :

$$a_{\mu} = \begin{cases} 116 \ 592 \ 091(63) \times 10^{-11} & \text{(Exp.)} \\ 116 \ 591 \ 803(49) \times 10^{-11} & \text{(Theory)} \end{cases}$$

| Introduction                                                               | Form factor | Lattice computation | Results | Conclusion |  |
|----------------------------------------------------------------------------|-------------|---------------------|---------|------------|--|
| Motivations                                                                |             |                     |         |            |  |
| <ul> <li>One motivation : anomalous magnetic moment of the muon</li> </ul> |             |                     |         |            |  |

- ightarrow one of the most precise tests of the Standard Model
- $\bullet \sim 3-4\sigma$  discrepancy between experiment and theory
  - $\rightarrow$  Hadronic Vacuum Polarization (HVP) contribution :
  - $\rightarrow$  Hadronic Light-by-Light scattering (HLbL) contribution :



$$a_{\mu} = \begin{cases} 116 \ 592 \ 091(63) \times 10^{-11} & \text{(Exp.)} \\ 116 \ 591 \ 803(49) \times 10^{-11} & \text{(Theory)} \end{cases}$$

| Introduction | Form factor | Lattice computation | Results | Conclusion |
|--------------|-------------|---------------------|---------|------------|
| Motivations  |             |                     |         |            |
| <b>A</b>     |             |                     |         |            |

- ightarrow one of the most precise tests of the Standard Model
- $\bullet \sim 3-4\sigma$  discrepancy between experiment and theory
  - $\rightarrow$  Hadronic Vacuum Polarization (HVP) contribution :
  - $\rightarrow$  Hadronic Light-by-Light scattering (HLbL) contribution :



- Pseudoscalar-exchanges dominate numerically (  $\pi^0,\eta,\eta'$  ) :  $a_\mu^{\mathrm{HLbL};\pi^0}$
- On input, one needs the  $\pi^0 \to \gamma^* \gamma^*$  form factor  $\mathcal{F}_{\pi^0 \gamma^* \gamma^*}(-Q_1^2, -Q_2^2)$  [Jegerlehner, Nyffeler '09]
- Relevant momentum region :  $Q^2 \in [0:1.5]$  GeV<sup>2</sup> [Nyffeler '16]
- Current estimation are based on models where errors are difficult to estimate

 $a_{\mu} = \begin{cases} 116 \ 592 \ 091(63) \times 10^{-11} & \text{(Exp.)} \\ 116 \ 591 \ 803(49) \times 10^{-11} & \text{(Theory)} \end{cases}$ 

| Introduction | Form factor | Lattice computation | Results | Conclusion |
|--------------|-------------|---------------------|---------|------------|
|              |             |                     |         |            |
|              |             |                     |         |            |
|              |             |                     |         |            |
|              |             |                     |         |            |

The  $\pi^0 \to \gamma^* \gamma^*$  form factor



- Low energy  $(Q_1^2 
  ightarrow 0, Q_2^2 
  ightarrow 0)$
- Chiral limit
- $\rightarrow$  Adler-Bell-Jackiw (ABJ) anomaly :

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0) = \frac{1}{4\pi^2 F_{\pi}}$$



- Low energy  $(Q_1^2 
  ightarrow 0, Q_2^2 
  ightarrow 0)$
- Chiral limit
- $\rightarrow$  Adler-Bell-Jackiw (ABJ) anomaly :

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0) = \frac{1}{4\pi^2 F_\pi}$$

- Single-virtual form factor
- $\bullet$  Off-shell photon :  $Q^2 \to \infty$
- $\rightarrow$  Brodsky-Lepage behavior :

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2,0) \xrightarrow[Q^2 \to \infty]{} \frac{2F_{\pi}}{Q^2}$$



- Low energy  $(Q_1^2 \rightarrow 0, Q_2^2 \rightarrow 0)$
- Chiral limit
- $\rightarrow$  Adler-Bell-Jackiw (ABJ) anomaly :

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0) = \frac{1}{4\pi^2 F_\pi}$$

- Single-virtual form factor
- $\bullet$  Off-shell photon :  $Q^2 \to \infty$
- $\rightarrow$  Brodsky-Lepage behavior :

