Selected new results from the Spectroscopy in the sextet BSM Model

Chik Him (Ricky) Wong

Lattice Higgs Collaboration (LaHC):
Zoltán Fodor $, Kieran Holland *,
Julius Kuti †, Santanu Mondal −,
Dániel Nógrádi −, Chik Him Wong $

† University of California, San Diego * University of the Pacific $ University of Wuppertal - Eötvös University

LATTICE 2016
Review: Sextet model as Composite Higgs candidate

Hadron spectroscopy in Isoscalar $J^{PC} = 0^{-+}$ (η) channel

- Fermionic correlator
- Gluonic operator
- Improvement using Gradient Flow
- Preliminary results

Conclusion
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χSB \Rightarrow Models at the edge of Conformal Window

- $SU(3) N_f = 2$ Sextet (Two-index symmetric) Model

$$\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ d^L_{ab} \end{pmatrix}, \quad \psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} & d^R_{ab} \end{pmatrix}$$

$a, b = 0, 1, 2$

- Why is it interesting?
 - Very close to Conformal Window
 - “Minimal” model
 - Spontaneous Chiral Symmetry Breaking:
 $$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$$
 - 3 Nambu-Goldstone Bosons (BSM-π) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 $$SU(2)_W \times U(1)_Y \rightarrow U(1)_{em}$$
 while BSM-f_0 is identified as the Higgs boson H
 - $N_f^2 - 4$ massless BSM-π’s somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$
 \Rightarrow Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χSB \Rightarrow Models at the edge of Conformal Window
- $SU(3) \ N_f = 2$ Sextet (Two-index symmetric) Model

$$
\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ d^L_{ab} \end{pmatrix}, \quad \psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} \\ d^R_{ab} \end{pmatrix}
$$

$a, b = 0, 1, 2$

- Why is it interesting?
 - Very close to Conformal Window
 - “Minimal” model
 - Spontaneous Chiral Symmetry Breaking:
 $$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$$
 - 3 Nambu-Goldstone Bosons (BSM-π) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 $$SU(2)_W \times U(1)_Y \rightarrow U(1)_{em}$$

while BSM-f_0 is identified as the Higgs boson H

- $N_f^2 - 4$ massless BSM-π’s somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$

\Rightarrow Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χSB ⇒ Models at the edge of Conformal Window

- $SU(3) \ N_f = 2$ Sextet (Two-index symmetric) Model

\[\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ d^L_{ab} \end{pmatrix}, \quad \psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} \\ d^R_{ab} \end{pmatrix} \]

$a, b = 0, 1, 2$

- Why is it interesting?
 - Very close to Conformal Window
 - “Minimal” model
 - Spontaneous Chiral Symmetry Breaking:
 \[SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V \]
 - 3 Nambu-Goldstone Bosons (BSM-π) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 \[SU(2)_W \times U(1)_Y \rightarrow U(1)_{em} \]
 while BSM-f_0 is identified as the Higgs boson H

 - $N_f^2 - 4$ massless BSM-π's somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$

 ⇒ Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χ_{SB} ⇒ Models at the edge of Conformal Window

- $SU(3) \, N_f = 2$ Sextet (Two-index symmetric) Model

$\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ u^L_{ab} \end{pmatrix}$, $\psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} & d^R_{ab} \end{pmatrix}$

$a, b = 0, 1, 2$

- Why is it interesting?
 - Very close to Conformal Window
 - “Minimal” model
 - Spontaneous Chiral Symmetry Breaking:
 $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$
 - 3 Nambu-Goldstone Bosons (BSM-π) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 $SU(2)_W \times U(1)_Y \rightarrow U(1)_{em}$
 while BSM-f_0 is identified as the Higgs boson H
 - $N_f^2 - 4$ massless BSM-π’s somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$
 ⇒ Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χSB \Rightarrow Models at the edge of Conformal Window

- $SU(3) N_f = 2$ Sextet (Two-index symmetric) Model

\[
\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ d^L_{ab} \end{pmatrix}, \quad \psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} & d^R_{ab} \end{pmatrix}
\]

$a, b = 0, 1, 2$

- Why is it interesting?
 - Very close to Conformal Window
 - "Minimal" model
 - Spontaneous Chiral Symmetry Breaking:
 \[
 SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V
 \]
 - 3 Nambu-Goldstone Bosons (BSM-π) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 \[
 SU(2)_W \times U(1)_Y \rightarrow U(1)_{\text{em}}
 \]
 - $N_f^2 - 4$ massless BSM-π's somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$
 \[\Rightarrow\] Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) \(+ \) Spontaneous \(\chi \)SB \(\Rightarrow \) Models at the edge of Conformal Window

