Friedrich-Schiller-Universität Jena

Four-Fermion Theories with **Exact Chiral Symmetry in Three Dimensions**

Daniel Schmidt Björn Wellegehausen Andreas Wipf

Southampton, July 2016

Outline

- 1 Introduction to Four-Fermion Theories
- 2 Two Four-Fermion Interactions
- 3 Fierz Identities for the Thirring Model
- 4 Fermion Bag Approach
- 5 Summary

What are Four-Fermion Theories?

QFTs of fermions with 4th power of fermion fields as interaction:

$$\mathcal{L} = \bar{\psi}_{j} \left(\tilde{\partial} + \mathfrak{m} \right) \psi_{j} + \sum_{\alpha} \frac{g_{\alpha}^{2}}{2N_{f}} \left(\bar{\psi}_{j} \Gamma_{\alpha} \psi_{j} \right)^{2} \qquad j = 1, \dots, N_{f}$$

Main Models

 $\begin{array}{ll} \mbox{Thirring} & 1958, \mbox{ soluble fermionic theory in 2D} \\ \Gamma_{\alpha}=\gamma_{\mu} \\ \mbox{Nambu \& Jona-Lassinio} & 1961, \mbox{ dynamical mass generation in 4D} \\ \Gamma_{1}=\mathbb{1}, \ \Gamma_{2}=i\gamma_{5} \\ \mbox{Gross \& Neveu} & 1974, \mbox{ asymptotic freedom, chiral symmetry} \\ \mbox{ breaking in 2D} \\ \Gamma=\mathbb{1} \end{array}$

What is the Thirring model?

QFT with N_{f} flavours of massless fermions with $\ensuremath{\mbox{current}}$ interaction

Euclidean Lagrangian

$$\mathcal{L} = \bar{\psi}_{j} \widetilde{\varnothing} \psi_{j} + \frac{g^{2}}{2N_{f}} \sum_{\mu=1}^{3} \left(\bar{\psi}_{j} \gamma^{\mu} \psi_{j} \right)^{2} \qquad j = 1, \dots, N_{f}$$

3-dimensional euclidean spacetime

representation of Clifford algebra:

irreducible 2-dimensional (later in this talk)

reducible 4-dimensional (now)

Motivation

Similarity to QED_3 and possible applications in superconductors, graphene, ...

Daniel Schmidt

Why is the Thirring model interesting?

Symmetries

- chiral symmetry, generated by $\{1, \gamma_4, \gamma_5, i\gamma_4\gamma_5\}$
- flavour symmetry

Result: $U(N_f, N_f)$, can be spontaneously broken to $U(N_f) \otimes U(N_f) \Rightarrow$ chiral condensate $\langle \bar{\psi} \psi \rangle \neq 0$

Chiral Symmetry Breaking

"N_f = 0.5" irreducible representation for $N_{f,irr}=1$ corresponds to Gross-Neveu model with chiral symmetry breaking

 $N_f \rightarrow \infty~$ no chiral symmetry breaking

 \Rightarrow There is a N_{f}^{cr} where chiral behaviour changes.

What is the value of N_{f}^{cr} ?

Results for N_f^{cr} from Schwinger-Dyson equations, $\frac{1}{N_f}$ -expansion, functional renormalization group, Lattice simulation with staggered fermions:

Chiral Symmetry on the Lattice

Nielsen-Ninomiya Theorem

It is not possible to have a chiral, local and translational invariant Dirac operator with correct continuum limit without doublers.

older results: staggered fermions with mass

- mass breaks symmetry explicitly
- still doublers and no full chiral symmetry
- symmetry correct in the continuum limit?

our approach: SLAC derivative [fine for non-gauge theories: Bergner et al. arXiv:0705.2212; Wozar, Wipf arXiv:1107.3324]

- in momentum space: multiplication by $i\gamma^{\mu}p_{\mu}$
- exact chiral symmetry
- not local: need to do Fourier transformation

Problems

Technical Problems

- Chiral condensate always zero due to exact chiral symmetry and integration over fermions.
- Peak in susceptibility may indicate lattice artefact phase.