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2,0) \xrightarrow[Q^2 \to \infty]{} \frac{2F_{\pi}}{Q^2}$$

- Double-virtual form factor
- Large virtualities :  $Q^2 \to \infty$
- $\rightarrow$  OPE prediction :

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2,-Q^2) \xrightarrow[Q^2\to\infty]{} \frac{2F_{\pi}}{3Q^2}$$



- Low energy  $(Q_1^2 
  ightarrow 0, Q_2^2 
  ightarrow 0)$
- Chiral limit
- $\rightarrow$  Adler-Bell-Jackiw (ABJ) anomaly :

 $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0) = \frac{1}{4\pi^2 F_\pi}$ 



- Single-virtual form factor
- $\bullet$  Off-shell photon :  $Q^2 \to \infty$
- $\rightarrow$  Brodsky-Lepage behavior :

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2,0) \xrightarrow[Q^2 \to \infty]{} \frac{2F_{\pi}}{Q^2}$$

- Double-virtual form factor
- $\bullet$  Large virtualities :  $Q^2 \to \infty$
- $\rightarrow$  OPE prediction :

$$\mathcal{F}_{\pi^0\gamma^*\gamma}(-Q^2,-Q^2) \xrightarrow[Q^2\to\infty]{} \frac{2F_{\pi}}{3Q^2}$$

- $\rightarrow$  Some results in the single-virtual case (dispersive approach [G. Colangelo '14 '15, V. Pauk '14])
- $a_{\mu}^{\mathrm{HLbL};\pi^{0}}$  : main contribution comes from the region  $Q^{2} \in [0, 1.5]~\mathrm{GeV}^{2}$
- $\rightarrow$  Lattice QCD can be used to compute the form factor in the relevant kinematical region
- $\rightarrow$  Do not rely on any model

| Introduction  | Form factor                        |            | _attice computation | Results | Conclusion |
|---------------|------------------------------------|------------|---------------------|---------|------------|
| Form factor : | experimental side                  |            |                     |         |            |
|               |                                    |            |                     |         |            |
| Decay width   | $\Gamma_{0} = 7.82(22) \text{ eV}$ | $\sim 3\%$ | [PrimEx '10]        |         |            |

$$\Gamma_{\pi^0\gamma\gamma} = \frac{\pi\alpha_e^2 m_\pi^3}{4} \mathcal{F}_{\pi^0\gamma^*\gamma^*}(\mathbf{0},\mathbf{0})$$

- $\rightarrow$  Consistent with current theoretical predictions
- $\rightarrow$  Experimental test of the chiral anomaly
- The single-virtual form factor has been measured (CELLO, CLEO, BaBar, Belle)

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0) = F(Q^2)$$

 $\rightarrow$  Belle data seem to confirm the Brodsky-Lepage behavior  $\sim 1/Q^2.$ 

- $\rightarrow$  Belle and Babar results are quite different
- $\rightarrow$  no measurement at low  $Q^2 < 0.5~{\rm GeV^2}$
- No result yet for the double-virtual form factor

5

 $\hookrightarrow$  but measurement planned at BESIII in the range  $[0.3-3]~{\rm GeV}^2$ 



| Introduction | Form factor | Lattice computation | Results | Conclusion |
|--------------|-------------|---------------------|---------|------------|
|              |             |                     |         |            |
|              |             |                     |         |            |

Lattice computation

| Introduction        | Form factor | Lattice computation | Results | Conclusion |
|---------------------|-------------|---------------------|---------|------------|
| Lattice calculation |             |                     |         |            |
|                     |             |                     |         |            |

In Minkowski space-time :

$$\epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathcal{F}_{\pi^0\gamma\gamma}(q_1^2, q_2^2) = i \int \mathrm{d}^4 x \, e^{iq_1 x} \langle \Omega | T\{J_{\mu}(x)J_{\nu}(0)\} | \pi^0(p) \rangle = M_{\mu\nu}(p, q_1)$$

•  $J_{\mu}(x)$  hadronic component of the electromagnetic current :  $J_{\mu}(x) = \frac{2}{3}\overline{u}(x)\gamma_{\mu}u(x) - \frac{1}{3}\overline{d}(x)\gamma_{\mu}d(x) + \dots$ 

