Progress on three-particle quantization condition

Steve Sharpe
University of Washington

In collaboration with Raul Briceño and Max Hansen

Outline

- Motivation
- Original formalism (relativistic, model independent)
- Extensions underway
- A new test: volume dependence of Efimov-like 3-particle bound state (compared to NRQM)

The fundamental issue

- Lattice QCD can calculate energy levels of multipleparticle systems in a box
- How are these related to scattering amplitudes?

Potential applications

- Studying resonances with three particle decay channels
$\omega(782) \rightarrow \pi \pi \pi \quad K^{*} \longrightarrow K \pi \pi \quad N(1440) \rightarrow N \pi \pi$
- Calculating weak decay amplitudes/form factors involving 3 particles, e.g. $\mathrm{K} \rightarrow \pi \pi \pi$
- Determining NNN interactions
- Input for effective field theory treatments of larger nuclei \& nuclear matter
- Similarly, $\pi \pi \pi, \pi K \bar{K}, \ldots$ interactions needed for study of pion/kaon condensation

Previous result [Hansen \& SS 1408.5933]

- Step I: FV spectrum is determined (for given L, P) by solutions of

Infinite volume 3particle scattering quantity; depends on cutoff function H

- Superficially similar to 2-particle form ...

Depends on \mathcal{M}_{2} and on new kinematical quantity G

$$
\operatorname{det}\left[F_{2}^{-1}+\mathcal{K}_{2}\right]=0
$$

... but F_{3} lives in a larger space, and contains both kinematical, finite-volume quantities $\left(F_{2} \& G\right)$ and the dynamical, infinite-volume quantity \mathcal{K}_{2}

Previous result [Hansen \& SS 1504.04248]

- Step 2: Relate unphysical scattering quantity to physical scattering amplitude

Symmetrization
Sums go over to integrals with ie pole prescription

- Result is an integral equation giving \mathcal{M}_{3} in terms of $\mathcal{K}_{\mathrm{df}, 3}$
- Confirms that finite volume spectrum is determined by infinite-volume scattering amplitudes [Polejaeva \& Rusetsky, 14] in a relativistic analysis

Limitations of previous result

I. Assumes Z_{2} symmetry: no $2 \leftrightarrow 3, \mathrm{I} \leftrightarrow 2, \ldots$ vertices
2. No resonances allowed in two-particle subchannels in kinematic range considered

Extensions underway

[Briceño, Hansen \& SS]

- Conjectured result without Z_{2} symmetry (derivation nearly complete):

$$
\begin{aligned}
& \operatorname{det}\left[1-\left(\begin{array}{cc}
F_{2} & 0 \\
0 & F_{3}
\end{array}\right)\left(\begin{array}{cc}
\mathcal{K}_{2} & \mathcal{K}_{23} \\
\mathcal{K}_{32} & \mathcal{K}_{\mathrm{df}, 3}
\end{array}\right)\right]=0 \\
& \text { Lüscher zeta-function } \\
& 3 \leftrightarrow 2 \text { K-matrix; Requires no long-distance subtraction }
\end{aligned}
$$

- Relation of K-matrices to $\mathcal{M}_{2}, \mathcal{M}_{23}, \mathcal{M}_{32} \& \mathcal{M}_{3}$ to be determined
- Including above-threshold 2-particle K-matrix poles:
- Approach based on factorization of poles in early stages

Testing the formalism

- Threshold expansion [Hansen \& SS, 1602.00324]
- Matches I/L ${ }^{3}$ —I/L ${ }^{5}$ terms from NRQM [Beane, Detmold \& Savage 07;Tan 08]
- Matches $\mathrm{I} / \mathrm{L}^{3}$ —I/L6 terms from relativistic φ^{4} theory up to $\mathrm{O}\left(\lambda^{3}\right)$ [Hansen \& SS, I509.07929]
- New result presented here for finite-volume dependence of Efimov-like 3-particle bound state: [Hansen \& ss, in prep.]
- Matches NRQM result [Meissner, Rios \& Rusetsky, 14I2.4969]

