

Universität Bielefeld

Thimble

A thimble is a bell or ring shaped sheath of a hard substance, such as bone, leather, metal or wood, which is worn on the tip or middle of a finger or the thumb to help push a needle while sewing and to protect the finger/thumb from being pricked.

Simulating low dimensional QCD on Lefschetz thimbles

Christian Schmidt with Felix Ziesché

Federal Ministry of Education and Research

SPONSORED BY THE

The QCD partition function

$$Z(T,V,m,\mu) = \int \mathcal{D}U \; \underbrace{\det M[U]}_{} \; e^{-S_G[U]}$$

Lattice Dirac spectrum

complex for $\,\mu>0$

 $[\det\,M(\mu)]^* = \det\,M(-\mu^*)$

- standard MC techniques not applicable
- highly oscillatory integral with exponentially large cancellations

Idea: Deforming the domain of integration

Idea: Deforming the domain of integration

Standard 1d-example: the Airy integral

$${
m Ai}[1] = rac{1}{2\pi} \int_{-\infty}^\infty {
m d}x \; \exp\left\{i\left(rac{x^3}{3}+x
ight)
ight\}$$

$$x \to z = x + \imath y$$

Theory behind: Picard-Lefschetz theory

• use the real valued function $S_R(z) = \operatorname{Re}[-i(z^3/3+z)]$ as a Morse function

C. Schmidt, Lattice 2016, Southampton, UK

 $x \rightarrow z = x + iy$

Idea: Deforming the domain of integration

Standard 1d-example: the Airy integral

$$\operatorname{Ai}[1] = rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}x \; \exp\left\{i\left(rac{x^3}{3} + x
ight)
ight\}$$

Theory behind: Picard-Lefschetz theory

- use the real valued function $S_R(z) = \operatorname{Re}[-i(z^3/3+z)]$ as a Morse function
- ullet find all separated saddle points (σ_i)

Idea: Deforming the domain of integration

Standard 1d-example: the Airy integral

$$egin{aligned} \operatorname{Ai}[1] &= rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}x \; \exp\left\{i\left(rac{x^3}{3} + x
ight)
ight\} \ x & o z = x + iy \end{aligned}$$

Theory behind: Picard-Lefschetz theory

- use the real valued function $S_R(z) = \operatorname{Re}[-i(z^3/3+z)]$ as a Morse function
- find all separated saddle points (σ_i)
- associated with each saddle point (σ_i) , find one stable (\mathcal{J}_i) and one unstable thimble (\mathcal{K}_i) as solutions of the steepest descent/ascent flow equation

$$rac{\mathrm{d}z}{\mathrm{d}t} = \mp
abla S_R(z) \quad (ext{note: } S_I(z) ext{ remains } \ ext{const. along flow})$$

Idea: Deforming the domain of integration

Standard 1d-example: the Airy integral

$$egin{aligned} \operatorname{Ai}[1] &= rac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}x \; \exp\left\{i\left(rac{x^3}{3} + x
ight)
ight\} \ x & o z = x + iy \end{aligned}$$

Theory behind: Picard-Lefschetz theory

- use the real valued function $S_R(z) = \operatorname{Re}[-i(z^3/3+z)]$ as a Morse function
- find all separated saddle points (σ_i)
- associated with each saddle point (σ_i) , find one stable (\mathcal{J}_i) and one unstable thimble (\mathcal{K}_i) as solutions of the steepest descent/ascent flow equation

 $rac{\mathrm{d}z}{\mathrm{d}t} = \mp
abla S_R(z) \quad (ext{note: } S_I(z) ext{ remains const. along flow})$

• decompose original integral into thimbles $\int_{\mathbb{R}} dz \ e^{-S(z)} = \sum_{i} n_i \ e^{-S_I(\sigma_i)} \int_{J_i} dz \ e^{-S_R(z)}$ (here: $n_1 = 1, \ n_2 = 0, \ S_I(\sigma_1) = 0$)

Original domain of integration

U^{4V}	$U_{x, u}\in \mathrm{SU}(3)$	real dim. $4 imes V imes 8$
	$U = \exp \left\{ -i \sum_{i} T \right\}$	
Complexified space	$C = \exp\left(-i\sum_{a}\omega_{a}I_{a}\right)$	
$ ilde{U}^{4V}$	$ ilde{U}_{x, u} \in \mathrm{SL}(3,\mathbb{C})$	real dim. $4 imes V imes 8 imes 2$