In Euclidean space-time : [Cohen et al. '08] [Feng et al. '12]

$$M^{E}_{\mu\nu}(p,q_{1}) = -\int d\tau \, e^{\omega_{1}\tau} \int d^{3}z \, e^{-i\vec{q}_{1}\vec{z}} \, \langle 0|T\left\{J_{\mu}(\vec{z},\tau)J_{\nu}(\vec{0},0)\right\} |\pi(p)\rangle$$

• Analytical continuation

• We must kept 
$$q_{1,2}^2 < M_V^2 = \min(M_\rho^2, 4m_\pi^2)$$
 to avoid poles

•  $q_1 = (\omega_1, \vec{q_1})$ 

The main object to compute is the three-point correlation function :

$$C^{(3)}_{\mu\nu}(\tau, t_{\pi}; \vec{p}, \vec{q}_1, \vec{q}_2) = \sum_{\vec{x}, \vec{z}} \left\langle T \left\{ J_{\nu}(\vec{0}, t_f) J_{\mu}(\vec{z}, t_i) P(\vec{x}, t_0) \right\} \right\rangle e^{i\vec{p}\vec{x}} e^{-i\vec{q}_1\vec{z}}$$



| Introduction        | Form factor | Lattice computation | Results | Conclusion |
|---------------------|-------------|---------------------|---------|------------|
| Lattice calculation |             |                     |         |            |

$$M_{\mu\nu}^{E}(p,q_{1}) = \lim_{t_{\pi}\to\infty} \frac{2E_{\pi}}{Z_{\pi}} \left( \int_{-\infty}^{0} \mathrm{d}\tau \, e^{\omega_{1}\tau} \, e^{-E_{\pi}(\tau-t_{\pi})} \, C_{\mu\nu}(\tau,t_{\pi};\vec{p},\vec{q}_{1}) + \int_{0}^{\infty} \mathrm{d}\tau \, e^{\omega_{1}\tau} \, e^{E_{\pi}t_{\pi}} \, C_{\mu\nu}(\tau,t_{\pi};\vec{p},\vec{q}_{1}) \right)$$

•  $E_{\pi}$  and  $Z_{\pi}$  (overlap with our interpolating field) are extracted from the two-point correlation function :

$$C^{(2)}(t) = \sum_{\vec{x}} \left\langle P(\vec{x}, t) P^{\dagger}(\vec{0}, 0) \right\rangle e^{-i\vec{p}\vec{x}} \xrightarrow[t \to \infty]{} \frac{|Z_{\pi}|^2}{2E_{\pi}} \left( e^{-E_{\pi}t} + e^{-E_{\pi}(T-t)} \right) ,$$



 $\rightarrow$  Momenta are discrete :  $|\vec{q_1}|^2 = \left(\frac{2\pi}{L}\right)^2 |\vec{n}|^2$ ,  $|\vec{n}|^2 = 1, 2, 3, 4, 5, 6, 8, \dots$ 

 $ightarrow \omega_1$  is a free parameter :  $q_1 = (\omega_1, ec q_1)$ 

- ightarrow By varying continuously  $\omega_1$  we have access to different values of  $(q_1^2,q_2^2)$
- $\rightarrow$  But  $\omega_1$  such that  $q_{1,2}^2 < M_V = \min(M_{
  ho}^2, 4m_{\pi}^2)$  (below hadronic threshold)



## Photons momenta :

$$q_1^2 = \omega_1^2 - |\vec{q_1}|^2$$
$$q_2^2 = (m_\pi - \omega_1)^2 - |\vec{q_1}|^2$$

 $\Rightarrow |\vec{q_1}|^2 = (2\pi/L)^2 |\vec{n}|^2 \quad , \quad |\vec{n}|^2 = 1, 2, 3, 4, 5, \dots$  $\Rightarrow \omega_1 \text{ is a (real) free parameter}$ 



| Introduction  | Form factor | Lattice computation | Results | Conclusion |
|---------------|-------------|---------------------|---------|------------|
| Lattice setup |             |                     |         |            |

