The goal

Combined fits

Ratios

Summary & Outlook

Extraction of the bare form factors for semi-leptonic B_s decays

Mateusz Koreń

NIC, DESY Zeuthen

In collaboration with F. Bahr, D. Banerjee, H. Simma, and R. Sommer

Lattice 2016, Southampton, 29-07-2016

イロト イヨト イヨト イヨト

The goal	Combined fits	Ratios	Summary & Outlook
oo		00	O
Table of cont	ents		

(ロ) (部) (注) (注) []

The goal	Combined fits	Ratios	Summary & Outlook
The goal			

• Extract the bare ground-state matrix elements for static HQET $B_s \rightarrow K \ell \nu$ decay at $\approx 2\%$ precision.

$$\begin{split} h_{\parallel}^{\rm stat, bare} &= (2m_{\rm B_s})^{-1/2} \langle {\rm K}(p_{\rm K}) | V^0(0) | {\rm B}_{\rm s}(0) \rangle = \varphi_0^{(0,0)} \sqrt{2E_{\rm K}^{(0)}}, \\ p_{\rm K}^k h_{\perp}^{\rm stat, bare} &= (2m_{\rm B_s})^{-1/2} \langle {\rm K}(p_{\rm K}) | V^k(0) | {\rm B}_{\rm s}(0) \rangle = \varphi_k^{(0,0)} \sqrt{2E_{\rm K}^{(0)}}, \end{split}$$

• Correlation functions (three smearings for B_s, one for Kaon):

The goal	Combined fits	Ratios	Summary & Outlook
The goal			

• Extract the bare ground-state matrix elements for static HQET $B_s \rightarrow K \ell \nu$ decay at $\approx 2\%$ precision.

$$\begin{split} h_{\parallel}^{\rm stat, bare} &= (2m_{\rm B_s})^{-1/2} \langle {\rm K}(p_{\rm K}) | V^0(0) | {\rm B}_{\rm s}(0) \rangle = \varphi_0^{(0,0)} \sqrt{2E_{\rm K}^{(0)}}, \\ p_{\rm K}^k h_{\perp}^{\rm stat, bare} &= (2m_{\rm B_s})^{-1/2} \langle {\rm K}(p_{\rm K}) | V^k(0) | {\rm B}_{\rm s}(0) \rangle = \varphi_k^{(0,0)} \sqrt{2E_{\rm K}^{(0)}}, \end{split}$$

• Correlation functions (three smearings for B_s, one for Kaon):

The goal	Combined fits	Ratios	Summary & Outlook
○●		00	O
The goal cntd			

- CLS $N_f = 2$ lattices:
 - $\bullet\,$ Three ensembles for the continuum limit @ fixed q^2
 - All the plots shown here are for the finest lattice N6, $48^3 \times 96$, a = 0.0483(4) fm, $m_{\pi} = 340$ MeV
 - $ap_{\rm K}^k = \frac{2\pi}{L} \delta_{k1}$ on N6, twisted b.c. for equal $p_{\rm K}$ on other ensembles
- We use stochastic sources with full-time dilution for measurements \Rightarrow all $t_{\rm K}, t_{\rm B_s}$ accessible.
- Especially the B_s -sector (treated in HQET) problematic due to large contamination by excited states + signal-to-noise problem.

イロト イポト イヨト イヨト

Effective energies of C^K and C^{B_s} , ensemble N6. Both plots are scaled to show the same y-axis span. Red bands show the results of two-exp fits.

The goal	Combined fits	Ratios	Summary & Outlook
00	000	00	
Table of co	ontents		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The goal	Combined fits	Ratios	Summary & Outlook
	000		
Combined fits			

- Strategy: do a combined non-linear fit to both two-point and three-point functions, to get energies, amplitudes and the form factors.
- In practice $N_{\rm B_s}=3$ and $N_{\rm K}=1$ or 2 needed for stable fit results.
- Many parameters (\approx 20 parameters to $\mathcal{O}(10^3)$ data points) \Rightarrow good starting values:
 - Find $E_{\rm K}^{(m)}$ and $\kappa^{(m)}$ from $\mathcal{C}^{\rm K}$,
 - 2 From $C_{ij}^{B_s}$, find $E_{B_s}^{(n)}$ with GEVP and feed them to fit for $\beta_i^{(n)}$,
 - **3** Find a region in $C_{\mu,i}^{\mathsf{B}_{s} \to \mathsf{K}}$ free of wrap-around states coming from finite T,
 - Do a linear fit for $\varphi_{\mu}^{(m,n)}$.
- Feed these as starting values to the (uncorrelated) combined fit. Analyze stability w.r.t. fit ranges.

