Search for a continuum limit of the PMS phase

Venkitesh P Ayyar
(joint work with Shailesh Chandrasekharan)

Lattice 2016, July, Southampton, UK

Work supported by DOE grant #DEFG0205ER41368
Computational work done using the Open Science Grid and local Duke cluster
Introduction

- Update on continuing study of a four-fermion model with an interesting phase structure.
- PMS phase at strong couplings with massive fermions without any Spontaneous Symmetry Breaking.
- Continuum limit of this PMS phase would be interesting.
- Previous work in 3D, pointed to such a continuum limit.
- Update on study in 4D on small lattices.
Previous studies\(^1\) of lattice Yukawa models show a very interesting
phase structure.

\[g \to \text{Yukawa coupling}, \ m \to \text{boson mass} \]

- Massless PMW phase.
- Spontaneously broken FM phase with massive fermions.
- Exotic Paramagnetic PMS phase with massive fermions at strong couplings.
- No bilinear condensates in PMW and PMS phases.

Four-fermion model

- Equivalent to Yukawa model with fixed $m^2 > 0$
- Easier to study.
- Will also show 3 phase structure.

- Can there be models with a PMW-PMS phase transition?

Venkitesh Ayyar
Search for a continuum limit of the PMS phase
Our Lattice model

Reduced staggered fermion action for four massless flavors
\[\psi_{x,1}, \psi_{x,2}, \psi_{x,3}, \psi_{x,4} \]

\[S = S_0 + S_I \]

\[S_0 = \sum_{i=1}^{4} \sum_{x,y} \{ \psi_{x,i} M_{x,y} \psi_{y,i} \} \]

\[S_I = -U \sum_{x} \psi_{x,1} \psi_{x,2} \psi_{x,3} \psi_{x,4} \]

In addition to the usual discrete space-time symmetries\(^1\), the action has a continuous \(SU(4) \) symmetry.

The Fermion Bag approach

\[
Z = \int \left\{ \prod_{i=1}^{4} [d\psi_i] \right\} e^{-S_0} e^{U \sum_x \psi_{x,1} \psi_{x,2} \psi_{x,3} \psi_{x,4}}
\]

\[
= \int \left\{ \prod_{i=1}^{4} [d\psi_i] \right\} e^{-S_0} \prod_x e^{U \psi_{x,1} \psi_{x,2} \psi_{x,3} \psi_{x,4}}
\]

\[
= \int \left\{ \prod_{i=1}^{4} [d\psi_i] \right\} e^{-S_0} \prod_x (1 + U \psi_{x,1} \psi_{x,2} \psi_{x,3} \psi_{x,4})
\]

\[
= \sum_{[m_x]} \int \left\{ \prod_{i=1}^{4} [d\psi_i] \right\} e^{-S_0} \prod_x (U \psi_{x,1} \psi_{x,2} \psi_{x,3} \psi_{x,4})^{m_x}
\]

Integrate over monomer sites

\[
Z = \sum_{[m_x]} U^k \text{Det}(\tilde{A})^4
\]

Assigning \(m_x = 0 \) or \(1 \) to each lattice site

\(m_x = 0 \equiv \text{free sites} \)

\(m_x = 1 \equiv \text{monomers} \)

Fermion Bag \(\equiv \) Set of connected free sites

where \(k \equiv \text{number of monomers}, \)

\(\tilde{A} \) is a sub-matrix of the staggered matrix \(M \).

1. S. Chandrasekharan - The Fermion bag approach to lattice field theories (2010)
Phase diagram: What do we know?

Irrelevant coupling
\[\downarrow \]
Massless phase

Correlators decay
exponentially
\[\downarrow \]
Massive phase
& no condensates

PMW

0

U

∞

PMS

Venkitesh Ayyar
Search for a continuum limit of the PMS phase
Observables

- **Average Monomer density:**
 \[
 \rho_m = \frac{U}{V} \sum_x \langle \psi_{x,1}\psi_{x,2}\psi_{x,3}\psi_{x,4} \rangle
 \]

- **Bosonic correlators:**
 \[
 C_1(x, y) = \langle \psi_{x,1}\psi_{x,2}\psi_{y,1}\psi_{y,2} \rangle,
 C_2(x, y) = \langle \psi_{x,1}\psi_{x,2}\psi_{y,3}\psi_{y,4} \rangle
 \]