- $N_f = 2$  dynamical quarks ( $\mathcal{O}(a)$ -improved Wilson-Clover Fermions)
- Pion masses in the range [190:440] MeV
- 3 lattice spacings
  - $\rightarrow a = 0.075 \; \mathrm{fm}$
  - $\rightarrow a = 0.065 \; \mathrm{fm}$
  - $\rightarrow a = 0.048 \; \mathrm{fm}$



• Photons virtualities up to  $Q_{1,2}^2 \sim 1.5 \ {\rm GeV}^2$ 

- $\rightarrow$  results are averaged over equivalent momenta (no new inversion needed)
- $\rightarrow$  results are averaged over Lorentz components
- $C^{(3)}_{\mu\nu}$  : one local and one conserved vector current

$$\begin{aligned} J^l_{\mu}(x) &= \sum_f Q_f \ \overline{\psi}_f(x) \gamma_{\mu} \psi_f(x) \,, \\ J^c_{\mu}(x) &= \sum_f \frac{Q_f}{2} \left( \overline{\psi}_f(x+a\hat{\mu})(1+\gamma_{\mu}) U^{\dagger}_{\mu}(x) \psi_f(x) - \overline{\psi}_f(x)(1-\gamma_{\mu}) U_{\mu}(x) \psi_f(x+a\hat{\mu}) \right) \end{aligned}$$

| Introduction | Form factor | Lattice computation | Results | Conclusion |
|--------------|-------------|---------------------|---------|------------|
|              |             |                     |         |            |
|              |             |                     |         |            |
|              |             |                     |         |            |
|              |             |                     |         |            |
|              |             |                     |         |            |
|              |             |                     |         |            |
|              |             |                     |         |            |

Results

Introduction

Lattice computation

#### Results

Conclusion

## Shape of the integrand for F7 (a = 0.065 fm and $\underline{m_{\pi} = 270 \text{ MeV}}$ )

$$M_{\mu\nu}^E = \frac{2E_{\pi}}{Z_{\pi}} \int_{-\infty}^{\infty} \mathrm{d}\tau \, \widetilde{A}_{\mu\nu}(\tau) \, e^{\omega_1 \tau} \, e^{-E_{\pi} \tau}$$

$$\begin{aligned} A_{\mu\nu}(\tau) &= \lim_{t_{\pi} \to \infty} C_{\mu\nu}(\tau, t_{\pi}) e^{E_{\pi}t_{\pi}} \\ \widetilde{A}_{\mu\nu}(\tau) &= \begin{cases} A_{\mu\nu}(\tau) & \tau > 0 \\ A_{\mu\nu}(\tau) e^{-E_{\pi}\tau} & \tau < 0 \end{cases} \end{aligned}$$



#### Results

## Shape of the integrand for F7 (a = 0.065 fm and $m_{\pi} = 270 \text{ MeV}$ )

$$M_{\mu\nu}^E = \frac{2E_{\pi}}{Z_{\pi}} \int_{-\infty}^{\infty} \mathrm{d}\tau \, \widetilde{A}_{\mu\nu}(\tau) \, e^{\omega_1 \tau} \, e^{-E_{\pi} \tau}$$

$$egin{aligned} A_{\mu
u}( au) &= \lim_{t_{\pi} o\infty} C_{\mu
u}( au,t_{\pi}) e^{E_{\pi}t_{\pi}} \ & \widetilde{A}_{\mu
u}( au) &= \left\{egin{aligned} A_{\mu
u}( au) & au > 0 \ A_{\mu
u}( au) e^{-E_{\pi} au} & au < 0 \end{aligned}
ight. \end{aligned}$$





- For each value of  $|\vec{q_1}|^2 = |\vec{n}|^2 (2\pi/L)^2$ , one gets a curve by varying continuously the value of  $\omega_1$  (or  $\theta$ ).
- $\tan(\theta \pi/4) = q_1^2/q_2^2$



$$\mathcal{F}^{\text{VMD}}_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

|        | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2)$ |
|--------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| VMD    | $\alpha$                                   | $lpha M_V^2/Q^2$                              | $lpha M_V^4/Q^4$                                 |
| Theory | $1/(4\pi^2 F_\pi)$                         | $2F_{\pi}/Q^2$                                | $2F_{\pi}/(3Q^2)$                                |
|        | $\checkmark$                               | (Brodsky-Lepage) √                            | (OPE) X                                          |