- \(SU(3) \) \(N_f = 2 \) Sextet (Two-index symmetric) Model

\[
\psi^L_{ab} = \psi^L_{ba} \equiv \left(u^L_{ab} \right), \quad \psi^R_{ab} = \psi^R_{ba} \equiv \left(u^R_{ab} \quad d^R_{ab} \right)
\]

\(a, b = 0, 1, 2 \)

- Why is it interesting?
 - Very close to Conformal Window
 - “Minimal” model

- Spontaneous Chiral Symmetry Breaking:

\[
SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V
\]

- 3 Nambu-Goldstone Bosons (BSM-\(\pi \)) out of \(N_f^2 - 1 \) are eaten in Higgs Mechanism:

\[
SU(2)_W \times U(1)_Y \rightarrow U(1)_{em}
\]

while BSM-\(f_0 \) is identified as the Higgs boson \(H \)

- \(N_f^2 - 4 \) massless BSM-\(\pi \)’s somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if \(N_f = 2 \)

\(\Rightarrow \) Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χSB \Rightarrow Models at the edge of Conformal Window
- $SU(3) N_f = 2$ Sextet (Two-index symmetric) Model

$$\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ d^L_{ab} \end{pmatrix}, \quad \psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} \\ d^R_{ab} \end{pmatrix} \quad a, b = 0, 1, 2$$

Why is it interesting?
- Very close to Conformal Window
- “Minimal” model
 - Spontaneous Chiral Symmetry Breaking:
 $$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)$$
 - 3 Nambu-Goldstone Bosons (BSM-π) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 $$SU(2)_W \times U(1)_Y \rightarrow U(1)_\text{em}$$
 - $N_f^2 - 4$ massless BSM-π’s somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$
 \Rightarrow Sextet is “Minimal” realization and hence appealing.
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χSB \Rightarrow Models at the edge of Conformal Window

$SU(3) N_f = 2$ Sextet (Two-index symmetric) Model

$\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ d^L_{ab} \end{pmatrix}$, $\psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} \\ d^R_{ab} \end{pmatrix}$

$a, b = 0, 1, 2$

- Why is it interesting?
 - Very close to Conformal Window
 - “Minimal” model
 - Spontaneous Chiral Symmetry Breaking:
 $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$
 - 3 Nambu-Goldstone Bosons (BSM-π) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 $SU(2)_W \times U(1)_Y \rightarrow U(1)_{em}$
 while BSM-f_0 is identified as the Higgs boson H
 - $N_f^2 - 4$ massless BSM-π’s somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$
 \Rightarrow Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χSB \Rightarrow Models at the edge of Conformal Window

$SU(3) N_f = 2$ Sextet (Two-index symmetric) Model

\[\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ d^L_{ab} \end{pmatrix}, \quad \psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} & d^R_{ab} \end{pmatrix} \]

$a, b = 0, 1, 2$

- Why is it interesting?
 - Very close to Conformal Window
 - “Minimal” model
 - Spontaneous Chiral Symmetry Breaking:
 \[SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V \]
 - 3 Nambu-Goldstone Bosons (BSM-π) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 \[SU(2)_W \times U(1)_Y \rightarrow U(1)_{em} \]
 while BSM-f_0 is identified as the Higgs boson H
 - $N_f^2 - 4$ massless BSM-π’s somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$
 \Rightarrow Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Criteria for candidate models in composite Higgs scenario:
 - Generates Higgs boson consistent with phenomenology
 - Infrared pseudo-Fixed point (IRFP) + Spontaneous χSB \Rightarrow Models at the edge of Conformal Window

- $SU(3) N_f = 2$ Sextet (Two-index symmetric) Model

$$\psi^L_{ab} = \psi^L_{ba} \equiv \begin{pmatrix} u^L_{ab} \\ d^L_{ab} \end{pmatrix}, \quad \psi^R_{ab} = \psi^R_{ba} \equiv \begin{pmatrix} u^R_{ab} & d^R_{ab} \end{pmatrix}$$

$a, b = 0, 1, 2$

- Why is it interesting?
 - Very close to Conformal Window
 - “Minimal” model
 - Spontaneous Chiral Symmetry Breaking:
 $$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$$
 - 3 Nambu-Goldstone Bosons (BSM-\(\pi\)) out of $N_f^2 - 1$ are eaten in Higgs Mechanism:
 $$SU(2)_W \times U(1)_Y \rightarrow U(1)_{em}$$
 while BSM-\(f_0\) is identified as the Higgs boson H
 - $N_f^2 - 4$ massless BSM-\(\pi\)’s somehow gains masses from additional interactions, but far separated from the eaten massless 3, yet not a concern if $N_f = 2$
 \Rightarrow Sextet is “Minimal” realization and hence appealing
Sextet model as Composite Higgs candidate