Coupling to Global Model [PoS(LATTICE 2015)050]

- Can obtain nice histograms of $\langle \bar{\psi} \psi \rangle$.
- Hard to recover Thirring model.
- $\Rightarrow \mbox{No reliable conclusion regarding N_f^{cr},} \label{eq:Normalized} but likely $N_f^{cr} \leqslant 2$.}$

Scaning Larger Theory-Space

Why Coupled Four-Fermion Interactions?

- Easy to study chiral symmetry breaking in Gross-Neveu model.
 ⇒ Gain new insights into Thirring model and the larger theory space by coupling there two models.
- Test predictions from functional renormalization group.

Interaction with $i\gamma_4\gamma_5$

 $\left(\bar{\psi}i\gamma_{4}\gamma_{5}\psi\right)^{2}$ is interesting because

- same symmetry (and problems) as Thirring, while
- expected to be Gross-Neveu-like, corresponds to irreducible Gross-Neveu model.

Gross-Neveu and Thirring

Friedrich-Schiller-Universität Jena

Daniel Schmidt

Goal: rewrite interaction term, use irreducible representation: 2-component spinors χ^a , $a = 1, ..., 2N_f := N_{f,irr}$

$$\left(\bar{\chi}^{a}\sigma_{\mu}\chi^{a}\right)\left(\bar{\chi}^{b}\sigma^{\mu}\chi^{b}\right) = -\left(\bar{\chi}^{a}\chi^{a}\right)\left(\bar{\chi}^{b}\chi^{b}\right) - 2\left(\bar{\chi}^{a}\chi^{b}\right)\left(\bar{\chi}^{b}\chi^{a}\right)$$
(1)

Goal: rewrite interaction term, use irreducible representation: 2-component spinors χ^a , $a = 1, ..., 2N_f := N_{f,irr}$

$$\left(\bar{\chi}^{a}\sigma_{\mu}\chi^{a}\right)\left(\bar{\chi}^{b}\sigma^{\mu}\chi^{b}\right) = -\left(\bar{\chi}^{a}\chi^{a}\right)\left(\bar{\chi}^{b}\chi^{b}\right) - 2\left(\bar{\chi}^{a}\chi^{b}\right)\left(\bar{\chi}^{b}\chi^{a}\right)$$
(1)

Lagrangian after Hubbard-Stratonovich Transformations

 ϕ real scalar field, T^{ab} hermitian, traceless matrix field

$$\mathcal{L}_{1} = \bar{\chi}_{\alpha} \underbrace{\left[\left(\tilde{\partial} + \varphi \right) \delta^{\alpha b} + T^{\alpha b} \right]}_{= D_{1}^{\alpha b}} \chi_{b} + \frac{N_{f, irr}}{4g^{2}} T_{\alpha b} T^{b \alpha} + \frac{N_{f, irr}^{2}}{2g^{2}(2 + N_{f, irr})} \varphi^{2}$$

Goal: rewrite interaction term, use irreducible representation: 2-component spinors χ^a , $a = 1, ..., 2N_f := N_{f,irr}$

$$\left(\bar{\chi}^{a}\sigma_{\mu}\chi^{a}\right)\left(\bar{\chi}^{b}\sigma^{\mu}\chi^{b}\right) = -\left(\bar{\chi}^{a}\chi^{a}\right)\left(\bar{\chi}^{b}\chi^{b}\right) - 2\left(\bar{\chi}^{a}\chi^{b}\right)\left(\bar{\chi}^{b}\chi^{a}\right)$$
(1)

Lagrangian after Hubbard-Stratonovich Transformations

 ϕ real scalar field, T^{ab} hermitian, traceless matrix field

$$\mathcal{L}_{1} = \bar{\chi}_{\alpha} \underbrace{\left[\left(\vec{\vartheta} + \varphi \right) \delta^{\alpha b} + T^{\alpha b} \right]}_{= D_{1}^{\alpha b}} \chi_{b} + \frac{N_{f, irr}}{4g^{2}} T_{\alpha b} T^{b \alpha} + \frac{N_{f, irr}^{2}}{2g^{2}(2 + N_{f, irr})} \varphi^{2}$$