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{VMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

|        | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2)$ |
|--------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| VMD    | $\alpha$                                   | $lpha M_V^2/Q^2$                              | $lpha M_V^4/Q^4$                                 |
| Theory | $1/(4\pi^2 F_\pi)$                         | $2F_{\pi}/Q^2$                                | $2F_{\pi}/(3Q^2)$                                |
|        | $\checkmark$                               | (Brodsky-Lepage) √                            | (OPE) X                                          |

Two fitting procedures :

- Local fit : each ensemble is fitted independently  $(\alpha(a, m_{\pi}^2), M_V(a, m_{\pi}^2))$  + chiral and continuum extrapolation
- Global fit : combined chiral and continuum extrapolation  $\rightarrow$  6 fit parameters

IntroductionForm factorLattice computationResultsConclusionComparison with phenomenological models (1) : VMD (vector meson dominance)

$$\mathcal{F}^{\text{VMD}}_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = \frac{\alpha M_V^4}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

|        | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2)$ |
|--------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| VMD    | lpha                                       | $lpha M_V^2/Q^2$                              | $lpha M_V^4/Q^4$                                 |
| Theory | $1/(4\pi^2 F_\pi)$                         | $2F_{\pi}/Q^2$                                | $2F_{\pi}/(3Q^2)$                                |
|        | $\checkmark$                               | (Brodsky-Lepage) √                            | (OPE) X                                          |

Two fitting procedures :

- Local fit : each ensemble is fitted independently  $(\alpha(a, m_{\pi}^2), M_V(a, m_{\pi}^2)) +$  chiral and continuum extrapolation
- Global fit : combined chiral and continuum extrapolation  $\rightarrow$  6 fit parameters

 $\alpha^{\rm VMD} = 0.243(18)~{\rm GeV^{-1}}\,, \quad M_V^{\rm VMD} = 0.944(34)~{\rm GeV}\,.$ 



 $\hookrightarrow$  The model fails to describe our data ! We do not recover the anomaly result :  $\alpha \neq \alpha_{\rm th} = 0.274 \ {\rm GeV}^{-1}$ 

IntroductionForm factorLattice computationResultsConclusionComparison with phenomenological models (2) : LMD (Lowest meson dominance)

$$\mathcal{F}_{\pi^0\gamma^*\gamma^*}^{\text{LMD}}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

(inspired from the large-NC approximation to QCD) [hep-ph/9407402] [hep-ph/9908283]

|        | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2)$ |
|--------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| LMD    | $\alpha$                                   | $-eta/M_V^2$                                  | $-2eta/Q^2$                                      |
| Theory | $1/(4\pi^2 F_\pi)$                         | $2F_{\pi}/Q^2$                                | $2F_{\pi}/(3Q^2)$                                |
|        | $\checkmark$                               | (Brodsky-Lepage) <mark>X</mark>               | (OPE) √                                          |

$$\mathcal{F}^{\text{LMD}}_{\pi^0\gamma^*\gamma^*}(q_1^2, q_2^2) = \frac{\alpha M_V^4 + \beta (q_1^2 + q_2^2)}{(M_V^2 - q_1^2)(M_V^2 - q_2^2)}$$

(inspired from the large-NC approximation to QCD) [hep-ph/9407402] [hep-ph/9908283]

|        | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2)$ |
|--------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| LMD    | $\alpha$                                   | $-eta/M_V^2$                                  | $-2eta/Q^2$                                      |
| Theory | $1/(4\pi^2 F_{\pi})$                       | $2F_{\pi}/Q^2$                                | $2F_{\pi}/(3Q^2)$                                |
|        | $\checkmark$                               | (Brodsky-Lepage) <mark>X</mark>               | (OPE) √                                          |

$$\alpha^{\rm LMD} = 0.275(18)~{\rm GeV}^{-1} \quad, \quad \beta = -0.028(4)~{\rm GeV} \quad, \quad M_V^{\rm LMD} = 0.705(24)~{\rm GeV}$$



• The data are well describe by this model

- $\alpha^{\text{LMD}}$  is compatible with the theoretical prediction  $\alpha^{\text{th}} = 1/(4\pi^2 F_\pi) = 0.274 \text{ GeV}^{-1} \rightarrow (\text{accuracy } 7\%)$
- $\beta^{\text{LMD}}$  is compatible with the OPE prediction  $\beta^{\text{OPE}} = -F_{\pi}/3 = -0.0308 \text{ GeV}$
- Might be surprising as the form factor  $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$  has the wrong asymptotic behavior ...

