Quark Chromoelectric Dipole Moment
Contribution
to the Neutron Electric Dipole Moment

Tanmoy Bhattacharyaa,b
Vincenzo Ciriglianoa
Rajan Guptaa
Boram Yoona

aLos Alamos National Laboratory
bSanta Fe Institute

July 25, 2016
Two sources of CP violation in the Standard Model.

- Complex phase in CKM quark mixing matrix.
 - Too small to explain baryon asymmetry
 - Gives a tiny ($\sim 10^{-32}$ e-cm) contribution to nEDM

- CP-violating mass term and effective $\Theta G \tilde{G}$ interaction related to QCD instantons
 - Effects suppressed at high energies
 - nEDM limits constrain $\Theta \lesssim 10^{-10}$

Contributions from beyond the standard model

- Needed to explain baryogenesis
- May have large contribution to EDM
Introduction

Form Factors

Vector form-factors

Dirac F_1, **Pauli** F_2, **Electric dipole** F_3, and **Anapole** F_A

Sachs electric $G_E \equiv F_1 - (q^2/4M^2)F_2$ and magnetic $G_M \equiv F_1 + F_2$

\[
\langle N|V_\mu(q)|N \rangle = \bar{u}_N \left[\gamma_\mu F_1(q^2) + i \frac{[\gamma_\mu, \gamma_\nu]}{2} q_\nu \frac{F_2(q^2)}{2m_N}
+ (2i m_N \gamma_5 q_\mu - \gamma_\mu \gamma_5 q^2) \frac{F_A(q^2)}{m_N^2}
+ \frac{[\gamma_\mu, \gamma_\nu]}{2} q_\nu \gamma_5 \frac{F_3(q^2)}{2m_N} \right] u_N
\]

- The charge $G_E(0) = F_1(0) = 0$.
- $G_M(0)/2M_N = F_2(0)/2M_N$ is the (anomalous) magnetic dipole moment.
- $F_3(0)/2m_N$ is the electric dipole moment.
- F_A and F_3 violate P; F_3 violates CP.
Introduction

Effective Field Theory

Tanmoy Bhattacharya

nEDM from qCEDM
Standard model CP violation in the weak sector.
Strong CP violation from dimension 3 and 4 operators anomalously small.

- **Dimension 3 and 4:**
 - CP violating mass $\bar{\psi} \gamma_5 \psi$.
 - Toplogical charge $G_{\mu\nu} \tilde{G}^{\mu\nu}$.

- **Suppressed by v_{EW}/M_{BSM}^2:**
 - Electric Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{F}^{\mu\nu} \psi$.
 - Chromo Dipole Moment $\bar{\psi} \Sigma_{\mu\nu} \tilde{G}^{\mu\nu} \psi$.

- **Suppressed by $1/M_{BSM}^2$:**
 - Weinberg operator (Gluon chromo-electric moment): $G_{\mu\nu} G_{\lambda\nu} \tilde{G}^{\mu\lambda}$.
 - Various four-fermi operators.
The quark chromo-EDM operator is a quark bilinear. **Schwinger source method:** Add it to the Dirac operator in the propagator inversion routine:

\[
\hat{D} + m - \frac{r}{2} D^2 + c_{sw} \Sigma^{\mu\nu} G_{\mu\nu} \rightarrow \hat{D} + m - \frac{r}{2} D^2 + \Sigma^{\mu\nu} (c_{sw} G_{\mu\nu} + i\epsilon \tilde{G}_{\mu\nu})
\]