- **Susceptibilities**
 \[
 \chi_1 = \frac{1}{2} \sum_x \langle \psi_{0,1}\psi_{0,2}\psi_{x,1}\psi_{x,2} \rangle,
 \chi_2 = \frac{1}{2} \sum_x \langle \psi_{0,1}\psi_{0,2}\psi_{x,3}\psi_{x,4} \rangle
 \]

- **Focus on** \(SU(4) \) transformations.
- **Corresponding order parameter** \(\psi_{x,a}\psi_{x,b} \).
- **Condensate** \(\Phi = \langle \psi_{0,1}\psi_{0,2} \rangle \).
- **Limit** \(\lim_{L \to \infty} C_{1,2}(0, L) \sim \Phi^2 \)
- **Limit** \(\lim_{L \to \infty} \chi_{1,2} \sim \Phi^2 L^D \)
Single 2nd order phase transition in 3D

Near a 2nd order critical point,
\[R_1 = L^{-(1+\eta)}\left[(U - U_c)L^{1/\nu}\right]. \]

- No intermediate FM phase.
- PMW-PMS transition is 2nd order.
- Critical exponents w/o corrections to scaling:
 \[\eta = 1.05(5), \ \nu = 1.30(7), \ U_c = 0.943(2) \]
- With corrections to scaling, cannot rule out large \(N \) exponents
 \[\eta = 1.0, \ \nu = 1.0, \ U_c = 0.95. \]

1 Ayyar, Chandrasekharan PRD 91, 2015.
2 Ayyar, Chandrasekharan PRD(RC) 93, 2016.

Venkitesh Ayyar
Search for a continuum limit of the PMS phase
4D Results:

\[\rho_m = \frac{U}{V} \sum_x \langle \psi_{x,1} \psi_{x,2} \psi_{x,3} \psi_{x,4} \rangle \]

- Lattices up to \(L = 12 \).
- Average monomer density rises sharply around \(U = 1.75 \) without any discontinuity.

\(^1\) Ayyar, Chandrasekharan arxiv:1606.06312, 2016.
Susceptibility χ_1 vs U

- Bosonic Susceptibilities:
 \[\chi_1 = \frac{1}{2} \sum_x \langle \psi_{0,1} \psi_{0,2} \psi_x,1 \psi_x,2 \rangle \]
 \[\chi_2 = \frac{1}{2} \sum_x \langle \psi_{0,1} \psi_{0,2} \psi_x,3 \psi_x,4 \rangle \]

- Condensate given by:
 \[\chi \sim \Phi^2 L^4 \]

- χ_1 reaches a maximum for intermediate U.

- Sharp rise.
Evidence for a condensate:

- Condensate implies $\chi_1 \sim L^4$.

- χ_1 / L^4 vs L seems to saturate at large L.

Obtain condensate Φ upon fit to $\chi_1 = \frac{1}{4} \Phi^2 L^4 + b_1 L^2$.

Venkitesh Ayyar

Search for a continuum limit of the PMS phase
Evidence for a 3 phase structure.

At a 2nd order critical point, we expect \(\chi/L^{2-\eta} \sim \text{const} \)
\(\Rightarrow \chi/L^{2-\eta} \text{ vs } U \text{ curves for different } L \text{’s must intersect.} \)

\begin{itemize}
 \item Plot \(\chi/L^{2-\eta} \text{ vs } U \) using mean field exponents \(\eta = 0, \nu = 0.5, \)
 \item Curves intersect at 2 points \(\Rightarrow \) two phase transitions.
 \item Critical couplings: \(U_{c1} = 1.60, U_{c2} = 1.80 \)
\end{itemize}
Phase diagram in 3D and 4D.

3D

- Single 2nd order phase transition.
- Weak and strong coupling phases do not show any SSB 1,2,3.

4D

- 3 phase structure.
- FM phase is found to be narrow.

2. S. Catterall, JHEP 01, 121 (2016)

Search for a continuum limit of the PMS phase
Conclusions

- Massive fermions without fermion bilinear condensates (PMS phase) in a simple lattice four-fermion model in 3D and 4D.
- PMW-PMS transition is 2nd order in 3D \Rightarrow PMS phase can help define an interesting 3D continuum field theory.
- Conjecture: Mass could arise via formation of a 3-fermion bound state1,2.
- Evidence for a narrow intermediate FM phase in 4D, with two 2^{nd} order phase transitions with mean field exponents.
- Suggests the presence of a critical point in enhanced coupling space.

1E. Eichten and J. Preskill, (1986)
2Golterman et al., (1993)
THANK YOU