- Consistent with χ_{SB}
 - Static Quark Potential: Confining (Fodor et al, PoS (Lattice 2012) 025)
 - Chiral condensate: Non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - β function of g_R : No IRFP is observed (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)
- Hadron Spectroscopy
 - Action: Tree-level Symanzik-Improved 2-stout $\rho = 0.15$ smeared gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
 - Previously: (Fodor et al, PoS (LATTICE 2014) 244)
Selected new results from the Spectroscopy in the Sextet BSM Model

Chik Him (Ricky) Wong

Outline
Review
η Spectroscopy
Correlator construction
Improvement using Gradient Flow
Preliminary Results
Conclusion

Sextet model as Composite Higgs candidate

- **Consistent with χSB**
 - Static Quark Potential: Confining (Fodor et al, PoS (Lattice 2012) 025)
 - Chiral condensate: Non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - β function of g_R : No IRFP is observed (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)

- **Hadron Spectroscopy**
 - Action: Tree-level Symanzik-Improved 2-stout ρ = 0.15 smeared gauge action with Staggered N_f = 2 Sextet SU(3) fermions
 - Previously: (Fodor et al, PoS (LATTICE 2014) 244)

![Graph showing trends in particle masses and decay constants](image-url)

Sextet model as Composite Higgs candidate

- Consistent with χ_{SB}
 - Static Quark Potential: Confining (Fodor et al, PoS (Lattice 2012) 025)
 - Chiral condensate: Non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - β function of g_R: No IRFP is observed (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)

- Hadron Spectroscopy
 - Action: Tree-level Symanzik-Improved 2-stout $\rho = 0.15$ smeared gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
 - Previously: (Fodor et al, PoS (LATTICE 2014) 244)
Sextet model as Composite Higgs candidate

- Consistent with χ_{SB}
 - Static Quark Potential: Confining (Fodor et al, PoS (Lattice 2012) 025)
 - Chiral condensate: Non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - β function of g_R: No IRFP is observed (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)

- Hadron Spectroscopy
 - Action: Tree-level Symanzik-Improved 2-stout $\rho = 0.15$ smeared gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
 - Previously: (Fodor et al, PoS (LATTICE 2014) 244)

![Graph showing spectral properties](image-url)
Sextet model as Composite Higgs candidate

- Consistent with χ_{SB}
 - Static Quark Potential: Confining (Fodor et al, PoS (Lattice 2012) 025)
 - Chiral condensate: Non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - β function of g_R: No IRFP is observed (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)
- Hadron Spectroscopy
 - Action: Tree-level Symanzik-Improved 2-stout $\rho = 0.15$ smeared gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
 - Previously: (Fodor et al, PoS (LATTICE 2014) 244)
Sextet model as Composite Higgs candidate

- Consistent with χ_{SB}
 - Static Quark Potential: Confining (Fodor et al, PoS (Lattice 2012) 025)
 - Chiral condensate: Non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - β function of g_R: No IRFP is observed (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)

- Hadron Spectroscopy
 - Action: Tree-level Symanzik-Improved 2-stout $\rho = 0.15$ smeared gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
 - Previously: (Fodor et al, PoS (LATTICE 2014) 244)
Selected new results from the Spectroscopy in the sextet BSM Model

Chik Him (Ricky) Wong

Outline
Review

η Spectroscopy
Correlator construction
Improvement using Gradient Flow
Preliminary Results
Conclusion

Consistent with χ_{SB}
- Static Quark Potential: Confining (Fodor et al, PoS (Lattice 2012) 025)
- Chiral condensate: Non-zero (Fodor et al, PoS (LATTICE 2013) 089)
- β function of g_R: No IRFP is observed (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)

Hadron Spectroscopy
- Action: Tree-level Symanzik-Improved 2-stout $\rho = 0.15$ smeared gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
- Previously: (Fodor et al, PoS (LATTICE 2014) 244)

![Graph showing data points and trend lines with decreasing M_π for $\beta = 3.20$ and $\beta = 3.25$.](graph.png)
Selected new results from the Spectroscopy in the sextet BSM Model

Chik Him (Ricky) Wong

Outline
Review

η Spectroscopy
Correlator construction
Improvement using Gradient Flow
Preliminary Results

Conclusion

Sextet model as Composite Higgs candidate

- Consistent with χSB
 - Static Quark Potential: Confining (Fodor et al, PoS (Lattice 2012) 025)
 - Chiral condensate: Non-zero (Fodor et al, PoS (LATTICE 2013) 089)
 - β function of g_R: No IRFP is observed (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)

