

Nucleon Form Factors near the Physical Point in 2+1 Flavor QCD

Y.Kuramashi for PACS Collaboration U. of Tsukuba/RIKEN AICS

July 28, 2016 @ Univ. of Southampton

Plan of talk

- PACS Collaboration Members
- Simulation Details
- Quick Check of 2-pt Functions
- Results for 3-pt Functions (Z_V , g_A , G_E , G_M)
- z-Expansion Analyses for $G_E(Q^2)$ and $G_M(Q^2)$
- $\sqrt{\langle r_E^2 \rangle}$ and magnetic moment
- Summary

PACS Collaboration Members

N.Ishizuka, Y.Kuramashi, Y.Namekawa, Y.Taniguchi, N.Ukita, T. Yamazaki, T.Yoshié

Y.Nakamura, E.Shintani

K.-I.Ishikawa

N.Tsukamoto, S.Sasaki

T.Izubuchi

Tsukuba

RIKEN-AICS

Hiroshima

Tohoku

BNL

Successor to PACS-CS, CP-PACS Collabs.

Introduction

g_A @ Lattice 2015

$\sqrt{<r_{E}^{2}>}$ @ Lattice 2014

Not yet reached quantitative understanding

Simulation Parameters for 2+1 Flavor QCD

PoS(LATTICE2015)075

- Wilson-clover quark action + Iwasaki gauge action
- Stout smearing with α =0.1 and N_{smear}=6
- NP C_{SW} =1.11 determined by SF
- β =1.82 \Rightarrow a⁻¹~2.33 GeV
- Lattice size=96⁴ \Rightarrow (~8.1 fm)³ spatial volume allows small q² region
- Hopping parameters: (κ_{ud} , κ_s)=(0.126117,0.124790)

⇒ m_π≈145 MeV, m_πL≈6

- Basic physical quantities are already measured
 - Hadron spectrum
 - Quark masses with NP renormalization
 - Pseudoscalar meson decay constatnts
 - LEC's in SU(2) ChPT
 - Nucleon σ term

Measurement Details

- Refer to PoS(LATTICE2015)081 for Lattice 2015 contribution
- Current statistics: 146 configs (still increasing the statistics)
- 64 measurements/config \Rightarrow O(10⁴) measurements so far
- 9 choices for spatial momenta: n=(1,0,0),(1,1,0),(1,1,1),(2,0,0),(2,1,0),(2,1,1),(2,2,0),(3,0,0),(2,2,1) minimum mom=2π/L~0.152 GeV thanks to L~8.1 fm
- Lattice size=96⁴ \Rightarrow (~8.1 fm)³ spatial volume allows small q² region
- Exp smeared src/sink operators for 2-pt and 3-pt functions
- Src-sink separation: $t_{sink}-t_{src}=15$ (~1.3 fm)
- Z_A =0.9650(68)(95), Z_V =0.95153(76)(1487) in SF scheme

PoS(LATTICE2015)271

Nucleon Rest Mass and Dispersion Relation

Effective mass for N

Plateau is observed in t≥6 for effective m_N Continuum dispersion relation is satisfied up to $|\vec{n}|^2=9$

3-pt Functions at Zero Momentum Transfer

$Z_V = 1/F_1(0)$: vector current renorm

 Z_V is consistent btw two methods: $1/F_1(0)$ and SF scheme g_A is consistent with experiment if we employ fit results for 2-pt function in denominator

Isovector Electric and Magnetic Form Factor

$$G_E(q^2) = F_1(q^2) - \frac{q^2}{4m_N^2}F_2(q^2)$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

Cleaner signal for G_E compared to G_M

Need more statistics for G_M

 G_E shows good agreement with experimental curve, especially, for low Q² ⇒ Expected to reproduce experimental value for $\sqrt{\langle r_E^2 \rangle}$

Analysis with z-Expansion

Boyd et al., PLB353(1995)306 Hill-Paz, PRD82(2010)113005

Conformal mapping of the cut plane to the unit circle:

 $G_{E/M}(z) = \sum_{k=0}^{k_{\max}} c_k z (Q^2)^k$ $z(Q^2) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \quad \text{w/ } t_{\text{cut}} = 4m_{\pi}^2, t_0 = 0$

Virtues of z-Expansion analysis

- Model independent ⇔ dipole form
- Analyticity is assured
- $\Sigma_k ||c_k|| < \infty \Rightarrow$ good convergence is expected for c_k

Dipole form: $a_0/(1+a_1Q^2)^2$ Taylor expansion: $b_0+b_1Q^2+b_2Q^4$ z-expansion: $c_0+c_1z+c_2z^2+\cdots+c_8z^8$

Chi²/dof<1 for all the fits Curvature is smaller in z variable than Q² variable

Convergence behavior of Coefficients

Taylor expansion Q(m): $c_0+c_1Q^2+\cdots c_m(Q^2)^m$ z-expansion z(m): $c_0+c_1z+\cdots + c_mz^m$

z-expansion

Coefficients are stable for z(m) with m≥3 $|c_{n+1}/c_n| < 1$ is satisfied beyond 3-rd polynomial term

Root Mean Squared Radius

All the fits (dipole, Taylor, z-expansion) successfully reproduces the experimental value Need more statistics for finer resolution

z-expansion: Dipole form: $a_0/(1+a_1Q^2)^2$ $C_0 + C_1 Z + C_2 Z^2 + \cdots + C_7 Z^7$ Taylor expansion: $b_0 + b_1 Q^2 + b_2 Q^4$ Z-form fit (k_{max}=7) Expt. (4.70589) dipole fit Expt. (4.70589) quadratic fit $G_M(\boldsymbol{Q}^2)/\boldsymbol{G}_E(0)$ $G_M(\boldsymbol{Q}^2)/G_E(0)$ ¢ 3 2 0 0.05 0.15 Z 0.1 0.15 0.2 0.05 0.2 0.25 0 0.1 0 0.3 $Q^2 [GeV^2]$

Chi²/dof<1 for all the fits Magnetic moment is consistent with experiment in z-expansion

Convergence behavior of Coefficients

Taylor expansion Q(m): $c_0+c_1Q^2+\cdots c_m(Q^2)^m$ z-expansion z(m): $c_0+c_1z+\cdots c_mz^m$

 $\frac{z-expansion}{Similar behaviors with G_E case}$ $\frac{Coefficients are stable for z(m) with m \ge 3}{|c_{n+1}/c_n| < 1 is satisfied beyond 3-rd polynomial term}$

Magnetic Moment

Extrapolated value at Q²=0 or z=0

z-expansion gives a consistent result with experiment

Summary

- 2+1 flavor QCD simulation at the physical point on (\sim 8.1 fm)⁴ lattice
- Large spatial volume allows investigation at small Q² region
- g_A is consistent with experimental value
- Q^2 dependence of G_E is consistent with experiment
- G_M shows larger statistical fluctuations than G_E
- z-expansion analyses work well: good convergence behavior

 $\Rightarrow \sqrt{\langle r_E^2 \rangle}$ and magnetic moment are consistent with experiment