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Asymptotic 
Safety

✤ Asymptotic = in the UV

✤  Safe = no poles

✤ Existence of an interacting 
(non-zero) UV fixed point. 

✤ Conjectured by Weinberg in 79’ 
for QG, and tested many times 
for various theories and 
truncations. 
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Asymptotically Safe Gauge-Yukawa

✤ H is an Nf x Nf complex scalar matrix , where Nf is the number of 
fermion flavours. (not charged)

✤ SU(Nc) gauge fields.

✤ Q’s are fermions in the fundamental representation.

✤ in Veneziano limit
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✤ Computed in perturbation theory.

✤ Important note: Yukawa couples with scalars in 2-loop Yukawa beta 
function. And gauge couples indirectly via Yukawa in 3-loop level. 
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✤ Fixed points are found by solving the beta functions 
for zero. 

✤ Leading order terms are order epsilon.

�1⇤ = 0.199781 ✏+O(✏2)
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✤ Scaling exponents = - (eigenvalues of the stability matrix) 

✤ They are the universal quantities that determine the phase structure. i.e. how 
does the RG flow approach the fixed point. 

✤ Operators can have relevant, irrelevant or marginal directions depending on the 
sign of the scaling exponents. 

✤ A given theory is predictive as long as it has a finite number of relevant 
directions. 

✤ Negative eigenvalues: relevant directions , positive eigenvalues: irrelevant 
directions. 

✓1 = �0.590643✏2 +O(✏3)

✓2 = 2.7368✏+O(✏2)

✓3 = 4.03859✏+O(✏2)

✓4 = 2.94059✏+O(✏2)

Mij =
@�i

@gj
eig(Mij) = ✓



Higher Dimension Operators

✤ We define a 
dimensionless, scale 
dependent potential 
that describe the 
scalar self 
interactions. 
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Motivations

✤ How do the higher dimensional operators in the scalar 
potential affect the fixed point structure?

✤ How many relevant/irrelevant operators do we have?

✤ What does the shape of the potential look like with the 
contribution of the higher dimensional operators?

✤ How does the functional methods/inclusion of the 
threshold effects due to massive modes affect the fixed point 
structure?



Functional Renormalisation Group

✤ Since all the higher order scalar self couplings have coupling constants 
with negative canonical mass dimensions, these are not perturbatively 
renormalisable => non-perturbative => fRG

✤ We use Wetterich equation which is an exact RG equation in the form 
of a 1-loop propagator, includes the contribution of all loop orders. 
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✤ We first take the wave function renormalisation Z=1, 
therefore we ignore the effects from the anomalous 
dimension. 

✤ All the beta functions are computed from Wetterich equation 
by taking the appropriate derivatives. 

✤ We compute the flow only for the scalar fields, where we add 
Yukawa contribution from perturbation theory. 

✤ We confirm that the beta functions from the non-perturbative 
computation match the perturbative computation perfectly. 
And go on to calculate beyond quartic terms. 

✤ Then we compute the fixed points by systematically solving 
beta functions one by one up to leading order in epsilon.



Coupling Fixed Point Eigenvalues of the Stability Matrix

�1 0.199781 ✏ 4.03859 ✏
�2 0.0625304 ✏ 2.94059 ✏
�3 0.442635 ✏3 2 + 3.14773 ✏
�4 0.197829 ✏3 2 + 4.24573 ✏
�5 �0.42182 ✏4 4 + 4.19698 ✏
�6 �0.0912196 ✏4 4 + 5.29498 ✏
�7 0.442354 ✏5 6 + 5.24622 ✏
�8 0.0561861 ✏5 6 + 6.34422 ✏
�9 �0.466105 ✏6 8 + 6.29546 ✏
�10 �0.0389432 ✏6 8 + 7.39347 ✏
�11 0.486798 ✏7 10 + 7.34471 ✏
�12 0.0287923 ✏7 10 + 8.44271 ✏
�13 �0.503072 ✏8 12 + 8.39395 ✏
�14 �0.0221745 ✏8 12 + 9.49195 ✏



Leading order epsilon 
power in the fixed point 

will drop by half

�i = �̄ik
�di

�i = �di�i +#�2
i + · · ·

�i = 0 & di = 0 =)



The Global Effective Potential

✤ We compute the GEP by solving the Wetterich equation 
for a random potential without assuming an ansatz. 

✤ LHS = 0 at the fixed point. 

✤ 0 = RHS is a differential equation as a function of the 
potential and its derivatives.

✤ We plot the numerical result and compare it to the 
quartic truncation of the potential. 
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✤ We can compute the power 
law by using:
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Eigenvalues of the Stability Matrix

✤ are the universal quantities.

✤ Bootstrap hypothesis: 

Ref: Falls, Litim, Nikolakopoulos, Rahmede - arXiv:1301.4191 
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Conclusions - Outlook

✤ Fixed points with irrelevant directions exist with the inclusion of 
the higher dimensional terms. 

✤ Higher dimensional couplings are higher leading order in epsilon.

✤ The eigenvalues of the stability matrix are                                as 
expected. This satisfies the bootstrap hypothesis.  

✤ Potential is stable at large field values. Next: Cosmological 
implications are to be checked.

✤ Potential’s asymptotic behaviour is very close to a quartic potential.                            
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