Quark Chromoelectric Dipole Moment Contribution to the Neutron Electric Dipole Moment

Tanmoy Bhattacharya^{a,b} Vincenzo Cirigliano^a Rajan Gupta^a Boram Yoon^a

^aLos Alamos National Laboratory

^bSanta Fe Institute

July 25, 2016

Tanmoy Bhattacharya nEDM from qCEDM

Standard Model CP Violation Form Factors Effective Field Theory BSM Operators

Introduction Standard Model CP Violation

Two sources of CP violation in the Standard Model.

- Complex phase in CKM quark mixing matrix.
 - Too small to explain baryon asymmetry
 - Gives a tiny ($\sim 10^{-32}\,\mathrm{e-cm}$) contribution to nEDM

Dar arXiv:hep-ph/0008248.

- CP-violating mass term and effective $\Theta G \tilde{G}$ interaction related to QCD instantons
 - Effects suppressed at high energies
 - nEDM limits constrain $\Theta \lesssim 10^{-10}$

Crewther et al., Phys. Lett. B88 (1979) 123.

Contributions from beyond the standard model

- Needed to explain baryogenesis
- May have large contribution to EDM

Standard Model CP Violation Form Factors Effective Field Theory BSM Operators

Introduction Form Factors

Vector form-factors Dirac F_1 , Pauli F_2 , Electric dipole F_3 , and Anapole F_A

Sachs electric $G_E \equiv F_1 - (q^2/4M^2)F_2$ and magnetic $G_M \equiv F_1 + F_2$

$$\begin{split} \langle N | V_{\mu}(q) | N \rangle &= \overline{u}_{N} \left[\gamma_{\mu} F_{1}(q^{2}) + i \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \frac{F_{2}(q^{2})}{2m_{N}} \right. \\ &+ \left(2i \, m_{N} \gamma_{5} q_{\mu} - \gamma_{\mu} \gamma_{5} q^{2} \right) \frac{F_{A}(q^{2})}{m_{N}^{2}} \\ &+ \frac{[\gamma_{\mu}, \gamma_{\nu}]}{2} q_{\nu} \gamma_{5} \frac{F_{3}(q^{2})}{2m_{N}} \right] u_{N} \end{split}$$

- The charge $G_E(0) = F_1(0) = 0$.
- $G_M(0)/2M_N=F_2(0)/2M_N$ is the (anomalous) magnetic dipole moment.
- $F_3(0)/2m_N$ is the electric dipole moment.
- F_A and F_3 violate P; F_3 violates CP.

Tanmoy Bhattacharya

Introduction

Lattice Calculation Two point functions Three point functions Conclusions Standard Model CP Violation Form Factors Effective Field Theory BSM Operators

Introduction Effective Field Theory

Tanmoy Bhattacharya

Standard Model CP Violation Form Factors Effective Field Theory BSM Operators

Introduction BSM Operators

Standard model CP violation in the weak sector. Strong CP violation from dimension 3 and 4 operators anomalously small.

- Dimension 3 and 4:
 - CP violating mass $\bar{\psi}\gamma_5\psi$.
 - Toplogical charge $G_{\mu\nu}\tilde{G}^{\mu\nu}$.
- Suppressed by $v_{\rm EW}/M_{\rm BSM}^2$:
 - Electric Dipole Moment $\bar{\psi}\Sigma_{\mu\nu}\tilde{F}^{\mu\nu}\psi$.
 - Chromo Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{G}^{\mu\nu} \psi$.
- Suppressed by $1/M_{\rm BSM}^2$:
 - Weinberg operator (Gluon chromo-electric moment): $G_{\mu\nu}G_{\lambda\nu}\tilde{G}_{\mu\lambda}.$
 - Various four-fermi operators.

Technique Three-point function

Lattice Calculation

The quark chromo-EDM operator is a quark bilinear. Schwinger source method: Add it to the Dirac operator in the propagator inversion routine:

$$D \!\!\!/ + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu} \longrightarrow D \!\!\!/ + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon\tilde{G}_{\mu\nu})$$

The fermion determinant gives a 'reweighting factor'

$$\frac{\det(\not D + m - \frac{r}{2}D^2 + \Sigma^{\mu\nu}(c_{sw}G_{\mu\nu} + i\epsilon\tilde{G}_{\mu\nu})}{\det(\not D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})}$$

$$= \exp \operatorname{Tr} \ln \left[1 + i\epsilon \Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\not D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1}\right]$$

$$\approx \exp \left[i\epsilon \operatorname{Tr} \Sigma^{\mu\nu}\tilde{G}_{\mu\nu}(\not D + m - \frac{r}{2}D^2 + c_{sw}\Sigma^{\mu\nu}G_{\mu\nu})^{-1}\right].$$

Technique Three-point function

Lattice Calculation

The chromoEDM operator is dimension 5. Uncontrolled divergences unless $\epsilon \lesssim 4\pi a \Lambda_{\rm QCD} \sim 1$. Need to check linearity.