Goal: rewrite interaction term, use irreducible representation: 2-component spinors χ^a , $a = 1, ..., 2N_f := N_{f,irr}$

$$\left(\bar{\chi}^{a}\sigma_{\mu}\chi^{a}\right)\left(\bar{\chi}^{b}\sigma^{\mu}\chi^{b}\right) = -\left(\bar{\chi}^{a}\chi^{a}\right)\left(\bar{\chi}^{b}\chi^{b}\right) - 2\left(\bar{\chi}^{a}\chi^{b}\right)\left(\bar{\chi}^{b}\chi^{a}\right)$$
(1)

Lagrangian after Hubbard-Stratonovich Transformations

 ϕ real scalar field, T^{ab} hermitian, traceless matrix field

$$\mathcal{L}_{1} = \bar{\chi}_{\alpha} \underbrace{\left[\left(\tilde{\partial} + \varphi \right) \delta^{\alpha b} + \mathsf{T}^{\alpha b} \right]}_{= \mathsf{D}_{1}^{\alpha b}} \chi_{b} + \frac{\mathsf{N}_{\mathsf{f},\mathsf{irr}}}{4g^{2}} \mathsf{T}_{\alpha b} \mathsf{T}^{b \alpha} + \frac{\mathsf{N}_{\mathsf{f},\mathsf{irr}}^{2}}{2g^{2}(2 + \mathsf{N}_{\mathsf{f},\mathsf{irr}})} \varphi^{2}$$

Goal: rewrite interaction term, use irreducible representation: 2-component spinors χ^a , $a = 1, ..., 2N_f := N_{f,irr}$

$$\left(\bar{\chi}^{a}\sigma_{\mu}\chi^{a}\right)\left(\bar{\chi}^{b}\sigma^{\mu}\chi^{b}\right) = -\left(\bar{\chi}^{a}\chi^{a}\right)\left(\bar{\chi}^{b}\chi^{b}\right) - 2\left(\bar{\chi}^{a}\chi^{b}\right)\left(\bar{\chi}^{b}\chi^{a}\right)$$
(1)

Lagrangian after Hubbard-Stratonovich Transformations

 ϕ real scalar field, T^{ab} hermitian, traceless matrix field

$$\mathcal{L}_{1} = \bar{\chi}_{\alpha} \underbrace{\left[\left(\partial \!\!\!/ \, \varphi \right) \delta^{\alpha b} + T^{\alpha b} \right]}_{= D_{1}^{\alpha b}} \chi_{b} + \frac{N_{f, irr}}{4g^{2}} T_{\alpha b} T^{b \alpha} + \frac{N_{f, irr}^{2}}{2g^{2}(2 + N_{f, irr})} \varphi^{2}$$

 D_1^{ab} has no special properties \Rightarrow complex eigenvalues

Sign Problem after Fierz Rearrangement

Fermion Bag Approach

Current approach to get informations about chiral symmetry breaking and solving the sign problem of Fierz (1):

 \Rightarrow Introduce a spin field $k_{xi}^{ab} \in \{0, 1\}$, integrate fermions, T^{ab} and ϕ :

Final Partition Sum

$$Z(\lambda) \propto \sum_k (-\lambda)^{-\frac{k}{2}} \det(i \not\!{\partial}[k]) 2^{\vec{n}_x^2} \prod_x f(n_x^1, n_x^2)$$

Ø[k] is the SLAC operator matrix with columns and rows deleted corresponding to k.

• n_x^1 , n_x^2 and \tilde{n}_x^2 count certain entries of k_{xi}^{ab}

 f(a, b) is a product of gamma- and confluent hypergeometric functions

Simulation Results

Simple Metropolis simulation for $N_{f,irr} = 1$:

- Agreement with analytical calculation and original formulation.
- Deviations for Fierz(1) (sign problem!).

 $N_{f,irr} = 1, 2x3x3$

The End

- The Thirring model shows chiral symmetry breaking for N_f < N^{cr}_f, for which there are many different predictions.
- Simulations with multiple four-fermion couplings may allow new insights.
- We get a sign problem after Fierz transformation.

 Fermion bag approach may solve the sign problem and allow access to the chiral condensate.

Thank you for your attention!