The fermion determinant gives a ‘reweighting factor’

\[
\frac{\det(\hat{D} + m - \frac{r}{2} D^2 + \Sigma^{\mu\nu} (c_{sw} G_{\mu\nu} + i\epsilon \tilde{G}_{\mu\nu}))}{\det(\hat{D} + m - \frac{r}{2} D^2 + c_{sw} \Sigma^{\mu\nu} G_{\mu\nu})} = \exp \text{Tr} \ln \left[1 + i\epsilon \Sigma^{\mu\nu} \tilde{G}_{\mu\nu} (\hat{D} + m - \frac{r}{2} D^2 + c_{sw} \Sigma^{\mu\nu} G_{\mu\nu})^{-1} \right]
\]

\[
\approx \exp \left[i\epsilon \text{Tr} \Sigma^{\mu\nu} \tilde{G}_{\mu\nu} (\hat{D} + m - \frac{r}{2} D^2 + c_{sw} \Sigma^{\mu\nu} G_{\mu\nu})^{-1} \right].
\]
The chromoEDM operator is dimension 5.
Uncontrolled divergences unless $\epsilon \lesssim 4\pi a\Lambda_{QCD} \sim 1$.
Need to check linearity.
Tests on two MILC ensembles.

- $a \approx 0.12$ fm, $M_\pi \approx 310$ MeV,
 $\kappa \approx 0.1272103$, $c_{SW} = 1.05094$, $u_P^{HYP} = 0.9358574(29)$.
 400 Configurations, 64 LP + 4 HP calculations/configuration.

- $a \approx 0.09$ fm, $M_\pi \approx 310$ MeV,
 $\kappa \approx 0.1266265$, $c_{SW} = 1.04243$, $u_P^{HYP} = 0.9461130(10)$.
 270 Configurations, 64 LP + 4 HP calculations/configuration.

Use two CP violating operators that mix under renormalization.

- $\text{CEDM}: a^2 \bar{\psi} \tilde{G} \cdot \Sigma \psi$
- $\text{P}: \bar{\psi} \gamma_5 \psi$
Two point functions
Neutron Propagator

Preliminary; Connected Diagrams Only
Two point functions

Linearity

Preliminary; Connected Diagrams Only

Use \(\epsilon \approx \frac{a}{30 \text{fm}} \approx 6.6 \text{MeV} a \approx 0.36 \text{ma} \) for experiments.
Two point functions
Connected γ_5

\[
a(D + m) + i\epsilon\gamma_5 = e^{\frac{i}{2}\alpha_q\gamma_5} (aD + am\epsilon) e^{\frac{i}{2}\alpha_q\gamma_5}
\]

where $\alpha_q \equiv \tan^{-1} \frac{\epsilon}{am}$
and $am\epsilon \equiv \sqrt{(am)^2 + \epsilon^2}$
\begin{table}
\begin{tabular}{|l|c|c|}
\hline
 & a12m310 & a09m310 \\
\hline
\(am^0\) & \(\frac{1}{2\kappa} - 4\) & -0.0695 & -0.05138 \\
\(am_{cr}\) & \(\frac{1}{2\kappa_c} - 4\) & -0.08058 & -0.05943 \\
\(am\) & \(am^0 - am_{cr}\) & 0.01108 & 0.00805 \\
\(\epsilon\) & & 0.004 & 0.003 \\
\(am_{\epsilon}\) & & 0.01178 & 0.00859 \\
\hline
\(M_\pi\) & & 0.1900(4) & 0.1404(3) \\
\(M_\pi^{CEDM}\) & & 0.1906(4) & 0.1407(3) \\
\(M_\pi^{\gamma 5}\) & & 0.1961(4) & 0.1450(3) \\
\(M_\pi^0 \times \sqrt{\frac{m_\epsilon}{m}}\) & & 0.1959(4) & 0.1450(3) \\
\hline
\end{tabular}
\end{table}
Two point functions

α_N
Three point functions

The three point function we calculate is

\[N \equiv \bar{d}^c \gamma_5 \frac{1 + \gamma_4}{2} u d \]

\[\langle \Omega | N(\vec{0}, 0) V_\mu(\vec{q}, t) N^\dagger(\vec{p}, T) | \Omega \rangle = u_N e^{-m_N t} \langle N | V_\mu(q) | N' \rangle e^{-E_{N'}(T-t)} \bar{u}_N \]

We project onto only one component of the neutron spinor with

\[P = \frac{1}{2} (1 + \gamma_4)(1 + i\gamma_5 \gamma_3) \]