Comparison with phenomenological models (3) : LMD+V

$$\mathcal{F}^{\mathrm{LMD+V}}_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \frac{\widetilde{h}_{0}\,q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2}) + \widetilde{h}_{1}(q_{1}^{2}+q_{2}^{2})^{2} + \widetilde{h}_{2}\,q_{1}^{2}q_{2}^{2} + \widetilde{h}_{5}\,M_{V_{1}}^{2}M_{V_{2}}^{2}\left(q_{1}^{2}+q_{2}^{2}\right) + \alpha\,M_{V_{1}}^{4}M_{V_{2}}^{4}}{(M_{V_{1}}^{2}-q_{1}^{2})(M_{V_{2}}^{2}-q_{1}^{2})(M_{V_{1}}^{2}-q_{2}^{2})(M_{V_{2}}^{2}-q_{2}^{2})}$$

|        | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2)$ |
|--------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| LMD+V  | $\alpha$                                   | $-\widetilde{h}_5/Q^2$                        | $-2\widetilde{h}_0/Q^2$                          |
| Theory | $1/(4\pi^2 F_\pi)$                         | $2F_{\pi}/Q^2$                                | $2F_{\pi}/(3Q^2)$                                |
|        | $\checkmark$                               | (Brodsky-Lepage) $\checkmark$                 | (OPE) √                                          |

- Refinement of the LMD model (include a second vector resonance,  $\rho'$ ) [hep-ph/0106034]
- All the theoretical constraints are satisfied (if one sets  $\tilde{h}_1 = 0$ )

#### Form facto

Lattice computation

#### Results

Conclusion

Comparison with phenomenological models (3) : LMD+V

$$\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}^{\mathrm{LMD+V}}(q_{1}^{2},q_{2}^{2}) = \frac{\widetilde{h}_{0}\,q_{1}^{2}q_{2}^{2}(q_{1}^{2}+q_{2}^{2}) + \widetilde{h}_{1}(q_{1}^{2}+q_{2}^{2})^{2} + \widetilde{h}_{2}\,q_{1}^{2}q_{2}^{2} + \widetilde{h}_{5}\,M_{V_{1}}^{2}M_{V_{2}}^{2}\,(q_{1}^{2}+q_{2}^{2}) + \alpha\,M_{V_{1}}^{4}M_{V_{2}}^{4}}{(M_{V_{1}}^{2}-q_{1}^{2})(M_{V_{2}}^{2}-q_{1}^{2})(M_{V_{1}}^{2}-q_{2}^{2})(M_{V_{2}}^{2}-q_{2}^{2})}$$

|        | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2)$ |
|--------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| LMD+V  | α                                          | $-\widetilde{h}_5/Q^2$                        | $-2\widetilde{h}_0/Q^2$                          |
| Theory | $1/(4\pi^2 F_\pi)$                         | $2F_{\pi}/Q^2$                                | $2F_{\pi}/(3Q^2)$                                |
|        | $\checkmark$                               | (Brodsky-Lepage) $\checkmark$                 | (OPE) √                                          |

- Refinement of the LMD model (include a second vector resonance,  $\rho'$ ) [hep-ph/0106034]
- All the theoretical constraints are satisfied (if one sets  $\widetilde{h}_1 = 0$ )
- But the number of parameters also increases (local fits are unstable, global fit only)
- Assumptions:
  - $\widetilde{h}_1 = 0$
  - $M_{V_1}=m_
    ho^{
    m exp}=0.775~{
    m GeV}$  in the continuum and chiral limit

(but chiral corrections are taken into account in the fit)

- Constant shift in the spectrum:  $M_{V_2}(\widetilde{y}) = m_{
ho'}^{\exp} + M_{V_1}(\widetilde{y}) - m_{
ho}^{\exp}$  with  $m_{
ho'}^{\exp} = 1.465~{
m GeV}$ 

