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BACKGROUND

Infrared-conformal gauge theories have been considered as models for physics
beyond the Standard Model. In these models the anomalous dimension of the
fermion operator ψψ, γm, plays an important role. The scaling exponent of
the spectral density of the massless Dirac operator is a function of the mass
anomalous dimension γm, and thus it can be extracted by studying the behaviour
of the eigenvalue distribution of the Dirac operator.

SETUP

The theory which we are studying is SU(2) with Nf = 8 and Nf = 6 fermions in
the fundamental representation. We use HEX smeared, clover improved Wilson
fermions with Schrödinger functional boundary conditions, and we have tuned
the PCAC quark mass to zero. We calculate the integrated spectral density,
the mode number, per unit volume stochastically [1]. We use from 16 to 20
configurations for the calculation for each value of the gauge coupling.
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Figure 1: Mode number data on the right for Nf = 6 with V = 244 and on the left for Nf = 8
with V = 324. The dashed line shows the fit range.

POWER LAW FIT

The mode number in the vicinity of the IR-fixed point has an approximate form
of a power law [2, 3]

ν(Λ) ' ν0 + A
[
Λ2 −m2] 2

1+γ∗ , (1)
where ν0 and A are an additive and a multiplicative constant respectively, m is
the quark mass and γ∗ is the mass anomalous dimension γm near the fixed point.
Since we tune the PCAC mass to zero, we expect the two constants ν0 and m2 to
be close to zero, and in our investigations we found this to be the case. Setting
the two constants to zero had a negligible effect on the numerical value of γ∗,
and thus our fitting function is

ν(Λ) ' AΛ
4

1+γ∗. (2)

The range of eigenvalues where Eq. 2 holds is not known a priori, and needs
to be determined by trial and error. We established this range by matching the
results obtained using this method to the results obtained by the Schrödinger
functional step scaling method and the perturbative prediction for small coupling
values.

To obtain γ∗ we fit Eq. 2 to the data in Fig. 1, and our results are summarised
in Fig 2. When the data is presented as in the upper row, the range where Eq. 2
holds will appear as a straight line. The red dashed line shows our fit range. We
argue that the coupling runs so slowly near the fixed point that it changing will
not have a noticeable effect inside the window of our fit range.
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Figure 2: Our main results for γ∗ as a function of the gradient flow coupling constant using the
spectral density method. The curves are of descending gauge coupling order. The red and blue
solid lines correspond to the first order and fourth order perturbative results.

COMPARISON WITH OTHER METHODS

We have identified the presence of a fixed point for Nf = 6 at g2
GF ∼ 14 and for

Nf = 8 at g2
GF ∼ 8. For more details about this see the talk by Viljami Leino.

We have also calculated the mass anomalous dimension using the Schrödinger
functional step scaling method [4], and by fitting the correct power law behaviour
M ∝ m1/(1+γ)

Q to our spectrum data. The mass anomalous dimension calculated
with each of these methods are summarised in Table 1. For more details about
the spectrum measurements see the poster by Sara Tähtinen.
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Figure 3: The mass anomalous dimension as a function of the gradient flow coupling constant
obtained using the Schrödinger functional step scaling method.

Nf β γM γSD γSF
6 0.5 0.382(12) 0.280(2) 0.142(27)

0.6 0.314(7) 0.231(2) 0.414(63)
0.8 0.248(3) ∼ 0.16 0.157(21)

8 0.6 0.293(30) ∼ 0.13 0.072(24)
0.8 0.238(31) 0.111(1) 0.109(14)

Table 1: Comparison of obtained γ∗ values between different methods. The values for the
spectral density method quoted without errors are based on interpolation from the data.
Unreliable data points are represented with colouring.

CONCLUSIONS
Since the Schrödinger functional step scaling method shows nontrivial behaviour
near the fixed point, complementary methods for determining the mass anomalous
dimension are warranted. While our results for the mass anomalous dimension
using the step scaling method and the spectral density method agree for some
coupling values, there are unresolved discrepancies in our results between different
methods. This comparison is further complicated by the unexpected behaviour
of the step scaling method at the fixed point.
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