Thermodynamics with continuum extrapolated overlap fermions

Sándor Katz

Institute for Theoretical Physics, Eötvös University

for the Wuppertal-Budapest collaboration Sz. Borsanyi, Z. Fodor, K-H. Kampert, T. Kawanai, T.G. Kovacs, S.W. Mages, A. Pasztor, F. Pittler, J. Redondo, A. Ringwald, K.K Szabo

arXiv:1606.07494

Sándor Katz Overlap thermodynamics

Introduction	Reweighting	2+1 flavors of overlap fermions	Results
Outline			
Catillo			

3 2+1 flavors of overlap fermions

同ト・モト・モ

크

Introduction	Reweighting	2+1 flavors of overlap fermions	Results
Introduction			

- Determine topological susceptibility at high *T* in the physical point using fixed *Q* integral
- Exact zero modes of the Dirac operator for *Q* ≠ 0 are crucial
 → large discretization effects with staggered fermions
- Possible solutions
 - 1) eigenvalue reweighting
 - 2) using chiral fermions
- We use 1) for the 3 flavor theory and 2) for going down to the physical point

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

э

Fixed Q integral to reach the physical point (see also previous talk & Frison et. al. 1606.07175)

At high temperatures $\chi(T) \sim T^{-b}$ only Q = 0, 1 contribute

- $b = -rac{d\log\chi}{d\log T} \simeq b_1 4$ with $b_1 = rac{d\beta}{d\log a} \langle S_g
 angle_{1-0} + \sum_f rac{d\log m_f}{d\log a} m_f \langle \overline{\psi} \psi_f
 angle_{1-0}$
 - S_g : small cutoff effects, huge statistics \rightarrow staggered $N_f = 3$
 - *m_f*⟨ψψ_f⟩₁₋₀: large cutoff effects → staggered reweighting for *N_f* = 3, overlap for *N_f* = 2 + 1

Reweighting

Strong cut-off effects are related to the lack of exact zero-modes.

- In the continuum non-trivial sectors are suppressed by the contribution of zero-modes to the fermion determinant, ie. by the quark mass.
- On the lattice the suppression is altered:

 $m \rightarrow m + i\lambda_0$, where λ_0 is a would be zero-mode.

Weaker suppression $\rightarrow \chi(T)$ overestimated.

For large temperatures $\lambda_0 \sim 1/N_t^2$, this explains the vanishing chiral condensate difference.

• To improve 1. identify would be zero-modes

2. restore the continuum weight \rightarrow reweight

$$w[U] \sim \frac{m}{m+i\lambda_0}$$

▲□ → ▲ □ → ▲ □ → □

Reweighting - example

A direct comparison of methods @ T=300 MeV $m_{ud} = m_{ud}^{\text{phys}}$.

standard: huge lattice artefacts; **ratio:** $\chi(T)/\chi(T = 0)$ apparent scaling is misleading; **reweight:** orders of magnitude smaller; **integral:** calculate @ $m_{ud} = m_s$ directly and integrate down in mass, consistent with reweighting

A (1) > A (2) > A

Fixed Q integral - chiral condensate

In the high temperature (SB) limit only the zero mode contributes $m_f \langle \overline{\psi} \psi_f \rangle_{1-0} = n_f.$

For large *T* goes to 0 instead of approaching the SB limit, this is a lattice artefact. Non-chiral fermions fail spectacularly for large temperatures! Solutions: reweighting or chiral fermions.

Overlap lattice setup

Symanzik improved gauge action and $N_f = 2 + 1$ overlap fermions with 2 levels of HEX smearing

$$D = \left(m_0 - \frac{m}{2}\right) \left(1 + \gamma_5 \operatorname{sgn}\left(H_W\right)\right) + m,$$

with $m_0 = 1.3$

Extra Wilson fermions suppress topology changes (Fukaya et al. 2006):

$$S_E = \sum_{x} \left\{ \bar{\psi}_E(x) D_W(-m_0) \psi_E(x) + \phi^{\dagger}(x) [D_W(-m_0) + im_B \gamma_5 \tau_3] \phi(x) \right\}.$$

since m_0 is not tuned along the continuum limit they decouple ϕ is added to suppress the effect of the extra fermion \rightarrow only modes below m_B are suppressed.