Noting that in presence of CP violation \(u_N \bar{u}_N = e^{i\alpha_N \gamma_5 (i\phi + m_N)} e^{i\alpha_N \gamma_5} \)

and assuming \(N' = N \), we can extract:

\[Tr P \langle \Omega | N V_3 N^\dagger | \Omega \rangle \propto i m_N q_3 G_E \]

\[+ \alpha_N m_N (E_N - m_N) F_1 + \alpha_N [m_N (E_N - m_N) + \frac{q_3^2}{2}] F_2 \]

\[- 2i (q_1^2 + q_2^2) F_A - \frac{q_3^2}{2} F_3 \]
Three point functions

F_3 Form factor from CEDM

$\epsilon = 0.004$, $a \approx 0.12$ fm.

Preliminary; Connected Diagrams Only
$\epsilon = 0.003$, $a \approx 0.09$ fm.
Three point functions

\(F_3 \) Form factor from \(\gamma_5 \)

\[\epsilon = 0.004, \quad a \approx 0.12 \text{ fm}. \]
\[\epsilon = 0.003, \ a \approx 0.09 \text{ fm}. \]
Three point functions

$F_3(\gamma_5)$ and $F_3(\text{CEDM})$

$$a(\not{\Psi} + m) + i\epsilon\gamma_5 = e^{i\frac{\alpha}{2}q\gamma_5} a(\not{\Psi} + m\epsilon) e^{i\frac{\alpha}{2}q\gamma_5}$$

$$\rightarrow a(\not{\Psi}_L + m) + i\epsilon\gamma_5 = e^{i\frac{\alpha}{2}q\gamma_5} e^{-\frac{i\phi}{2} \gamma_5 a(\not{\Psi}_e + m\epsilon)} a(\not{\Psi}_e + m\epsilon) e^{-\frac{i\phi}{2} \gamma_5 a(\not{\Psi}_e + m\epsilon)} e^{i\frac{\alpha}{2}q\gamma_5} + O(a^3)$$

where

$$\not{\Psi}_L = \not{\Psi} + aD^2 - \frac{\kappa_{cSW}}{2} a\Sigma^{\mu\nu} G_{\mu\nu}; \quad \not{\Psi}_e = \not{\Psi} + \zeta aD^2 - \chi a\Sigma^{\mu\nu} G_{\mu\nu} e^{i\xi\gamma_5}$$

$$m_\epsilon a = \sqrt{m^2 a^2 + \epsilon^2}, \quad \phi = \frac{\epsilon}{m_\epsilon a}, \quad \xi = \frac{2\phi}{\kappa_{cSW}}, \quad \chi = \frac{\kappa_{cSW}}{2} \sqrt{1 + \left(\frac{2\phi}{\kappa_{cSW}}\right)^2},$$

$$\zeta = \frac{m}{m_\epsilon}, \quad \alpha = \tan^{-1} \frac{\epsilon}{ma} + 2\epsilon$$

$e^{-\frac{i\phi}{2} \gamma_5 a(\not{\Psi}_e + m\epsilon)}$ does not contribute on shell.
Introduction
Lattice Calculation
Two point functions
Three point functions
Conclusions

Projection
F_3 Form factor from CEDM
F_3 Form factor from γ_5
$F_3(\gamma_5)$ and F_3(CEDM)

Tanmoy Bhattacharya
nEDM from qCEDM
Introduction

Lattice Calculation

Two point functions

Three point functions

Conclusions

Projection

F_3 Form factor from CEDM

F_3 Form factor from γ_5

$F_3(\gamma_5)$ and $F_3(\text{CEDM})$

Tanmoy Bhattacharya

nEDM from qCEDM
Signal in the connected diagram for $a = 0.12$ and $a = 0.09$ fm and $M_\pi = 310$ MeV.

Mixing with lower dimensional operator not a problem.

Need to calculate renormalization and mixing coefficients non-perturbatively.

Fermions with better chiral symmetry does not avoid mixing.