- Hadron Spectroscopy
 - Action: Tree-level Symanzik-Improved 2-stout $\rho = 0.15$ smeared gauge action with Staggered $N_f = 2$ Sextet SU(3) fermions
 - Previously: (Fodor et al, PoS (LATTICE 2014) 244)

Baryon N: Its spectrum is crucial for predicting relic abundance in the early Universe and dictates how to embed into SM (Fodor et al, Phys.Rev. D94 (2016) no.1, 014503)

LHC-reachable resonance candidates ρ, a_0, a_1

Light Higgs f_0
Sextet model as Composite Higgs candidate

- Taste breaking
 - Goldstone spectrum depends on m with different slopes \Rightarrow Taste breaking pattern is different from QCD

\[\beta = 3.20 \]

\[\beta = 3.25 \]

\[\chiPT \] analysis is complicated by Taste breaking
Sextet model as Composite Higgs candidate

- **Taste breaking**
 - Goldstone spectrum depends on m with different slopes \Rightarrow Taste breaking pattern is different from QCD

- χPT analysis is complicated by Taste breaking
Taste breaking

- Goldstone spectrum depends on m with different slopes \Rightarrow Taste breaking pattern is different from QCD

- χPT analysis is complicated by Taste breaking
Selected new results from the Spectroscopy in the sextet BSM Model

Chik Him (Ricky) Wong

Outline
Review
Spectroscopy
Correlator construction
Improvement using Gradient Flow
Preliminary Results
Conclusion

Sextet model as Composite Higgs candidate

- **Taste breaking**

- Mixed action analysis using Gradient Flow is under development
Sextet model as Composite Higgs candidate

- Taste breaking

Mixed action analysis using Gradient Flow is under development
Sextet model as Composite Higgs candidate

- **Taste breaking**

 ![Graph showing taste splitting and restored symmetry](image1)

- **Mixed action analysis using Gradient Flow is under development**

 ![Graph showing mixed action analysis](image2)
Hadron spectroscopy in η channel

- Where is M_η (Isoscalar $J^{PC} = 0^{-+}$)?
 - $\pi = \bar{\psi} \gamma_5 C \psi, \psi = (u, d)^T$:

 NG boson
 \[
 \partial_\mu j_5^\mu \sim mj_5 \Rightarrow \lim_{m \to 0} M_\pi^2 = 0
 \]
 - $\eta = \bar{\psi} \gamma_5 \psi, \psi = (u, d)^T$:

 would-be NG boson, but mass generated by $U(1)_A$ anomaly
 \[
 \partial_\mu j_5^\mu \sim 2N_f(N_c \pm 2)q,
 \]

 $+:$ Symmetric, $-:$ Anti-symmetric

- Witten-Veneziano formula (E. Witten, G. Veneziano Nucl. Phys. B 159, 213,269 (1979)) predicts much higher mass than QCD in the chiral limit
 \[
 M_\eta^2 \sim \frac{6(N_c \pm 2)}{f_\pi^2} \chi_t|_{N_f=0}, \quad \chi_t|_{N_f=0} = \int dx \langle q(0)q(x) \rangle|_{N_f=0}
 \]
Hadron spectroscopy in η channel

- Where is M_η (Isoscalar $J^{PC} = 0^{-+}$)?
 - $\pi = \bar{\psi} \gamma_5 C \psi$, $\psi = (u, d)^T$:
 - NG boson
 \[
 \partial_\mu j_5^\mu \sim m j_5 \Rightarrow \lim_{m \to 0} M_\pi^2 = 0
 \]
 - $\eta = \bar{\psi} \gamma_5 \psi$, $\psi = (u, d)^T$:
 - would-be NG boson, but mass generated by $U(1)_A$ anomaly
 \[
 \partial_\mu j_5^\mu \sim 2N_f (N_c \pm 2) q,
 \]
 - $+: \text{Symmetric}$, $-: \text{Anti-symmetric}$

- Witten-Veneziano formula (E. Witten, G. Veneziano Nucl. Phys. B 159, 213,269 (1979))
 - predicts much higher mass than QCD in the chiral limit
 \[
 M_\eta^2 \sim \frac{6(N_c \pm 2)}{f_\pi^2} \chi_t|_{N_f=0}, \quad \chi_t|_{N_f=0} = \int dx \langle q(0) q(x) \rangle|_{N_f=0}
 \]
Hadron spectroscopy in η channel

Where is M_η (Isoscalar $J^{PC} = 0^{-+}$)?