NRQM result

[Meissner, Rios \& Rusetsky, 14I2.4969 + erratum]

$$
E_{B} \equiv 3 m-\frac{\kappa^{2}}{m}
$$

$$
\Delta E_{L}=c \frac{\kappa^{2}}{m} \frac{1}{(\kappa L)^{3 / 2}} \exp \left(-\frac{2 \kappa L}{\sqrt{3}}\right)\left[1+\mathcal{O}\left(\frac{1}{\kappa L}\right)\right] \quad \mathrm{FV} \text { energy shift }
$$

$$
c=-36 \times 3^{3 / 4} \pi^{7 / 2} C_{0} \overparen{\left.A\right|^{2} \lll \sinh ^{2}\left(s_{0} \overleftarrow{\pi / 2}\right)}
$$

- Assumes two-body potential, unitary limit (scattering length $a \rightarrow \infty$), $\mathrm{P}=0$
- Aim to reproduce exponent, leading power \& overall constant from relativistic formalism

Reproducing MRR: step 1

- Assume $K_{d f, 3}=0$ (no local 3-particle interaction)

$$
\begin{array}{cl}
\operatorname{det}\left[F_{3}^{-1}+\mathcal{K}_{\mathrm{df}, 3}\right]=0 & \Rightarrow F_{3} \longrightarrow \infty \\
F_{3}=\frac{F_{2}}{2 \omega L^{3}}[\frac{1}{3}-\underbrace{\left.\mathcal{M}_{2, L} F_{2}-\mathcal{D}_{L}^{(u, u)} \frac{F_{2}}{2 \omega L^{3}}\right]}_{\mathcal{M}_{2 \text { and }} \mathrm{F}_{2} \text { do not diverge below threshold }} & \Rightarrow D_{L}^{(u, u)} \longrightarrow \infty
\end{array}
$$

Reproducing MRR: step 1

- Assume $K_{d f, 3}=0$ (no local 3-particle interaction)

pole in $\mathcal{D}_{\mathrm{L}}=S\left[\mathcal{D}_{\mathrm{L}}{ }^{(\mathrm{u}, \mathrm{u})}\right]$

Reproducing MRR: step 1

- Assume $K_{d f, 3}=0$ (no local 3-particle interaction)

$$
\begin{aligned}
& i \mathcal{M}_{L, 3 \rightarrow 3}=i \mathcal{D}_{L}+\mathcal{S}\left[\mathcal{L}_{L} i \mathcal{K}_{\mathrm{df}, 3 \rightarrow 3}\right. \\
& \quad \text { Pole in } \mathcal{M}_{\mathrm{L}, 3} \text { requires }
\end{aligned}
$$ pole in $\mathcal{D}_{\mathrm{L}}=S\left[\mathcal{D}_{\mathrm{L}}{ }^{(\mathrm{u}, \mathrm{u})}\right]$

- Assume pure s-wave 2-particle interaction (same approx. as [MRR])

$$
i \mathcal{D}_{L}^{(u, u)} \equiv i \mathcal{M}_{2, L} i G_{i \mathcal{M}_{2, L}} \frac{1}{1-i G i \mathcal{M}_{2, L}}\left[2 \omega L^{3}\right]=0
$$

Reproducing MRR: step 2

- Dominant FV corrections to $\mathcal{D}^{(\mathrm{u}, \mathrm{u})}$

- Replace sums with integrals + sum-integrals (non-trivial since loops not independent)

$$
\begin{gathered}
i \mathcal{D}_{L}^{s,(u, u)}(\vec{p}, \vec{k}) \approx i \mathcal{D}^{s,(u, u)}(\vec{p}, \vec{k})+\int_{r, t} \frac{1}{2 \omega_{r}} \frac{1}{2 \omega_{t}} i \mathcal{D}^{s,(u, u)}(\vec{p}, \vec{r}) i I(\vec{r}, \vec{t}) i \mathcal{D}^{s,(u, u)}(\vec{t}, \vec{k})+\ldots \\
i I(\vec{p}, \vec{k}) \equiv\left[\frac{1}{L^{3}} \sum_{s}-\int_{s}\right] \frac{1}{2 \omega_{s}} i G^{s, \infty}(\vec{p}, \vec{s}) i \mathcal{M}_{2}^{s}(\vec{s}) i G^{s, \infty}(\vec{s}, \vec{k})
\end{gathered}
$$