New domain(s) of integration: Lefschetz thimble

 $\begin{array}{l} \mathcal{J}_0 + \mathcal{J}_1 + \cdots & \text{real dim. } 4 \times V \times 8 \\ \mathcal{J}_0 := \left\{ \tilde{U}_{x,\nu} \mid U(\tau) \text{ is solution of the SD equation with} \\ & U(0) = \tilde{U}_{x,\nu} \text{ and } U(\tau \to \infty) = \mathcal{N} \end{array} \right\} \end{array}$

here $\,\mathcal{N}\,$ denotes the gauge orbit of the unity configuration

How many relevant thimbles are there in full QCD?

How to sample them?

- Langevin on the thimble (Aurora-algorithm) Cristoforetti et al., PRD 86 (2012) 074506
- HMC on the thimble Fujii et al., JHEP 1310 (2013) 147
- Use a map of the thimble (projection-, contraction-algorithm) A. Mukherjee et al., PRD 88 (2013) 051502; A. Alexandru et. al., PRD 93 (2016) 014504
- Sample SD paths on the thimble Di Renzo et al., PRD 88 (2013) 051502

How many relevant thimbles are there in full QCD?

How to sample them?

How to combine results from different thimbles?

• input a number of physical quantities to determine relative weights Di Renzo et al., PRD 88 (2013) 051502

$$X_i = rac{\left\langle e^{i\phi}O_i
ight
angle_0 + lpha_1 \left\langle e^{i\phi}O_i
ight
angle_1 + lpha_2 \left\langle e^{i\phi}O_i
ight
angle_2}{\left\langle e^{i\phi}
ight
angle_0 + lpha_1 \left\langle e^{i\phi}
ight
angle_1 + lpha_2 \left\langle e^{i\phi}
ight
angle_2} \ , \ i = 1,2 \ , \ lpha_i = rac{n_i e^{S_I(\sigma_i)} Z_i}{n_0 e^{S_I(\sigma_0)} Z_0}$$

here ϕ denotes the residual phase (see Cristoforetti et al., PRD 89 (2014) 114505)

How many relevant thimbles are there in full QCD?

How to sample them?

How to combine results from different thimbles?

- input a number of physical quantities to determine relative weights
- sample multiple thimbles at once, or one manifold that comes arbitrary close to multiple thimbles

C. Schmidt, Lattice 2016, Southampton, UK

How many relevant thimbles are there in full QCD?

How to sample them?

How to combine results from different thimbles?

How to deal with the gauge orbits?

- perform simulations in a fixed gauge
- make use of the gauge gauge transformations

Systems studied so far:

ϕ^4 -theory

Cristoforetti et al., PRD 88 (2013) 051501; Fujii et al., JHEP 1310 (2013) 147 Cristoforetti et al., PRD 89 (2014) 114505

Hubbard model, one-site Hubbard model

A. Mukherjee et al., PRD 88 (2013) 051502

(0+1)dim. Thirring model

Fujii et al., JHEP 1511 (2015) 078; Fujii et al., JHEP 1512 (2015) 125;

Chiral random matrix model

Di Renzo et al., PRD 88 (2013) 051502

• (also applications to QM-systems in real time)

QCD in (0+1) dim. with std. staggered quarks

- simulations in Polyakov loop diagonal form
- simulations with a general Polyakov loop

QCD in (n+1) dim. with std. staggered quarks

- simulations at strong coupling
- simulations away from strong coupling

Agenda:

QCD in (0+1) dim. with std. staggered quarks

- simulations in Polyakov loop diagonal form
- simulations with a general Polyakov loop