$\pi = \bar{\psi} \gamma_5 C \psi$, $\psi = (u, d)^T$:

NG boson

$$\partial_\mu j_5^{\mu} \sim m_j \Rightarrow \lim_{m \to 0} M_\pi^2 = 0$$

$\eta = \bar{\psi} \gamma_5 \psi$, $\psi = (u, d)^T$:

would-be NG boson, but mass generated by $U(1)_A$ anomaly

$$\partial_\mu j_5^{\mu} \sim 2N_f (N_c + 2)q,$$

$+$: Symmetric, $-$: Anti-symmetric

Witten-Veneziano formula (E. Witten, G. Veneziano Nucl. Phys. B 159, 213,269 (1979)) predicts much higher mass than QCD in the chiral limit

$$M_\eta^2 \sim \frac{6(N_c + 2)}{f_\pi^2} \chi_t \bigg|_{N_f=0}, \quad \chi_t \bigg|_{N_f=0} = \int dx \langle q(0)q(x) \rangle \bigg|_{N_f=0}$$
Hadron spectroscopy in η channel

- Where is M_η (Isoscalar $J^{PC} = 0^{-+}$)?
 - $\pi = \bar{\psi} \gamma_5 C \psi$, $\psi = (u, d)^T$:
 - NG boson
 \[
 \partial_\mu j_5^\mu \sim mj_5 \Rightarrow \lim_{m \to 0} M_\pi^2 = 0
 \]
 - $\eta = \bar{\psi} \gamma_5 \psi$, $\psi = (u, d)^T$:
 - would-be NG boson, but mass generated by $U(1)_A$ anomaly
 \[
 \partial_\mu j_5^\mu \sim 2N_f (N_c \pm 2)q,
 \]
 $+: \text{Symmetric, } -: \text{Anti-symmetric}$

- Witten-Veneziano formula (E. Witten, G. Veneziano Nucl. Phys. B 159, 213,269 (1979)) predicts much higher mass than QCD in the chiral limit
 \[
 M_\eta^2 \sim \frac{6(N_c \pm 2)}{f_\pi^2} \chi_t \big|_{N_f=0}, \quad \chi_t \big|_{N_f=0} = \int dx \langle q(0)q(x) \rangle \big|_{N_f=0}
 \]
Hadron spectroscopy in η channel

- Fermionic correlator

$$\langle \eta(\tau)\eta(\tau_0) \rangle \equiv -C(\tau - \tau_0) + 2D(\tau - \tau_0)$$

- Involves disconnected contribution $D(\tau - \tau_0)$ which are costly
- In the limit $\tau - \tau_0 \to \infty$,

$$-C(\tau - \tau_0) \propto A_\pi e^{-M_\pi(\tau - \tau_0)}$$

$$2D(\tau - \tau_0) \propto -A_\pi e^{-M_\pi(\tau - \tau_0)} + B_\eta e^{-M_\eta(\tau - \tau_0)} \quad (M_\pi < M_\eta)$$

- Cancellation of large pion contribution \Rightarrow Noisy
Hadron spectroscopy in η channel

- Fermionic correlator

\[\langle \eta(\tau) \eta(\tau_0) \rangle \equiv -C(\tau - \tau_0) + 2D(\tau - \tau_0) \]

- Involves disconnected contribution $D(\tau - \tau_0)$ which are costly
- In the limit $\tau - \tau_0 \rightarrow \infty$,

\[-C(\tau - \tau_0) \propto A_\pi e^{-M_\pi(\tau - \tau_0)} \]
\[2D(\tau - \tau_0) \propto -A_\pi e^{-M_\pi(\tau - \tau_0)} + B_\eta e^{-M_\eta(\tau - \tau_0)} \quad (M_\pi < M_\eta) \]

- Cancellation of large pion contribution \Rightarrow Noisy
Hadron spectroscopy in η channel

- Fermionic correlator

$$\langle \eta(\tau)\eta(\tau_0) \rangle \equiv -C(\tau - \tau_0) + 2D(\tau - \tau_0)$$

- Involves disconnected contribution $D(\tau - \tau_0)$ which are costly
- In the limit $\tau - \tau_0 \rightarrow \infty$,

$$-C(\tau - \tau_0) \propto A_{\pi}e^{-M_\pi(\tau-\tau_0)}$$
$$2D(\tau - \tau_0) \propto -A_{\pi}e^{-M_\pi(\tau-\tau_0)} + B_\eta e^{-M_\eta(\tau-\tau_0)} \quad (M_\pi < M_\eta)$$

- Cancellation of large pion contribution \Rightarrow Noisy
Hadron spectroscopy in η channel