Reproducing MRR: step 3

$$
i \mathcal{D}_{L}^{s,(u, u)}(\vec{p}, \vec{k}) \approx i \mathcal{D}^{s,(u, u)}(\vec{p}, \vec{k})+\int_{r, t} \frac{1}{2 \omega_{r}} \frac{1}{2 \omega_{t}} i \mathcal{D}^{s,(u, u)}(\vec{p}, \vec{r}) i I(\vec{r}, \vec{t}) i \mathcal{D}^{s,(u, u)}(\vec{t}, \vec{k})+\ldots
$$

- Infinite-volume bound state \Rightarrow pole in $\mathcal{D}^{(u, u)}$

$$
i \mathcal{D}^{(u, u)}(\vec{p}, \vec{k})=-i \frac{\Gamma(\vec{p}) \bar{\Gamma}(\bar{k})}{E^{2}-E_{B}^{2}}+\text { non-pole }
$$

- Insert into $\mathcal{D}^{(u, u)} \mathrm{L}$, and resum:

$$
\begin{aligned}
\mathcal{D}_{L}^{s,(u, u)}(\vec{p}, \vec{k}) & \approx-\frac{\Gamma^{(u)}(\vec{p})}{E^{2}-E_{B}^{2}}\left[1+\frac{J}{E^{2}-E_{B}^{2}}+\frac{J^{2}}{\left(E^{2}-E_{B}^{2}\right)^{2}}+\ldots\right] \bar{\Gamma}^{(u)}(\vec{k}) \\
J & =\int_{r, t} \frac{\bar{\Gamma}^{(u)}(\vec{r})}{2 \omega_{r}} I(\vec{r}, \vec{t}) \frac{\Gamma^{(u)}(\vec{t})}{2 \omega_{t}}
\end{aligned}
$$

- Leads to pole in $\mathcal{D}^{(u, u)}$ Lat shifted energy

$$
\Delta E_{L}=J /\left(2 E_{B}\right)
$$

Reproducing MRR: step 4

$$
J=-\left[\frac{1}{L^{3}} \sum_{s}-\int_{s}\right]\left(\int_{r} \frac{\bar{\Gamma}^{(u)}(\vec{r}) G^{s, \infty}(\vec{r}, \vec{s})}{2 \omega_{r}}\right)\left(\frac{\mathcal{M}_{2}^{s}(\vec{s})}{2 \omega_{s}}\right)\left(\int_{t} \frac{G^{s, \infty}(\vec{s}, \vec{t}) \Gamma^{(u)}(\vec{t})}{2 \omega_{t}}\right)
$$

- Can simplify using analog of Bethe-Salpeter equation

$$
\begin{array}{r}
i \mathcal{D}^{(u, u)}(\vec{p}, \vec{k})=i \mathcal{M}_{2}(\vec{p}) i G^{\infty}(\vec{p}, \vec{k}) i \mathcal{M}_{2}(\vec{k})+\int_{s} \frac{1}{2 \omega_{s}} i \mathcal{M}_{2}(\vec{p}) i G^{\infty}(\vec{p}, \vec{s}) i \mathcal{D}^{(u, u)}(\vec{s}, \vec{k}) \\
\Rightarrow \quad \Gamma^{(u)}(\vec{p})=-\mathcal{M}_{2}(\vec{p}) \int_{s} \frac{1}{2 \omega_{s}} G^{\infty}(\vec{p}, \vec{s}) \Gamma^{(u)}(\vec{s}) \\
\Rightarrow \quad J=-\left[\frac{1}{L^{3}} \sum_{s}-\int_{s}\right] \bar{\Gamma}^{(u)}(s) \frac{1}{2 \omega_{s} \mathcal{M}_{2}^{s}(s)} \Gamma^{(u)}(s)=2 E_{B} \Delta E_{L}
\end{array}
$$

