PION STRUCTURE FROM TWISTED MASS LATTICE QCD DOWN TO THE PHYSICAL PION MASS

B. Kostrzewa, M. Oehm, F. Sanfilippo, S. Simula, C. Urbach

HISKP (Theory), Rheinische Friedrich-Wilhelms-Universität Bonn

Lattice 2016, Southampton – July 29th 2016

Pion Structure with Twisted Mass Fermions

In this talk: discuss two sets of benchmark observables for hadron structure in LQCD.

• $F_{\pi}(Q^2)$: Electromagnetic (vector) form factor of the pion at space-like momentum transfers Q^2

at small Q^2 : stringent test of QCD, needs non-perturbative calculation experimental precision $\mathcal{O}(1\%)$

at $Q^2=0$, pion point-like $ightarrow F_\pi(0)=1$

•
$$\langle r^2 \rangle = 6 \frac{\mathrm{d} F_\pi(Q^2)}{\mathrm{d} Q^2} \Big|_{Q^2=0}$$
: pion charge radius

very sensitive to pion mass

"gold-plated" observable for chiral logarithms

• $\langle x \rangle_{\pi}$: iso-vector momentum fraction (Part of M. Oehm's Master thesis)

- quark-line connected contribution only
- can be compared to [Wijesooriya, Reimer, Holt, Phys. Rev. C 72, 065203, 2005]

Lattice Setup

This talk: results from two different lattice actions

- Twisted mass fermions at maximal twist
 - $N_f = 2$ with clover term, down to $M_{\pi}^{\rm phys}$

 $N_f = 2 + 1 + 1$ w/o clover term, down to about $230 {
m ~MeV}$

[Frezzotti, Grassi, Sint, Weisz, 2000; Frezzotti, Rossi, 2004; ETMC, arXiv:1507.05068, 2015]

$$S = \beta \sum_{x;P} \left[b_0 \{ 1 - \frac{1}{3} \operatorname{ReTr} P^{1 \times 1}(x) \} + b_1 \{ 1 - \frac{1}{3} \operatorname{ReTr} P^{1 \times 2}(x) \} \right]$$

+ $\sum_x \bar{\chi}_{\ell}(x) \left[D_W(U) + m_0 + i\mu\gamma^5 \tau^3 + \frac{i}{4} C_{\mathsf{SW}} \sigma^{\mu\nu} \mathcal{F}^{\mu\nu}(U) \right] \chi_{\ell}(x)$
+ $\sum_x \bar{\chi}_h(x) \left[D_W(U) + m_0 + i\mu_\sigma \gamma^5 \tau^1 + \mu_\delta \tau^3 \right] \chi_h(x)$

• Iwasaki gauge action: $b_0 = 1 - 8b_1$, $b_1 = -0.331$ [Iwasaki; 1983]

• For $N_f = 2 \text{ w/clover}$: $C_{\text{SW}} = 1.57551$ from Padé fit of CP-PACS data

[Aoki et al.; Phys.Rev. D73 (2006) 034501]

Electromagnetic Form Factor - $F_{\pi}(Q^2)$ Overview

- Phenomenological determination down to $Q^2 \sim 0.02 \text{ GeV}^2$ $\pi - e \text{ scattering: CERN [Amendolia et al., Phys.Lett. B146 (1984) 116-120]}$
- Lattice: relate $\langle \pi, p_f | J_{\mu}^{\text{em}} | \pi, p_i \rangle \rightarrow \langle \pi, p_f | V_{\mu} | \pi, p_i \rangle$
 - ETMC [Frezzotti, Lubicz, Simula (Phys.Rev.D79, 2009)]
 - * $N_f = 2$ twisted mass, NNLO chiral extrapolation with exp. scalar charge radius
 - ▶ Regensburg/Southampton/Mainz [Brandt, Jüttner, Wittig, JHEP 1311 (2013) 034]
 - * $N_f=2$, combined NNLO chiral extrapolations with M_{π}, f_{π} and priors
 - ► HPQCD [Koponen et al., Phys.Rev. D93 (2016) no.5, 054503]
 - ★ $N_f = 2 + 1 + 1$ calculation at physical light quark mass

this computation

- $N_f = 2$ twisted mass + clover
- $M_{\pi} = 135, 250, 340 \text{ MeV}$
- L/a = 24, 32, 48, 64
- twisted boundary conditions to reach low momentum transfers

