

Real-time simulations of anomaly induced transport in external magnetic field

Pavel Buividovich and <u>Senia Valgushev</u> (University of Regensburg)

Lattice 2016, 27 July 2016

Chiral plasmas

Chiral plasma: medium consist of massless fermions

Quark-gluon plasma

Hadronic matter

Leptons, neutrinos at early stages of Universe Weyl semimetals

Liquid He3

Chiral quantum anomaly: classical action is invariant under chiral rotations, but the measure of the path integral is not:

$$\mathcal{L} = \bar{\psi} \mathcal{D} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

$$\mathcal{Z} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A_{\mu}e^{-i\int dx_{\mu}\mathcal{L}[\bar{\psi},\psi,A_{\mu}]}$$
$$\stackrel{\rightarrow}{e^{i\theta\gamma_{5}}}\int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A_{\mu}e^{-i\int dx_{\mu}\mathcal{L}[\bar{\psi},\psi,A_{\mu}]-iS_{\theta}}$$

Non-conservation of axial current:

$$\partial_{\mu} j_{A}^{\mu} = \frac{1}{8\pi^{2}} \epsilon_{\mu\nu\alpha\beta} F^{\mu\nu} F^{\alpha\beta}$$
$$\frac{dQ_{A}}{dt} = \frac{e^{2}}{2\pi^{2}} \int d^{3}x \vec{E} \cdot \vec{B}$$

$$Q_A = N_R - N_L \qquad J_A = J_R - J_L$$

appear non-trivial correction

Chiral anomaly as Schwinger effect in 1D

In the magnetic field motion of fermions is effectively 1D:

Landau levels in the magnetic field

electron

magnetic field line

In external electric field E || B there is a pair production on the topological lowest Landau level (n = 0):

Degeneracy per unit area of each Landau level is $B/2\pi$

$$\frac{dQ_A}{dt} = \frac{d(n_R - n_L)}{dt} \frac{B}{2\pi} = \frac{eEB}{2\pi^2}$$

$$J_z(t) = \frac{eEBt}{2\pi^2}$$

Chiral anomaly as Schwinger effect in 1D

Contribution of lowest Landau level to current is dominant

$$\epsilon_{n,\sigma} = \pm \sqrt{k_z^2 + 2B(n-1+\sigma)}$$

Higher Landau levels are effectively massive, pair production is **exponentially suppressed**:

$$\Gamma_n \sim \exp\left(-\frac{2Bn}{E}\right)$$

Landau levels in the magnetic field

Non-perturbative correction to the current:

$$J_z(t) = \frac{EB}{2\pi^2} \mathrm{coth}\left(\frac{\pi B}{E}\right)$$

Important when $E \sim B$

Abramchuk, Zubkov, arXiv:1605.0237911

Negative magnetoresistivity as manifestation of chiral anomaly

Suppose that there is a chirality-flipping process in the system with typical scattering time τ :

$$\dot{N}_{pairs} = \dot{N}_{scat}$$

Then steady state is described by chiral chemical potential μ_A .

Negative Magnetoresistivity in Chiral plasmas

Magneto-conductivity in SU(2) QCD:

 $\sigma \sim B^{(2.3 \pm 0.3)}, \tau \sim 0.15$ fm/c

Buividovich et al, Phys. Rev. Lett. 105:132001, 2010

Large activity in condensed matter community:

Experimental observation in Dirac SM ZrTe5: Qiang Li et al,Nature Physics 12, 550–554 (2016)

Observation in WS TaAs:

- C.-L. Zhang, et al, Nature Communications 7, 10735 (2016)
- TaP: F. Arnold et al, Nature Communications 7, 11615 (2016)

Chiral plasma oscillations

Naive consideration

Let
$$E = E(t)$$

CME: $J_z(t) = \frac{\mu_A(t)}{2\pi^2}B$

On lowest Landau level (LLL):

 $Q_A(t) = \mu_A(t) \frac{B}{2\pi^2}$

$$J_z(t) = Q_A(t)$$

Maxwell equation:

$$\partial_t^2 E(t) = -\partial_t J_z(t) = -\frac{B}{2\pi^2} E(t)$$

Chiral plasma oscillations:

$$\omega_A = \sqrt{\frac{B}{2\pi^2}}$$

Classical-statistical real-time simulations

Out-of equilbrium real-time classical-statistical approximation:

 $\begin{aligned} \partial_t \vec{A}(t) &= -\vec{E}(t) \\ \nabla \times \vec{A}(t) &= \vec{B}(t) \\ \partial_t \vec{E}(t) &= \nabla \times \vec{B}(t) - \vec{J}[\vec{A}(t)] > -\vec{J}_{ext} \\ \partial_t \vec{B}(t) &= -\nabla \times \vec{E}(t) \\ < \vec{J}[\vec{A}(t)] &> = \sum_n n_f(\varepsilon_n) \psi_n^{\dagger} \vec{J}[\vec{A}(t)] \psi_n \\ \partial_t \psi_n(t) &= -i \hat{H}(\vec{A}(t), t) \psi_n(t) \end{aligned}$

Occupation numbers of bosonic fields have to be sufficiently high

Susskind, '93 G. Aarts, '99

J. Berges, F. Hebenstreit, N. Mueller

Simulations in the external magnetic field on the lattice

Magnetic field on a torus breaks translational invariance in transverse plane

are invariant only under discrete shifts in transverse plane!

Restored in the Y direction if
$$B = \frac{2\pi n |L|}{L^2}$$

Al-Hashimi, Wiese arXiv:0807.0630

Computational setup

The **bottleneck** is evolution of fermionic modes:

$$\partial_t \psi_n(t) = -iH(t)\psi_n(t)$$

In general, # of equations is (Ly Lx Lz 4) × (Ly Lx Lz 4)

modes # components of each mode

We use non-compact abelian gauge field + Wilson-Dirac fermions

$$\vec{A}(t) = (0, Bx, A_z(t)) \quad B = \frac{2\pi n |L|}{L^2}$$

of equations is (Ly Lx Lz 4) x (Lx 4) !

Lattice sizes up to 100^3

Vector current and anomaly in constant electric field

We apply constant electric field E || B to non-interacting system

Vector current and anomaly in constant electric field

Evolution at very strong electric fields E ~ B

We see NP contributions from Schwinger pair production at higher, massive Landau levels:

$$J_z(t) = \frac{BE}{2\pi^2} \coth\left(\frac{\pi B}{E}\right) t$$

Zubkov, arXiv:1605.02379

Chiral Plasma Oscillations

Plasma of charged interacting chiral fermions in external magnetic field B

Future development: Outlook

In continuum the states of free fermion in magnetic field are effectively 1D! Can one use it in order to reduce computational costs?

Energy levels of Wilson-Dirac fermions in magnetic field:

Landau levels:

 $\epsilon_{n,\sigma} = \pm \sqrt{k_z^2 + 2B(n-1+\sigma)}$

Indicates that lattice states are also effectively 1D! Practical implementation is an open question...

Conclusions

1) NP contribution to the vector current due to Schwinger pair production in E || B is observed.

2) Longitudinal oscillations in chiral plasma in magnetic field are observed. *Frequency is fixed by anomaly coefficient.*

3) Effect of electromagnetic interactions is very strong, non-perturbative calculations are essential!

4) Future development: chiral magnetic waves.