Fermionic correlator

$$\langle \eta(\tau) \eta(\tau_0) \rangle \equiv -C(\tau - \tau_0) + 2D(\tau - \tau_0)$$

- Involves disconnected contribution $D(\tau - \tau_0)$ which are costly
- In the limit $\tau - \tau_0 \to \infty$,

$$-C(\tau - \tau_0) \propto A_\pi e^{-M_\pi(\tau - \tau_0)}$$

$$2D(\tau - \tau_0) \propto -A_\pi e^{-M_\pi(\tau - \tau_0)} + B_\eta e^{-M_\eta(\tau - \tau_0)} (M_\pi < M_\eta)$$

- Cancellation of large pion contribution \Rightarrow Noisy
Hadron spectroscopy in η channel

- **Gluonic operator** (H. Fukaya, Phys. Rev. D 92, 111501 2015)
 - M_η can be extracted from the topological charge density:

 \[
 q(x) = \frac{1}{32\pi^2} \varepsilon_{\mu\nu\rho\sigma} \text{Tr} F_{cl}^{\mu\nu} F_{cl}^{\rho\sigma}(x)
 \]

 \[
 \lim_{r \to \text{large}} -\langle q(x)q(y) \rangle \propto \frac{K_1(M_\eta r)}{r}, \quad r \equiv |x-y|
 \]

 - $F_{cl}^{\mu\nu}$: Field Strength Tensor (clover term)
 - K_1: Modified Bessel function of the second kind
 - Does not couple directly to pions ⇒ Quieter
 - No inversions of Dirac operator ⇒ Cheaper
 - Further speed-up by FFT

 \[
 \langle q(x)q(y) \rangle = \frac{1}{4\pi^2} \int |\tilde{q}(k)|^2 e^{ik(x-y)} d^4k
 \]
Hadron spectroscopy in η channel

- **Gluonic operator** (H. Fukaya, Phys. Rev. D 92, 111501 2015)
 - M_η can be extracted from the topological charge density:

$$q(x) = \frac{1}{32\pi^2} \varepsilon_{\mu\nu\rho\sigma} \text{Tr} F_{\text{cl}}^{\mu\nu} F_{\text{cl}}^{\rho\sigma}(x)$$

$$\lim_{r \to \text{large}} - \langle q(x)q(y) \rangle \propto \frac{K_1(M_\eta r)}{r}, \; r \equiv |x-y|$$

$F_{\text{cl}}^{\mu\nu}$: Field Strength Tensor (clover term)
K_1: Modified Bessel function of the second kind
- Does not couple directly to pions ⇒ Quieter
- No inversions of Dirac operator ⇒ Cheaper
- Further speed-up by FFT

$$\langle q(x)q(y) \rangle = \frac{1}{4\pi^2} \int |\tilde{q}(k)|^2 e^{ik(x-y)} d^4k$$
Gluonic operator (H. Fukaya, Phys. Rev. D 92, 111501 2015)

- M_η can be extracted from the topological charge density:

\[
q(x) = \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \text{Tr} F_{c\ell}^{\mu\nu} F_{c\ell}^{\rho\sigma}(x)
\]

\[
\lim_{r \to \text{large}} -\langle q(x)q(y) \rangle \propto \frac{K_1(M_\eta r)}{r}, \quad r \equiv |x - y|
\]

- $F_{c\ell}^{\mu\nu}$: Field Strength Tensor (clover term)
- K_1: Modified Bessel function of the second kind
- Does not couple directly to pions ⇒ Quieter
- No inversions of Dirac operator ⇒ Cheaper
- Further speed-up by FFT

\[
\langle q(x)q(y) \rangle = \frac{1}{4\pi^2} \int |\tilde{q}(k)|^2 e^{ik(x-y)} d^4k
\]
Gluonic operator (H. Fukaya, Phys. Rev. D 92, 111501 2015)

- M_η can be extracted from the topological charge density:

$$q(x) = \frac{1}{32\pi^2} \varepsilon_{\mu \nu \rho \sigma} \text{Tr} \, F_{cl}^{\mu \nu} F_{cl}^{\rho \sigma}(x)$$

$$\lim_{r \rightarrow \text{large}} -\langle q(x)q(y) \rangle \propto \frac{K_1(M_\eta r)}{r}, \quad r \equiv |x - y|$$

- $F_{cl}^{\mu \nu}$: Field Strength Tensor (clover term)
- K_1: Modified Bessel function of the second kind
- Does not couple directly to pions ⇒ Quieter
- No inversions of Dirac operator ⇒ Cheaper
- Further speed-up by FFT

$$\langle q(x)q(y) \rangle = \frac{1}{4\pi^2} \int |\tilde{q}(k)|^2 e^{ik(x-y)} d^4k$$
Hadron spectroscopy in η channel