マロト マヨト マヨト

Selection of data points for fitting in $C_{\mu}^{\mathsf{B}_{\mathsf{s}} \to \mathsf{K}}(t_{\mathsf{K}}, t_{\mathsf{B}_{\mathsf{s}}})$, schematic plot

(ロ) (部) (注) (注) []

- $t_{min}^{K3}\approx 0.82$ fm (for $N_{K}=1),~t_{min}^{B3}\approx 0.67$ fm ($N_{B_{s}}=3)$
- Wrapper criterion limits the relative wrapper contribution to 1/3 of the statistical noise, noise criterion is SNR ≥ 10 .
- Wrapper contribution larger for φ_k than φ_0 .

Mateusz Koreń

Extraction of the bare form factors for $B_s \to K \ell \nu$ decays

The goal	Combined fits	Ratios	Summary & Outlook O
Table of conte	ents		

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The goal	Combined fits	Ratios	Summary & Outlook
		•0	
Ratios			

$$\mathcal{R}_{\mu,i}^{\mathrm{I}}(t_{\mathrm{K}}, t_{\mathrm{B}_{\mathrm{s}}}) = \frac{\mathcal{C}_{\mu,i}^{\mathrm{B}_{\mathrm{s}} \to \mathrm{K}}(t_{\mathrm{K}}, t_{\mathrm{B}_{\mathrm{s}}})}{\left[\mathcal{C}^{\mathrm{K}}(\tau)\mathcal{C}_{ii}^{\mathrm{B}_{\mathrm{s}}}(\tau)\right]^{1/2}} e^{(\mathcal{E}_{\mathrm{B}_{\mathrm{s}}}^{\mathrm{eff}}(\tau) - \mathcal{E}_{\mathrm{K}}^{\mathrm{eff}}(\tau))\frac{t_{\mathrm{B}_{\mathrm{s}}} - t_{\mathrm{K}}}{2}}$$

$$\mathcal{R}_{\mu,i}^{\mathrm{II}}(t_{\mathrm{K}}, t_{\mathrm{B}_{\mathrm{s}}}) = \frac{\mathcal{C}_{\mu,i} \quad (t_{\mathrm{K}}, t_{\mathrm{B}_{\mathrm{s}}})}{\left[\mathcal{C}^{\mathrm{K}}(t_{\mathrm{K}})\mathcal{C}_{ii}^{\mathrm{B}_{\mathrm{s}}}(t_{\mathrm{B}_{\mathrm{s}}})\right]^{1/2}} e^{\mathcal{E}_{\mathrm{B}_{\mathrm{s}}}^{\mathrm{eff}}(\tau)\frac{\mathrm{t}_{\mathrm{B}_{\mathrm{s}}}}{2} + \mathcal{E}_{\mathrm{K}}^{\mathrm{eff}}(\tau)\frac{\mathrm{t}_{\mathrm{s}}}{2}}$$

$$\mathcal{R}_{\mu,i}^{\mathrm{III}}(t_{\mathsf{K}}, t_{\mathsf{B}_{\mathsf{s}}}) = \frac{\mathcal{C}_{\mu,i}^{\mathsf{B}_{\mathsf{s}} \to \mathsf{K}}(t_{\mathsf{K}}, t_{\mathsf{B}_{\mathsf{s}}})}{\mathcal{N}^{\mathsf{K}} \mathcal{C}^{\mathsf{K}}(t_{\mathsf{K}}) \mathcal{N}_{i}^{\mathsf{B}_{\mathsf{s}}} \mathcal{C}_{ii}^{\mathsf{B}_{\mathsf{s}}}(t_{\mathsf{B}_{\mathsf{s}}})}$$