Form facto

Lattice computation

Conclusion

Comparison with phenomenological models (3) : LMD+V

$$\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}^{\mathrm{LMD+V}}(q_{1}^{2},q_{2}^{2}) = \frac{\tilde{h}_{0} q_{1}^{2} q_{2}^{2}(q_{1}^{2}+q_{2}^{2}) + \tilde{h}_{1}(q_{1}^{2}+q_{2}^{2})^{2} + \tilde{h}_{2} q_{1}^{2} q_{2}^{2} + \tilde{h}_{5} M_{V_{1}}^{2} M_{V_{2}}^{2}(q_{1}^{2}+q_{2}^{2}) + \alpha M_{V_{1}}^{4} M_{V_{2}}^{4}}{(M_{V_{1}}^{2}-q_{1}^{2})(M_{V_{2}}^{2}-q_{1}^{2})(M_{V_{1}}^{2}-q_{2}^{2})(M_{V_{2}}^{2}-q_{2}^{2})}$$

|        | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(0,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,0)$ | $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(-Q^2,-Q^2)$ |
|--------|--------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| LMD+V  | $\alpha$                                   | $-\widetilde{h}_5/Q^2$                        | $-2\widetilde{h}_0/Q^2$                          |
| Theory | $1/(4\pi^2 F_\pi)$                         | $2F_{\pi}/Q^2$                                | $2F_{\pi}/(3Q^2)$                                |
|        | $\checkmark$                               | (Brodsky-Lepage) $\checkmark$                 | (OPE) √                                          |

$$\alpha^{\text{LMD+V}} = 0.273(24) \text{ GeV}^{-1}$$
 ,  $\tilde{h}_2 = 0.345(167) \text{ GeV}^3$  ,  $\tilde{h}_5 = -0.195(70) \text{ GeV}^3$ 



•  $\alpha^{\text{LMD+V}}$  is again compatible with the theoretical prediction  $\alpha^{\text{th}} = 1/(4\pi^2 F_{\pi}) = 0.274 \text{ GeV}^{-1} \rightarrow (\text{accuracy } 9\%)$ • The data are well describe by this model



LMD+V model :

$$\alpha^{\text{LMD+V}} = 0.273(24)(7) \text{ GeV}^{-1}, \quad \widetilde{h}_2 = 0.345(167)(83) \text{ GeV}^3, \quad \widetilde{h}_5 = -0.195(70)(34) \text{ GeV}^3$$

where  $\tilde{h}_0 = -F_{\pi}/3 = -0.0308$  GeV,  $M_{V_1} = 0.775$  GeV and  $M_{V_2} = 1.465$  GeV are fixed at the physical point.

### Systematic errors :

- Finite-time extent of the lattice
- Finite-size effects (no dedicated study, but data suggest small rather effect).
- Disconnected contributions



- Disconnected contribution has been computed on E5 only ( $m_{\pi} = 440$  MeV, a = 0.065 fm)
- Loops : 75 stochastic sources with full-time dilution and a generalized Hopping Parameter Expansion.
- Two-point functions : 7 stochastic sources with full-time dilution

• 
$$|\vec{q_1}|^2 = |\vec{n}|^2 (2\pi/L)$$
 with  $|\vec{n}|^2 = 1, 2, 3$ 



 $\rightarrow$  The disconnected contribution is below 1%.

 $\rightarrow$  But the pion mass dependence could be large  $\ldots$ 



$$a_{\mu}^{\text{HLbL};\pi^{0}(2)} = \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{2}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0) \,.$$

 $\rightarrow w_{1,2}(Q_1, Q_2, \tau)$  are some model-independent weight functions (concentrated at small momenta below 1 GeV)



$$\begin{aligned} a_{\mu}^{\mathrm{HLbL};\pi^{0}(1)} &= \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{1}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-(Q_{1}+Q_{2})^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{2}^{2},0) \,, \\ a_{\mu}^{\mathrm{HLbL};\pi^{0}(2)} &= \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} d\tau \ w_{2}(Q_{1},Q_{2},\tau) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-Q_{1}^{2},-Q_{2}^{2}) \ \mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-(Q_{1}+Q_{2})^{2},0) \,. \end{aligned}$$