General result valid for any bound state if $\mathcal{K}_{\mathrm{df}, 3}=0$

Reproducing MRR: step 5

$$
J=-\left[\frac{1}{L^{3}} \sum_{s}-\int_{s}\right] \bar{\Gamma}^{(u)}(s) \frac{1}{2 \omega_{s} \mathcal{M}_{2}^{s}(s)} \Gamma^{(u)}(s)=2 E_{B} \Delta E_{L}
$$

- To evaluate need to know the form of Γ for Efimov bound state
- Can show (for instantaneous V_{ij}, by extending [Feldman \& Fulton, 82])

$$
\begin{aligned}
& \Gamma=\left.4 \sqrt{3} m^{2}\left(E_{B}-3 m-\sum_{i=1}^{3} \frac{\vec{p}_{i}^{2}}{2 m}\right) \psi\right|_{\text {on shell }} \begin{array}{c}
\text { Schrödinger } \\
\text { wavefunction }
\end{array} \\
& \begin{array}{c}
\Gamma^{(u)}=\left.4 \sqrt{3} m^{2}\left(E_{B}-3 m-\sum_{i=1}^{3} \frac{\vec{p}_{i}^{2}}{2 m}\right) \phi_{3}\right|_{\text {on shell }} \\
\psi=\phi_{1}+\phi_{2}+\phi_{3} \longleftarrow{ }_{c}^{\text {Fadeev }} \begin{array}{c}
\text { wavefunction }
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

Reproducing MRR: step 6

$$
\Gamma^{(u)}=\left.4 \sqrt{3} m^{2}\left(E_{B}-3 m-\sum_{i=1}^{3} \frac{\vec{p}_{i}^{2}}{2 m}\right) \phi_{3}\right|_{\text {on shell }}
$$

- Using standard result for φ_{3} for Efimov bound state find

$$
\Gamma^{(u)}(\vec{s})=\frac{c_{\Gamma}}{\sqrt{1+\vec{s}^{2} / s_{\mathrm{th}}^{2}}}\left[1+\mathcal{O}\left(1+\vec{s}^{2} / s_{\mathrm{th}}^{2}\right)\right]
$$

- Also need \mathcal{M}_{2} in unitary limit

$$
\frac{1}{\mathcal{M}_{2}^{s}(s)}=\frac{\kappa}{32 \pi m}\left[\sqrt{1+\vec{s}^{2} / s_{\mathrm{th}}^{2}}-1 /(\kappa a)\right]
$$

Reproducing MRR: step 7

$$
J=-\left[\frac{1}{L^{3}} \sum_{s}-\int_{s}\right] \bar{\Gamma}^{(u)}(s) \frac{1}{2 \omega_{s} \mathcal{M}_{2}^{s}(s)} \Gamma^{(u)}(s)=2 E_{B} \Delta E_{L}
$$

- Evaluate sum-integral difference using Poisson summation formula

$$
\begin{aligned}
J & =-c_{\Gamma}^{2} \frac{\kappa}{64 \pi m^{2}} 6 \int \frac{d^{3} s}{(2 \pi)^{3}} e^{i L \hat{x} \cdot \vec{s}} \frac{1}{\sqrt{1+s^{2} / s_{\mathrm{th}}^{2}}} \\
& =-c_{\Gamma}^{2} \frac{\kappa}{64 \pi m^{2}} 6 e^{-s_{\mathrm{th}} L}\left(\frac{s_{\mathrm{th}}}{2 \pi L}\right)^{3 / 2}[1+\mathcal{O}(1 /[\kappa L])]
\end{aligned}
$$

- Final result agrees with NRQM!

$$
\Delta E_{L}=-A^{2}\left(\kappa^{2} / m\right) \frac{e^{-s_{\mathrm{th}} L}}{(\kappa L)^{3 / 2}} \times 36 \cdot 3^{3 / 4} \pi^{7 / 2} C_{0} \sinh ^{2}\left(\pi s_{0} / 2\right)[1+\mathcal{O}(1 /[\kappa L])]
$$

Completing the check

- $\mathcal{K}_{\mathrm{d} f, 3}=0$ approximation cannot exactly reproduce NRQM , since introduces dependence on cutoff function
- We think it is straightforward to relax this approximation while maintaining the final result