QCD in (n+1) dim. with std. staggered quark

- simulations at strong coupling
- simulations away from strong coupling

this talk :-)

not yet :-(

partition function in the reduced form

diagonalize Polyakov loop

$$P = \operatorname{diag}(e^{i\theta_1}, e^{i\theta_2}, e^{-i(\theta_1 + \theta_2)})$$

$$\begin{split} J(\theta_1, \theta_2) &= \frac{8}{3\pi^2} \sin^2 \left(\frac{\theta_1 - \theta_2}{2} \right) \sin^2 \left(\frac{2\theta_1 + \theta_2}{2} \right) \sin^2 \left(\frac{\theta_1 + 2\theta_2}{2} \right) \\ Z^{(N_f)} &= \int \mathrm{d}\theta_1 \mathrm{d}\theta_2 \; e^{-S_{eff}(N_f, \theta_1, \theta_2)} \\ S_{eff} &= -(\ln J + \mathrm{Tr} \ln D) \end{split}$$

(0+1) dimensional QCD

find saddle points: minimize $||\nabla_z S^R_{eff}||$, with $z = (\text{Re} heta_1, \text{Re} heta_2, \text{Im} heta_1, \text{Im} heta_2)^t$

$$\mu/T=0$$
 $m/T=0.2$

• thimbles are separated by lines of zero probability (infinite action)

- saddle points are μ -dependent
- all thimbles are equivalent (give the same contribution)

find tangent space of the thimble at the saddle points: diagonalize hessian $\partial_{z_i} \partial_{z_j} S^R_{eff}$ (at the saddle point)

• eigenvectors with positive eigenvalues span the tangent space

sample the thimble using the contraction algorithm (A. Alexandru et. al., PRD 93 (2016) 014504)

$$<\mathcal{O}>=\int\mathrm{d}z\;\mathcal{O}(z)e^{-S_{eff}(z)}=\int\mathrm{d}ar{z}\;\mathrm{det}J\;\mathcal{O}(z(ar{z}))\;e^{-S_{eff}(z(ar{z}))}$$

- \bar{z} are elements of the tangent space
- $z(\bar{z})$ is defined by flowing \bar{z} along the SA for a fixed time T (note: the SA flow is numerically stable)
- $J_{ij} = \partial z_i / \partial \bar{z}_j$ is the Jacobian, which is in practice obtained by transporting a parallelepipet P(z) along the SA flow: $\det J = \det P(z(\bar{z})) / \det P(\bar{z})$
- det J has a complex phase (residual phase), sample according to $|\det J|e^{-S_{eff}^R}$ and take the residual phase into account by reweighting

find tangent space of the thimble at the saddle points:

diagonalize hessian $\partial_{z_i} \partial_{z_j} S^R_{eff}$ (at the saddle point)

• eigenvectors with positive eigenvalues span the tangent space

results for the Polyakov loop:

• exact results are reproduced

• only one relevant thimble found

sample non-diagonal Polyakov loops $P=\exp\left\{-i\sum_a\omega_a T_a
ight\}$ fist step: find saddle points (now in 16 dim.) $\mu/T=0$

- find 3 thimbles, related to Z(3) symmetry
- at m=0, the thimbles are separated by singular points

(0+1) dimensional QCD

sample non-diagonal Polyakov loops
$$P = \exp\left\{-i\sum_{a}\omega_{a}T_{a}\right\}$$
 fist step: find saddle points (now in 16 dim.)

am = 0.1

(0+1) dimensional QCD

sample non-diagonal Polyakov loops $P=\exp\left\{-i\sum_a\omega_a T_a
ight\}$ fist step: find saddle points (now in 16 dim.)

- find 3 thimbles, related to Z(3) symmetry
- at m = 0, the thimbles are separated by singular points
- at $\,m=\mu_c$, the thimbles are separated by singular points
- saddle points are not μ -dependent

second step: diagonalize the hessian

$$\partial_a \partial_b S^R_{eff} = \operatorname{Tr} \left[D^{-1} \partial_a \partial_b D \right] - \operatorname{Tr} \left[D^{-1} (\partial_a D) D^{-1} (\partial_b D) \right]$$

• implementation is work in progress ...

- still many open question in the Lefschetz thimble approach that need to be clarified before it can be applied to full QCD
- (0+1) dimensional QCD is doable (at least in the reduced case)
- (n+1) dimensional QCD will be the next

Advertisement

2017 workshop at ECT* EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

Simulating QCD with Lefschetz thimbles

Organizers: A. Alexandru, P. Bedaque, CS.

to vote for your favored date, goto

http://doodle.com/poll/8beimhb73ih286gq