[Divitis, Petronzio, Tantalo, Phys.Lett. B595 (2004) 408-413]

Electromagnetic Form Factor - Lattice Technique

$$\mathbf{O}_{\mathbf{x}} = \bar{\psi} \gamma_{\mathbf{4}} \psi \Rightarrow F_{\pi}(Q^2)$$

- Breit frame: $\mathbf{p_f} = -\mathbf{p_i}$, space-like momentum transfer $Q^2 = -(p_i p_f)^2$
 - $\mathcal{O}(a) ext{-improved}\;F_{\pi}(Q^2)$ (at maximal twist)

[Frezzotti, Lubicz, Simula (Phys.Rev.D79, 2009)]

- isotropic momenta: $\theta_x = \theta_y = \theta_z = \tilde{\theta}$
- $\mathbf{q_i} = \{ \tilde{\theta}/L, \, \tilde{\theta}/L, \, \tilde{\theta}/L \}$
- $\theta_1 = \tilde{\theta}, \ \theta_2 = -\tilde{\theta}, \ \theta_3 = 0$
- sequential propagator method
- sink time-slice: T/2, fit 2pt fn. in plateau region, reconstruct at T/2 from bootstrap samples

$F_{\pi}(Q^2)$ - Stochastic Technique

- Computation follows [Frezzotti, Lubicz, Simula (Phys.Rev.D79, 2009)]
- However: use $N_{\eta} = \{4, 8, 12, 16\} \mathbb{Z}_2 \bigotimes \mathbb{Z}_2$ random sources for $L/a = \{24, 32, 48, 64\}$ respectively, *without* dilution
- around 300 configurations per ensemble (fewer on L/a = 64)
- Especially for large momenta, see good relative error scaling for large t/a in 2pt (left) and 3pt (right) functions

$F_{\pi}(Q^2)$ - Results at the Physical Pion Mass

$$F_{\pi}(Q^2) = 1 - \frac{\langle r^2 \rangle}{6}Q^2 + cQ^4$$

•
$$L/a = 48,64$$

•
$$Q^2 \in \{0 \text{ GeV}^2, 0.16 \text{ GeV}^2\}$$

- In small Q^2 region, errors on $F_\pi(Q^2)\,$ are of $\mathcal{O}(0.1\%)$
- But: error on $\left[1-F_{\pi}(Q^2)
 ight]$ is of $\mathcal{O}(15\%)$

 $F_{\pi}(Q^2)$ - Small Q^2 Region

$$F_{\pi}(Q^2) = 1 - \frac{\langle r^2 \rangle}{6}Q^2 + cQ^4$$

- Significant finite volume effects $(L/a = \{48, 64\})$
- As for CERN group, $F_{\pi}(Q^2) = \frac{1}{1+Q^2/M_{\rho}^2} \text{ not}$ sufficient to describe data
- L/a = 64 result falls right onto phenomenology, but could there be more FSE?
- Could we do better with some more cheaper data?

 $F_{\pi}(Q^2)$ - Larger Than Physical Pion Masses

$$F_{\pi}(Q^2) = 1 - \frac{\langle r^2 \rangle}{6}Q^2 + cQ^4$$

- All fits have $\chi^2/{
 m dof} \sim 1$
- Only one $Q^2 > 0$ point at L/a = 64, no c in fit
- Complicated combination chiral / FS effects

M_{π}	L/a	$\langle r^2 \rangle \; [{\rm fm}^2]$	$c [\mathrm{fm}^4]$
340	24	0.251(11)	0.0008(01)
340	32	0.270(08)	0.0014(02)
250	24	0.211(22)	0.0007(02)
135	48	0.330(30)	0.0020(23)
135	64	0.437(45)	_

 More L/a = 64 points required to check if FSE not overestimated [Jiang, Tiburzi, Phys. Rev. D78, 037501 (2008)]