- **Gluonic operator** (H. Fukaya, Phys. Rev. D 92, 111501 2015)
 - M_η can be extracted from the topological charge density:

$$q(x) = \frac{1}{32\pi^2} \varepsilon_{\mu\nu\rho\sigma} \text{Tr} F_{\text{cl}}^{\mu\nu} F_{\text{cl}}^{\rho\sigma}(x)$$

$$\lim_{r \to \text{large}} -\langle q(x)q(y) \rangle \propto \frac{K_1(M_\eta r)}{r}, \quad r \equiv |x - y|$$

- $F_{\text{cl}}^{\mu\nu}$: Field Strength Tensor (clover term)
- K_1: Modified Bessel function of the second kind
- Does not couple directly to pions \Rightarrow Quieter
- No inversions of Dirac operator \Rightarrow Cheaper
- Further speed-up by FFT

$$\langle q(x)q(y) \rangle = \frac{1}{4\pi^2} \int |\tilde{q}(k)|^2 e^{ik(x-y)} d^4 k$$
Hadron spectroscopy in η channel

- Improvement from Gradient Flow
- Cut-off effects can be reduced by the lattice version of Gradient Flow with Wilson operator

$$\partial_t A_\mu(t,x) = -\frac{\partial S_{YM}}{\partial A_\mu}$$

- Smooths links similar to diffusion equation with diffusion length $\sqrt{8t}$ in lattice units
- Correlator is distorted by footprint \Rightarrow Fitting range of r should be far enough $r >> 2\sqrt{8t}$
Hadron spectroscopy in η channel

- Improvement from Gradient Flow
- Cut-off effects can be reduced by the lattice version of Gradient Flow with Wilson operator

$$\partial_t A_\mu(t,x) = -\frac{\partial S_{YM}}{\partial A_\mu}$$

- Smooths links similar to diffusion equation with diffusion length $\sqrt{8t}$ in lattice units
- Correlator is distorted by footprint ⇒ Fitting range of r should be far enough $r > 2\sqrt{8t}$
Hadron spectroscopy in η channel

- Improvement from Gradient Flow
- Cut-off effects can be reduced by the lattice version of Gradient Flow with Wilson operator

\[\partial_t A_\mu(t,x) = -\frac{\partial S_{YM}}{\partial A_\mu} \]

- Smooths links similar to diffusion equation with diffusion length $\sqrt{8t}$ in lattice units
- Correlator is distorted by footprint \Rightarrow Fitting range of r should be far enough $r >> 2\sqrt{8t}$
Hadron spectroscopy in η channel

- Improvement from Gradient Flow
- Cut-off effects can be reduced by the lattice version of Gradient Flow with Wilson operator

\[\partial_t A_\mu(t, x) = -\frac{\partial S_{YM}}{\partial A_\mu} \]

- Smooths links similar to diffusion equation with diffusion length $\sqrt{8t}$ in lattice units
- Correlator is distorted by footprint \Rightarrow Fitting range of r should be far enough $r \gg 2\sqrt{8t}$

![Graphs showing correlation functions for different times t_f.](image)
Chik Him (Ricky) Wong

Outline
- Review
- η Spectroscopy
- Correlator construction
- Improvement using Gradient Flow
- Preliminary Results
- Conclusion

Selected new results from the Spectroscopy in the sextet BSM Model

Preliminary Results

\[\langle q(x)q(y) \rangle = A \cdot K_1(M_\eta \cdot r) / r \]

For different times:
- \(t_f = 4.5 \)
- \(t_f = 5.0 \)
- \(t_f = 5.5 \)

Parameters:
- \(A = 6.4(2) \times 10^{-9} \)
- \(M_\eta = 0.418(2) \)
- \(\chi^2/dof = 0.2 \)

For different times:
- \(t_f = 5.0 \)
- \(t_f = 5.5 \)

Parameters:
- \(A = 6.3(2) \times 10^{-9} \)
- \(M_\eta = 0.416(2) \)
- \(\chi^2/dof = 0.5 \)
Preliminary Results

- M_η can be as heavy as > 3 TeV
- Measurements from more ensembles at different volumes, β’s and m’s are available and accumulating

Further analysis:
- The effects of finite volume and fixed topology
- Cross-check by time-slice-to-time-slice correlator

$$\lim_{|x_4-y_4| \to \text{large}} - \sum_{\bar{x}, \bar{y}} \langle q(x) q(y) \rangle \propto e^{-M_\eta |x_4-y_4|}$$