Tanmoy Bhattacharya

 $\begin{array}{l} {\rm Ensembles} \\ {\rm Neutron\ Propagator} \\ {\rm Linearity} \\ {\rm Connected\ } \gamma_5 \\ \alpha_N \end{array}$

Two point functions Ensembles

Tests on two MILC ensembles.

- $a \approx 0.12$ fm, $M_{\pi} \approx 310$ MeV, $\kappa \approx 0.1272103$, $c_{\rm SW} = 1.05094$, $u_P^{HYP} = 0.9358574(29)$. 400 Configurations, 64 LP + 4 HP calculations/configuration.
- $a \approx 0.09$ fm, $M_{\pi} \approx 310$ MeV, $\kappa \approx 0.1266265$, $c_{\rm SW} = 1.04243$, $u_P^{HYP} = 0.9461130(10)$. 270 Configurations, 64 LP + 4 HP calculations/configuration.

Use two CP violating operators that mix under renormalization.

- CEDM: $a^2 \bar{\psi} \, \tilde{G} \cdot \Sigma \, \psi$
- P: $\bar{\psi}\gamma_5\psi$

Ensembles Neutron Propagator Linearity Connected γ_5 α_N

Two point functions Neutron Propagator

Preliminary; Connected Diagrams Only

Tanmoy Bhattacharya nEDM from qCEDM

Ensembles Neutron Propagator Linearity Connected γ_5 α_N

Two point functions Linearity

 $\begin{array}{l} \mbox{Preliminary; Connected Diagrams Only} \\ \mbox{Use } \epsilon \approx \frac{a}{30 {\rm fm}} \approx 6.6 {\rm MeV} \, a \approx 0.36 \, ma \mbox{ for experiments.} \end{array}$

Tanmoy Bhattacharya

Ensembles Neutron Propagator Linearity Connected γ_5 α_N

Two point functions Connected γ_5

$$\begin{split} a(\not\!\!\!D+m) + i\epsilon\gamma_5 &= e^{\frac{i}{2}\alpha_q\gamma_5} \left(a\not\!\!\!D+am_\epsilon\right) e^{\frac{i}{2}\alpha_q\gamma_5} \\ \text{where } \alpha_q &\equiv \tan^{-1}\frac{\epsilon}{am} \\ \text{and} \quad am_\epsilon &\equiv \sqrt{(am)^2 + \epsilon^2} \end{split}$$

Tanmoy Bhattacharya

Ensembles Neutron Propagator Linearity Connected γ_5 α_N

	a12m310	a09m310
$am^0 \equiv \frac{1}{2\kappa} - 4$	-0.0695	-0.05138
$am_{cr} \equiv \frac{1}{2\kappa_c} - 4$	-0.08058	-0.05943
$am \equiv am^0 - am_{cr}$	0.01108	0.00805
ϵ	0.004	0.003
am_ϵ	0.01178	0.00859
M^0_π	0.1900(4)	0.1404(3)
M_{π}^{CEDM}	0.1906(4)	0.1407(3)
$M_\pi^{\gamma_5}$	0.1961(4)	0.1450 (3)
$M_{\pi}^{0} imes \sqrt{rac{m_{\epsilon}}{m}}$	0.1959(4)	0.1450(3)

(ㅁ 〉 《母 〉 《 글 〉 《 글 〉 ' 로 ' ' 이 � (~

Tanmoy Bhattacharya

Ensembles Neutron Propagator Linearity Connected γ_5 α_N

Two point functions

 α_N

Tanmoy Bhattacharya

Projection F_3 Form factor from CEDM F_3 Form factor from γ_5 $F_3(\gamma_5)$ and $F_3(CEDM)$