$$\mathcal{R}_{\mu,i}^{\mathsf{f}}(t_{\mathsf{K}}, t_{\mathsf{B}_{\mathsf{s}}}) = \frac{\mathcal{C}_{\mu,i}^{\mathsf{B}_{\mathsf{s}} \to \mathsf{K}}(t_{\mathsf{K}}, t_{\mathsf{B}_{\mathsf{s}}})}{\left[\mathcal{C}^{\mathsf{K}}(\tau)\mathcal{C}_{ii}^{\mathsf{B}_{\mathsf{s}}}(\tau)\right]^{1/2}} \left[\frac{\mathcal{C}^{\mathsf{K}}(t_{\mathsf{B}_{\mathsf{s}}})\mathcal{C}_{ii}^{\mathsf{B}_{\mathsf{s}}}(t_{\mathsf{K}})}{\mathcal{C}^{\mathsf{K}}(t_{\mathsf{K}})\mathcal{C}_{ii}^{\mathsf{B}_{\mathsf{s}}}(t_{\mathsf{B}_{\mathsf{s}}})}\right]^{1/2}$$

- A priori, none of them is clearly superior.
- In practice, statistical errors & convergence vastly differ.

The goal	Combined fits	Ratios ●○	Summary & Outlook
Ratios			

$$\begin{split} \mathcal{R}_{\mu,i}^{\mathrm{I}}(t_{\mathrm{K}}, t_{\mathrm{B}_{\mathrm{s}}}) = & \frac{\mathcal{C}_{\mu,i}^{\mathrm{B}_{\mathrm{s}} \to \mathrm{K}}(t_{\mathrm{K}}, t_{\mathrm{B}_{\mathrm{s}}})}{\left[\mathcal{C}^{\mathrm{K}}(\tau)\mathcal{C}_{ii}^{\mathrm{B}_{\mathrm{s}}}(\tau)\right]^{1/2}} e^{(E_{\mathrm{B}_{\mathrm{s}}}^{\mathrm{eff}}(\tau) - E_{\mathrm{K}}^{\mathrm{eff}}(\tau))\frac{t_{\mathrm{B}_{\mathrm{s}}} - t_{\mathrm{K}}}{2}}{\left[\mathcal{C}^{\mathrm{K}}(\tau)\mathcal{C}_{ii}^{\mathrm{B}_{\mathrm{s}}}(\tau)\right]^{1/2}} \left[\frac{\mathcal{C}^{\mathrm{K}}(t_{\mathrm{B}_{\mathrm{s}}})\mathcal{C}_{ii}^{\mathrm{eff}}(t_{\mathrm{K}})}{\left[\mathcal{C}^{\mathrm{K}}(\tau)\mathcal{C}_{ii}^{\mathrm{B}_{\mathrm{s}}}(\tau)\right]^{1/2}} \left[\frac{\mathcal{C}^{\mathrm{K}}(t_{\mathrm{B}_{\mathrm{s}}})\mathcal{C}_{ii}^{\mathrm{B}_{\mathrm{s}}}(t_{\mathrm{K}})}{\mathcal{C}^{\mathrm{K}}(t_{\mathrm{K}})\mathcal{C}_{ii}^{\mathrm{B}_{\mathrm{s}}}(t_{\mathrm{B}_{\mathrm{s}}})}\right]^{1/2} \end{split}$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・

The goal	Combined fits	Ratios ●○	Summary & Outlook O
Ratios			

Particularly simple form for $t_{\rm K} = t_{\rm B_s} = t$:

$$\mathcal{R}_{\mu,i}^{\mathrm{I/f}}(t,t) = \frac{\mathcal{C}_{\mu,i}^{\mathsf{B}_{\mathsf{s}} \to \mathsf{K}}(t,t)}{\left[\mathcal{C}^{\mathsf{K}}(\tau)\mathcal{C}_{ii}^{\mathsf{B}_{\mathsf{s}}}(\tau)\right]^{1/2}}$$

(1日) (日) (日)

The goal	Combined fits	Ratios ●○	Summary & Outlook
Ratios			

Ratio $\mathcal{R}_{\mu,i}^{I/f}$ as function of $t = t_{\mathsf{K}} = t_{\mathsf{B}_{\mathsf{s}}}$. Large contribution from excited states visible.

