Large mass hierarchies from BSM strongly-coupled dynamics

Ed Bennett

from arXiv:1605.04258, with Andreas Athenodorou, Georg Bergner, Daniel Elander, C.-J. David Lin, Biagio Lucini, and Maurizio Piai

Lattice 2016, Southampton, UK

Introduction

- Tentative hints of a 750GeV state not predicted by SM $-6 imes m_{
 m H}$
- A hierarchy of states emerges
- Can we see a similar hierarchy emerge from strong dynamics?

Outline

- Introduction
 - Quantifying the hierarchy
 - Mass deformation and infrared behaviour
- Gauge-gravity predictions
- Lattice results
 - $SU(2), N_f = 2$
 - $SU(2), N_{f} = 1$
- Conclusions

Quantifying the hierarchy

- We need a mass ratio that:
 - ...is near 1 for QCD (as we don't see a hierarchy of states)
 - ... can be defined in a variety of theories
- All QFTs have $T_{\mu\nu}$
- ...and thus have trace and traceless parts of $T_{\mu
 u}$
- These correspond with scalar (M_0) and tensor (M_T) states
- So consider the ratio

$$R \equiv \frac{M_{\rm T}}{M_0}$$

– Small ($R \approx \sqrt{2}$) for $\mathrm{SU}(2)$ Yang–Mills

Mass deformation and infrared behaviour 1

A conformal theory with deforming mass m and scale Λ_* has three regimes:

- $\Lambda_* \lesssim m$: Indistinguishable from a confining theory
- m=0: only scale is Λ_*
- + $0 < m \ll \Lambda_*$: Signals of confinement appear at small E

Mass deformation and infrared behaviour 2

- If $0 \leq m \ll \Lambda_*$, then spectral masses scale as

$$M\propto m^{\frac{1}{\Delta}}$$

- Lattice introduces IR cutoff, giving a scaling variable $x = Lm^{\frac{1}{\Delta}}$
- Take lowest-lying state to be linear in m, then $LM_0 \propto x$

$$\Rightarrow LM_i = f_i(LM_0)$$

• So looking at ratios:

$$\frac{M_i}{M_j} = \frac{f_i(LM_0)}{f_j(LM_0)}$$

as a function of LM_0

Mass deformation and infrared behaviour 3

We expect ~ 4 regimes for R:

- *m* large: "quenched"
 - R consistent with Yang–Mills (R = 1.44(4) for SU(2))
- m small:
 - L small
 - "femto-universe"
 - ▶ R ≈ 1
 - L large
 - Smaller IR cutoff
 - Small E region explored
 - *L* intermediate
 - Region of interest
 - Can be extrapolated to chiral limit

Gauge–gravity predictions

Considering a toy model, constructed to have scaling dimension Δ

At $\Delta = 1$, $R = \sqrt{2}$

Lattice results

- Wilson plaquette action, Wilson fermion action
- $SU(2), N_f = 2$
 - Inside conformal window (e.g. 1104.4301)

$$- \beta = 2.25, \Delta = 1.371(20)$$

- Gauge–gravity prediction: $R \approx 1.95(4)$
- $SU(2), N_{f} = 1$
 - Near lower end of conformal window (e.g. 1412.5994)
 - $\beta = 2.05, \Delta = 1.925(25)$
 - Gauge-gravity prediction: $R \approx 6.53^{+1.50}_{-0.91}$

Gauge-gravity predictions

Considering a toy model, constructed to have scaling dimension Δ

At $\Delta = 1.371(20)$, $R \approx 1.95(4)$

Lattice results

- Wilson plaquette action, Wilson fermion action
- $SU(2), N_f = 2$
 - Inside conformal window (e.g. 1104.4301)

$$- \beta = 2.25, \Delta = 1.371(20)$$

- Gauge–gravity prediction: $R \approx 1.95(4)$
- $SU(2), N_{f} = 1$
 - Near lower end of conformal window (e.g. 1412.5994)
 - $\beta = 2.05, \Delta = 1.925(25)$
 - Gauge-gravity prediction: $R \approx 6.53^{+1.50}_{-0.91}$

Gauge-gravity predictions

Considering a toy model, constructed to have scaling dimension Δ

 $\Delta_* = 1.925(25), R \approx 6.53^{+1.50}_{-0.91}$

Lattice results

- Wilson plaquette action, Wilson fermion action
- $SU(2), N_f = 2$
 - Inside conformal window (e.g. 1104.4301)

$$- \beta = 2.25, \Delta = 1.371(20)$$

- Gauge–gravity prediction: $R \approx 1.95(4)$
- $SU(2), N_{f} = 1$
 - Near lower end of conformal window (e.g. 1412.5994)
 - $\beta = 2.05, \Delta = 1.925(25)$
 - Gauge-gravity prediction: $R \approx 6.53^{+1.50}_{-0.91}$

$\mathrm{SU}(2), N_{\mathrm{f}}=2$

$\mathrm{SU}(2), N_{\mathrm{f}} = 1$

Conclusions

- $R \equiv \frac{M_{\rm T}}{M_0}$ shows agreement between lattice and string-inspired models \Rightarrow universality?
- R is significantly enhanced (above Yang–Mills or QCD) for theories with large Δ
- Significant for strongly-interacting BSM dynamics

Next steps

- A detailed study of ${\it R}$ as a function of ${\it LM}_0$ for a single mass
- Study ${\boldsymbol R}$ in a more diverse range of lattice models
 - many-flavour $\mathrm{SU}(3)$
 - SU(3) sextet, ...