Three point functions Projection

The three point function we calculate is

$$\begin{split} N &\equiv \bar{d}^c \gamma_5 \frac{1 + \gamma_4}{2} u \ d \\ \langle \Omega | N(\vec{0}, 0) V_{\mu}(\vec{q}, t) N^{\dagger}(\vec{p}, T) | \Omega \rangle \quad = \quad u_N e^{-m_N t} \langle N | V_{\mu}(q) | N' \rangle \ e^{-E_N \prime \left(T - t\right)} \overline{u}_N \end{split}$$

We project onto only one component of the neutron spinor with

$$\mathcal{P} = \frac{1}{2}(1+\gamma_4)(1+i\gamma_5\gamma_3)$$

Noting that in presence of CP violation $u_N \overline{u}_N = e^{i\alpha_N \gamma_5} (ip + m_N) e^{i\alpha_N \gamma_5}$ and assuming N' = N, we can extract:

$$\begin{split} \mathrm{Tr}\, \mathcal{P}\langle \Omega | NV_3 N^{\dagger} | \Omega \rangle & \propto & i m_N q_3 G_E \\ & + \alpha_N m_N (E_N - m_N) F_1 + \alpha_N [m_N (E_N - m_N) + \frac{q_3^2}{2}] F_2 \\ & - 2i \, (q_1^2 + q_2^2) F_A - \frac{q_3^2}{2} F_3 \end{split}$$

Projection F_3 Form factor from CEDM F_3 Form factor from γ_5 $F_3(\gamma_5)$ and $F_3(CEDM)$

Three point functions F_3 Form factor from CEDM

$\epsilon = 0.004$, $a \approx 0.12$ fm.

Preliminary; Connected Diagrams Only

Tanmoy Bhattacharya

Projection F_3 Form factor from CEDM F_3 Form factor from γ_5 $F_3(\gamma_5)$ and $F_3(CEDM)$

$\epsilon = 0.003$, $a \approx 0.09$ fm.

Preliminary; Connected Diagrams Only

Tanmoy Bhattacharya nEDM from qCEDM

Projection F_3 Form factor from CEDM **F3 Form factor from** γ_5 $F_3(\gamma_5)$ and $F_3(CEDM)$

Three point functions F_3 Form factor from γ_5

$\epsilon = 0.004$, $a \approx 0.12$ fm.

Preliminary; Connected Diagrams Only

Tanmoy Bhattacharya

Projection F_3 Form factor from CEDM **F3 Form factor from** γ_5 $F_3(\gamma_5)$ and $F_3(CEDM)$

$\epsilon = 0.003$, $a \approx 0.09$ fm.

Preliminary; Connected Diagrams Only

Tanmoy Bhattacharya nEDM from qCEDM

Projection F_3 Form factor from CEDM F_3 Form factor from γ_5 $F_3(\gamma_5)$ and $F_3(CEDM)$

Three point functions $F_3(\gamma_5)$ and $F_3(CEDM)$

$$a(\not\!\!\!D + m) + i\epsilon\gamma_5 = e^{\frac{i}{2}\alpha_q\gamma_5}a\left(\not\!\!\!D + m_\epsilon\right)e^{\frac{i}{2}\alpha_q\gamma_5}$$

$$\longrightarrow a(\not\!\!\!D_L + m) + i\epsilon\gamma_5 = e^{\frac{i}{2}\alpha\gamma_5}e^{-\frac{i\phi}{2}\gamma_5 a(\not\!\!\!D_\epsilon + m_\epsilon)}a(\not\!\!\!D_\epsilon + m_\epsilon)e^{-\frac{i\phi}{2}\gamma_5 a(\not\!\!\!D_\epsilon + m_\epsilon)}e^{\frac{i}{2}\alpha\gamma_5} + O(a^3)$$

where

 $e^{-rac{i\phi}{2}\gamma_5 a(D\!\!\!/_\epsilon+m_\epsilon)}$ does not contribute on shell.

Projection F_3 Form factor from CEDM F_3 Form factor from γ_5 $F_3(\gamma_5)$ and $F_3(CEDM)$

Tanmoy Bhattacharya

Projection F_3 Form factor from CEDM F_3 Form factor from γ_5 $F_3(\gamma_5)$ and $F_3(CEDM)$

Tanmoy Bhattacharya

Conclusions

• Signal in the connected diagram for a = 0.12 and a = 0.09 fm and $M_{\pi} = 310$ MeV.

Future

- Mixing with lower dimensional operator not a problem.
- Need to calculate renormalization and mixing coefficients non-perturbatively.
- Fermions with better chiral symmetry does not avoid mixing.