▲御▶ ▲ 副▶

< ∃ >

3

The goal	Combined fits	Ratios ●○	Summary & Outlook O
Ratios			

Particularly simple form for $t_{\rm K} = t_{\rm B_s} = t$:

$$\mathcal{R}_{\mu,i}^{\mathrm{I/f}}(t,t) = rac{\mathcal{C}_{\mu,i}^{\mathsf{B}_{\mathsf{s}} o \mathsf{K}}(t,t)}{\left[\mathcal{C}^{\mathsf{K}}(au)\mathcal{C}_{ii}^{\mathsf{B}_{\mathsf{s}}}(au)
ight]^{1/2}}$$

- Rather late onset of plateaux one possible solution: fit functional form, including excited state.
- But: convergence $\sim e^{-\Delta E^{\min}t}$. Can we do better?

・ 同 ト ・ ヨ ト ・ ヨ ト

The goal	Combined fits	Ratios ⊙●	Summary & Outlook O
Summed ratios	S		

 Better suppression of excited states may be provided by summing the ratios:

$$\mathcal{M}_{\mu,i}^{X,\text{eff}}(\tau) = -\partial_{\tau} a \, \mathcal{S}_{\mu,i}^{X}(\tau), \text{ where } \mathcal{S}_{\mu,i}^{X}(\tau) = \sum_{t_{\mathsf{B}_{\mathsf{s}}}} \mathcal{R}_{\mu,i}^{X}(\tau - t_{\mathsf{B}_{\mathsf{s}}}, t_{\mathsf{B}_{\mathsf{s}}})$$

• Improved convergence $\sim au \Delta E^{\min} e^{-\Delta E^{\min} au}$ holds for \mathcal{R}^{I}

[Maiani et al. 1987, Capitani et al. 2010, Bulava et al. 2010,2011]

• One can extract $\varphi_{\mu}^{(0,0)}$ from numerical derivative or linear fit to $S_{\mu}(\tau) = \varphi_{\mu}\tau + C$

(周) (日) (日)

Comparison of $\varphi_{\mu}^{(0,0)}$ extracted from summed ratio $\mathcal{M}_{\mu,3}^{I}(\tau)$ and the combined fit. The fit is done in a fit range τ_{start} to 32a.

- 4 回 ト - 4 回 ト - 4 回 ト

The goal	Combined fits	Ratios ⊙●	Summary & Outlook
Summed ratios	5		

 Better suppression of excited states may be provided by summing the ratios:

$$\mathcal{M}_{\mu,i}^{X,\text{eff}}(\tau) = -\partial_{\tau} a \, \mathcal{S}_{\mu,i}^{X}(\tau), \text{ where } \mathcal{S}_{\mu,i}^{X}(\tau) = \sum_{t_{\mathsf{B}_{\mathsf{s}}}} \mathcal{R}_{\mu,i}^{X}(\tau - t_{\mathsf{B}_{\mathsf{s}}}, t_{\mathsf{B}_{\mathsf{s}}})$$

• Improved convergence $\sim au \Delta E^{\min} e^{-\Delta E^{\min} au}$ holds for \mathcal{R}^{I}

[Maiani et al. 1987, Capitani et al. 2010, Bulava et al. 2010,2011]

- One can extract $\varphi_{\mu}^{(0,0)}$ from numerical derivative or linear fit to $S_{\mu}(\tau) = \varphi_{\mu}\tau + C$
- Approach to the plateaux clearly improved

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

The goal	Combined fits	Ratios 00	Summary & Outlook o
Table of contents			

2 Combined fits

◆□ → ◆□ → ◆ □ → ◆ □ → □ □ □

The goal	Combined fits	Ratios 00	Summary & Outlook ●
Summary &	Outlook		

- Full-time dilution of stochastic propagators
 - \Rightarrow Access to all values of $t_{\rm K}$ and $t_{\rm B_s}$
 - \Rightarrow Good control over systematics from excited states and finite ${\cal T}$
- Combined fits: stable results with $N_{B_s} = 3$; starting values from 2pt functions and linear fits to 3pt functions
- Ratios: good statistical signal for selected ratios, but late onset of plateaux
- Summed ratios: improved plateaux convergence, in agreement with theory

Outlook:

- 1/m insertions, non-perturbative HQET parameters, more values of q^2
- Chiral extrapolation $\Rightarrow B \rightarrow \pi$

イロト イポト イヨト イヨト