Odd number of flavors with overlap

- Use chiral decomposition (Bode et al. 1999, Degrand, Schaefer 2006)
- $H_{\pm}^2 = P_{\pm} H_{ov}^2 P_{\pm}$ with $P_{\pm} = (1 \pm \gamma_5)/2$ and $H_{ov}^2 = (\gamma_5 D_{ov})^2$
- $\det D_{ov} \sim \det H_{\pm}^2$ where the proportionality factor depends on Q
- if Q is fixed, using either of H_{\pm}^2 in a HMC results in one flavor
- test both 1 and 2 flavors against pure gauge + Metropolis

æ

Line of constant physics (LCP)

Determine the 3 flavor LCP ($m_{ud} = m_s = m_{s;phys}$) for which the physical condition $m_{\pi}^{(3)} w_0^{(3)} = 0.552(1)$ was found by staggered runs.

Physical LCP is given by $m_{ud}^{ov} = m_s^{ov}/27.68$

Difficulty with fixed Q simulations

Fixed global Q (e.g. Q = 0) permits instanton-antiinstanton pairs These are difficult to produce/remove in HMC The Dirac operator has a pair of small eigenvalues in some streams

expectation (supported by staggered runs): $\left(\frac{Z_1}{Z_0}\right)_{\text{full}} = \frac{Z_{10}}{Z_{00}}$ configurations (streams) with I-A pairs can be dropped

Condensate difference

For the mass integration we have to compute $m_{ud} \langle \overline{\psi} \psi_{ud} \rangle_{1-0}$. In the Q = 1 sector the zero mode is treated exactly.

β	$N_s imes N_t$	m _{ud}	m _s	# ktraj	$\frac{1}{2}m_{ud}\langle \overline{\psi}\psi_{ud}\rangle_{1-0}$
m_{ud} -scan at $T = 300$ MeV					
3.99	12 × 6	0.0690	0.0690	10	1.00(1)
3.99	12×6	0.0460	0.0690	5	0.99(1)
3.99	12×6	0.0172	0.0690	8	1.00(1)
3.99	12×6	0.0069	0.0690	10	1.00(1)
	m_{ud} -scan at $T = 450$ MeV				
4.19	12 × 6	0.0389	0.0389	10	1.00(1)
4.19	12×6	0.0291	0.0389	6	1.00(1)
4.19	12×6	0.0259	0.0389	3	1.00(1)
4.19	12×6	0.0195	0.0389	3	1.00(1)
4.19	12×6	0.0097	0.0389	3	1.00(1)
4.19	12×6	0.0049	0.0389	3	1.00(1)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

크

Condensate difference

m_{ud} -scan at $T = 650$ MeV							
4.38	12 × 6	0.0242	0.0242	5	1.00(1)		
4.38	12 imes 6	0.0181	0.0242	5	1.00(1)		
4.38	12 imes 6	0.0161	0.0242	3	1.00(1)		
4.38	12 imes 6	0.0121	0.0242	2	1.00(1)		
4.38	12 imes 6	0.0060	0.0242	2	1.00(1)		
	N _t -scan						
3.99	12 × 6	0.0690	0.0690	12	1.00(1)		
4.13	16 imes 8	0.0458	0.0458	29	1.02(2)		
4.24	20 imes 10	0.0342	0.0342	80	1.00(1)		
N _s -scan							
3.99	12 × 6	0.0690	0.0690	12	1.00(1)		
3.99	16 imes 6	0.0690	0.0690	20	1.00(1)		
3.99	20 imes 6	0.0690	0.0690	32	1.02(1)		
3.99	24 imes 6	0.0690	0.0690	48	1.00(1)		

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

3

Topological susceptibility at the physical point

at $T < T_c$: $\chi \sim \frac{m_u m_d}{m_u + m_d}$ while at $T > T_c$: $\chi \sim m_u m_d$ isospin splitting in both cases results in a factor of $\frac{4m_u m_d}{(m_u + m_d)^2} \approx 0.88$

This results in an axion mass of $m_A = 50(4) \ \mu eV$ (in post-inflation with same amount of topological defects as misalignment).