$\langle r^2 \rangle$ - (crude) Combined Infinite Volume Limit

- Assume simple exponential finite volume effects
- Add chiral logarithm following [Koponen et al., Phys.Rev. D93 (2016) no.5, 054503], [Gasser, Leutwyler, Nucl.Phys. B250 (1985) 517-538]

•
$$\alpha = 3/2 \Rightarrow \chi^2/\text{dof} \sim 1$$

•
$$\langle r^2 \rangle = 0.46(4) \text{ fm}^2$$

 $\Lambda_{\chi} = 630(70) \text{ MeV}$
highly preliminary!

$$\left\langle r_L^2(M_\pi) \right\rangle = \left(1 - c_L \cdot \frac{\exp(-M_\pi \cdot L)}{(M_\pi \cdot L)^\alpha} \right) \cdot \left[\left\langle r_\infty^2(M_\pi^{\text{phys}}) \right\rangle - \frac{1}{\Lambda_\chi^2} \cdot \ln\left(\left[\frac{M_\pi}{M_\pi^{\text{phys}}} \right]^2 \right) \right]$$

Pion $\langle x \rangle$

- Method (essentially) same as for vector form factor
- One stochastic source per configuration, around 300 configurations per ensemble

$$\mathbf{O_x} = \frac{1}{2} \bar{\psi} \left(\gamma_4 \overleftrightarrow{D}_4 - \frac{1}{3} \sum_{i=1}^{3} \gamma_i \overleftrightarrow{D}_i \right) \psi \Rightarrow \langle x \rangle \text{ [Best et al., Phys.Rev.D56, 1997]}$$

•
$$\theta_x = \theta_y = \theta_z = 0 \rightarrow q^2 = 0$$

- (almost) no mixing under renormalisation
- here: quark-line connected contribution only
- more derivatives with momentum give higher moments $\langle x^2
 angle, \langle x^3
 angle, \ldots$

Pion $\langle x \rangle$ - Overview

- $N_f = 2 + 1 + 1$ (tmlqcd)
 - currently: 13 ensembles $M_{\pi} \approx 230$ to 470 MeV $a \approx 0.062$ to 0.089 fm $L \approx 2$ to 3 fm
 - renormalisation constants: [Alexandrou et al, arXiv:1509.00213]
- $N_f = 2$ (tmlqcd + clover)
 - $M_{\pi} \approx 135$ to 340 MeV $a \approx 0.092$ fm $L \approx 2.2$ to 4.5 fm
 - [Abdel-Rehim et al, Phys.Rev. D92 (2015) no.11, 114513]

Pion $\langle x \rangle$ - Chiral Extrapolation

- Here: $a \approx 0.089 \text{ fm}$
- For each lattice spacing: $\langle x \rangle_{\rm ren}(a^2 M_{\pi^\pm}^2, a^2) = \langle x \rangle_{\rm ren}(a^2) + c_a a^2 M_{\pi^\pm}^2$
- \bullet FSE unresolved within current uncertainties \rightarrow ignore for now

Pion $\langle x \rangle$ - Continuum Extrapolation

- Constant continuum extrapolation seems to be well justified.
- $N_f=2, M_{\pi^\pm}^{\rm phys}$ compatible within $\sim 1.5\sigma$
 - \blacktriangleright check FSE: computation on $\sim 6\,$ fm lattice ongoing

Summary & Conclusions

- \bullet Very tentative result for pion vector form factor at $M^{\rm phys}_{\pi}$
- Agreement with phenomenology and other determinations, but FSE significant
- $\langle x \rangle_{\pi}$ presented with chiral and continuum extrapolation
- Very good agreement with phenomenology, ready to compute higher moments

Outlook

- Computation of $\langle x^2
 angle$ in progress (significant increase of statistics required)
- At $M^{\rm phys}_{\pi}$, check of FSE on $\langle x \rangle$ ongoing
- For $F_{\pi}(Q^2)$, L/a = 64 results are being extended
- $F_{\pi}(Q^2)$ on $N_f = 2 + 1 + 1$ ensembles ongoing
- scalar radius $\langle r_S^2 \rangle$ computation ongoing

Thanks for your attention!

Backup Slides - Pion Dispersion Relation

Backup Slides - Reconstruction of the Two-Point Function