- The mixing between η and pseudoscalar glueball
Preliminary Results

- M_η can be as heavy as > 3 TeV
- Measurements from more ensembles at different volumes, β’s and m’s are available and accumulating

![Graphs showing correlation functions for different parameter values](image)

Further analysis:
- The effects of finite volume and fixed topology
- Cross-check by time-slice-to-time-slice correlator

$$\lim_{|x_4 - y_4| \to \text{large}} - \sum_{\vec{x}, \vec{y}} \langle q(x)q(y) \rangle \propto e^{-M_\eta |x_4 - y_4|}$$

- The mixing between η and pseudoscalar glueball
Preliminary Results

- \(M_\eta \) can be as heavy as \(\geq 3 \) TeV
- Measurements from more ensembles at different volumes, \(\beta \)'s and \(m \)'s are available and accumulating

\[\lim_{|x_4-y_4| \to \text{large}} - \sum_{\vec{x},\vec{y}} \langle q(\vec{x})q(\vec{y}) \rangle \propto e^{-M_\eta |x_4-y_4|} \]

- Further analysis:
 - The effects of finite volume and fixed topology
 - Cross-check by time-slice-to-time-slice correlator
 - The mixing between \(\eta \) and pseudoscalar glueball
Preliminary Results

- M_η can be as heavy as >3 TeV
- Measurements from more ensembles at different volumes, β’s and m’s are available and accumulating

Further analysis:
- The effects of finite volume and fixed topology
- Cross-check by time-slice-to-time-slice correlator

$$\lim_{|x_4 - y_4| \to \text{large}} - \sum_{\vec{x}, \vec{y}} \langle q(x)q(y) \rangle \propto e^{-M_\eta |x_4 - y_4|}$$

- The mixing between η and pseudoscalar glueball
Preliminary Results

- \(M_\eta \) can be as heavy as \(> 3 \) TeV
- Measurements from more ensembles at different volumes, \(\beta \)'s and \(m \)'s are available and accumulating

Further analysis:
- The effects of finite volume and fixed topology
- Cross-check by time-slice-to-time-slice correlator

\[
\lim_{|x_4 - y_4| \to \text{large}} \sum_{\vec{x}, \vec{y}} \langle q(x)q(y) \rangle \propto e^{-M_\eta |x_4 - y_4|}
\]

- The mixing between \(\eta \) and pseudoscalar glueball
Preliminary Results

- M_η can be as heavy as > 3 TeV
- Measurements from more ensembles at different volumes, β’s and m’s are available and accumulating

Further analysis:
- The effects of finite volume and fixed topology
- Cross-check by time-slice-to-time-slice correlator

$$\lim_{|x_4-y_4| \to \text{large}} - \sum_{\bar{x}, \bar{y}} \langle q(x)q(y) \rangle \propto e^{-M_\eta |x_4-y_4|}$$

- The mixing between η and pseudoscalar glueball
The sextet model remains an interesting candidate model of Composite Higgs scenario (More details can be found on Julius Kuti’s talk on Mon)

- More comprehensive and better analysis tools, e.g. mixed action analysis, are being developed
- Sextet M_η is extracted from the topological charge density correlator after Wilson Gradient Flow
- Sextet M_η appears to be heavy, and further investigation is ongoing
Conclusion

- The sextet model remains an interesting candidate model of Composite Higgs scenario (More details can be found on Julius Kuti’s talk on Mon)
- More comprehensive and better analysis tools, e.g. mixed action analysis, are being developed
- Sextet M_η is extracted from the topological charge density correlator after Wilson Gradient Flow
- Sextet M_η appears to be heavy, and further investigation is ongoing
Conclusion

- The sextet model remains an interesting candidate model of Composite Higgs scenario (More details can be found on Julius Kuti’s talk on Mon)
- More comprehensive and better analysis tools, e.g. mixed action analysis, are being developed
- Sextet M_η is extracted from the topological charge density correlator after Wilson Gradient Flow
- Sextet M_η appears to be heavy, and further investigation is ongoing
Conclusion

- The sextet model remains an interesting candidate model of Composite Higgs scenario (More details can be found on Julius Kuti’s talk on Mon)
- More comprehensive and better analysis tools, e.g. mixed action analysis, are being developed
- Sextet M_η is extracted from the topological charge density correlator after Wilson Gradient Flow
- Sextet M_η appears to be heavy, and further investigation is ongoing
Selected new results from the Spectroscopy in the sextet BSM Model

Chik Him (Ricky) Wong

Outline
Review
η Spectroscopy
Correlator construction
Improvement using Gradient Flow
Preliminary Results
Conclusion

$64^3 \times 96, \beta=3.2500, m=0.001, r_{\text{max}}=20$