 $w_{1,2}(Q_1,Q_2, au)$  are some model-independent weight functions (concentrated at small momenta below 1 GeV)

| $a_{\mu;\text{LMD+V}}^{\text{HLbL};\pi^0} = (65.0 \pm 8.3) \times 10^{-11}$ |  |
|-----------------------------------------------------------------------------|--|
|-----------------------------------------------------------------------------|--|

| t model calculations yield results in the                     | 0.5                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $a_{\mu}^{\mathrm{HLbL};\pi^{0}} = (50 - 80) \times 10^{-11}$ |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |  |
|                                                               | HLbL; $\pi^0 \sim 10^{11}$                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                              |  |
|                                                               | 1.5                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |  |
| LMD (this work)                                               | 2.0                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |  |
| LMD+V (this work)                                             | 5.0                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                              |  |
| LMD (theory) 73.7                                             |                                                                                                                                                                                                             | 20.0                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |  |
| LMD+V (theory + phenomenology)                                | 62.9                                                                                                                                                                                                        | 20.0                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                              |  |
|                                                               | t model calculations yield results in the<br>$a_{\mu}^{\text{HLbL};\pi^{0}} = (50 - 80) \times 10^{-11}$<br>Model<br>LMD (this work)<br>LMD+V (this work)<br>LMD (theory)<br>LMD+V (theory + phenomenology) | t model calculations yield results in the range<br>$a_{\mu}^{\text{HLbL};\pi^{0}} = (50 - 80) \times 10^{-11}$<br>Model $a_{\mu}^{\text{HLbL};\pi^{0}} \times 10^{11}$<br>LMD (this work) $68.2(7.4)$<br>LMD+V (this work) $65.0(8.3)$<br>LMD (theory) $73.7$<br>LMD+V (theory + phenomenology) $62.9$ | t model calculations yield results in the range0.5 $a_{\mu}^{\text{HLbL};\pi^{0}} = (50 - 80) \times 10^{-11}$ 0.75Model $a_{\mu}^{\text{HLbL};\pi^{0}} \times 10^{11}$ LMD (this work)68.2(7.4)LMD+V (this work)65.0(8.3)LMD (theory)73.7LMD+V (theory + phenomenology)62.9 |  |

| $\Lambda$ [GeV] |      | LMD     | LI   | MD+V    |
|-----------------|------|---------|------|---------|
| 0.25            | 14.6 | (21.4%) | 14.4 | (22.1%) |
| 0.5             | 37.9 | (55.5%) | 37.2 | (57.2%) |
| 0.75            | 50.7 | (74.4%) | 49.5 | (76.1%) |
| 1.0             | 57.3 | (84.0%) | 55.5 | (85.4%) |
| 1.5             | 62.9 | (92.3%) | 60.6 | (93.1%) |
| 2.0             | 65.1 | (95.5%) | 62.5 | (96.1%) |
| 5.0             | 67.7 | (99.2%) | 64.6 | (99.4%) |
| 20.0            | 68.2 | (100%)  | 65.0 | (100%)  |

| Introduction | Form factor | Lattice computation | Results | Conclusion |
|--------------|-------------|---------------------|---------|------------|
| Conclusion   |             |                     |         |            |

- We have performed a calculation of the pion transition form factor  $\mathcal{F}_{\pi^0\gamma^*\gamma^*}(q_1^2,q_2^2)$  with two dynamical quarks.
- The VMD model fails to describe our data, especially in the double virtual case.
- However, the LMD and LMD+V models describe our data successfully.
- In particular we recover the anomaly results ( $\alpha^{th} = 0.274 \text{ GeV}^{-1}$ ) in the continuum and chiral limit  $\alpha^{LMD} = 0.275(18)(3) \text{ GeV}^{-1}$ ,  $\alpha^{LMD+V} = 0.273(24)(7) \text{ GeV}^{-1}$

ightarrow 7-9% accuracy

- Disconnected contributions have been computed on one lattice ensemble.
- Provides a first lattice estimate of the pion-pole contribution to the hadronic light-by-light scattering in the g-2 of the muon

$$a_{\mu;\text{LMD+V}}^{\text{HLbL};\pi^0} = (65.0 \pm 8.3) \times 10^{-11}$$

• Experimental results for the double-virtual form factor should be available soon (BES III).