
LATTICE
2016

Thimble

A thimble is a bell or 
ring shaped sheath of 
a hard substance, 
such as bone, leather, 
metal or wood, which 
is worn on the tip or 
middle of a finger or 
the thumb to help 
push a needle while 
sewing and to protect 
the finger/thumb from 
being pricked. 

Simulating low dimensional QCD 
on Lefschetz thimbles
Christian Schmidt 
with Felix Ziesché

[source: Textile Research Centre (TRC), Leiden, The Netherlands]
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Motivation: 
The QCD sign problem

The QCD partition function 

Z(T, V,m, µ) =

Z
DU detM [U ]| {z } e�SG[U ]

complex for µ > 0

302 1. Barbour et al. / Simulations of lattice QCD 
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Fig. 2. The distr ibution of eigenvalues )t of the Dirac matrix for staggered fermions at fl = 0. Shown are 
the eigenvalues obtained from 6 random gauge configurations (fl = 0 quenched) on  a 4 3 x g lattice for 

different values of the chemical potential, t* = 0.3 (a), 0,6 (b), 0.9 (c), and 1,2 (d). 

[det M(µ)]⇤ = det M(�µ⇤)

• standard MC techniques not applicable 

• highly oscillatory integral with 
exponentially large cancellations 

Lattice Dirac spectrum

Barbour et al., 1986 

10 S.Muroya, A.Nakamura, C.Nonaka and T.Takaishi
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Fig. 6. Eigen value distribution. Staggered fermions. 44 lattice. ma = 0.1. Quench β = 5.7.

§3. Three Color

Even though the fermion determinant det∆ is complex, one may perform Monte
Carlo simulations by taking its modulus as a measure,

〈O〉 =
1

Z

∫

DU O det∆ e−βSG =

∫

DU O |det∆|eiθ e−βSG

∫

DU |det∆|eiθ e−βSG

=

∫

DU O |det∆|eiθ e−βSG

∫

DU |det∆| e−βSG
/

∫

DU |det∆|eiθ e−βSG

∫

DU |det∆| e−βSG

=
〈Oeiθ〉0
〈eiθ〉0

(3.1)

where 〈· · · 〉0 is the expectation value with |det∆| as the measure, i.e., phase quench-
ing measure. The direct calculations were pursued on small lattices, but a large phase
fluctuation hinders us from obtaining a meaningful signal in low temperature and
large chemical potential regions, i.e., the numerator and denominator of the last
term of Eq.(3.1) are very small.35), 36), 37) Lattice QCD at finite chemical potential
suffers from a severe sign problem. In spite of this difficulty, there have been many
challenging efforts, which we will survey in this section. Table 3 is a compilation of
numerical simulations of three color system.

3.1. Response of observables with respect to µ at µ = 0

Although the direct simulations at finite µ is very hard, one may measure the
effect of the chemical potential through the response of physical observables with
respect to the chemical potential at µ = 0. Such an attempt was first pursued by

Muroya et al., 2003

T = 0 T > 0

43 ⇥ 8 44
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Idea: 
Deforming the domain of integration

Standard 1d-example: the Airy integral 

Ai[1] =
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x ! z = x + iy
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numerical 
integration 
easy!

numerical integration hopeless!see also Witten: 1001.2933, 1009.6032
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see also Witten: 1001.2933, 1009.6032

Idea: 
Deforming the domain of integration

Standard 1d-example: the Airy integral 

Ai[1] =

1

2⇡

Z 1

�1
dx exp

⇢
i

✓
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3

3
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◆� • use the real valued function 
                     

as a Morse function 
SR(z) = Re[�i(z3/3 + z)]

Theory behind: Picard-Lefschetz theory
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x ! z = x + iy

z

see also Witten: 1001.2933, 1009.6032

Idea: 
Deforming the domain of integration

Theory behind: Picard-Lefschetz theory
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• find all separated saddle points (    )
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x ! z = x + iy

z

see also Witten: 1001.2933, 1009.6032

Idea: 
Deforming the domain of integration
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J1,J2K1,K2
real domain

• associated with each saddle point (    ), 
find one stable (    ) and one unstable 
thimble (     ) as solutions of the 
steepest descent/ascent flow equation

�i

Ji

Ki

dz

dt
= ⌥rSR(z)

J1

J2

K2

K1

Standard 1d-example: the Airy integral 

Ai[1] =

1
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• find all separated saddle points (    )�i

• use the real valued function 
                     

as a Morse function 
SR(z) = Re[�i(z3/3 + z)]

(note:            remains 
const. along flow)

SI(z)

Theory behind: Picard-Lefschetz theory
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x ! z = x + iy

z

see also Witten: 1001.2933, 1009.6032

Idea: 
Deforming the domain of integration
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J1,J2K1,K2
real domain

• associated with each saddle point (    ), 
find one stable (    ) and one unstable 
thimble (     ) as solutions of the 
steepest descent/ascent flow equation

�i

Ji

Ki

dz

dt
= ⌥rSR(z)

J1

J2

K2

K1

Standard 1d-example: the Airy integral 

Ai[1] =

1

2⇡

Z 1

�1
dx exp

⇢
i

✓
x

3

3

+ x

◆�

• decompose original integral into thimbles

• find all separated saddle points (    )�i

• use the real valued function 
                     

as a Morse function 
SR(z) = Re[�i(z3/3 + z)]

(note:            remains 
const. along flow)

SI(z)

(here:                                                   )n1 = 1, n2 = 0, SI(�1) = 0

Theory behind: Picard-Lefschetz theory

Z

R
dz e�S(z) =

X

i

ni e
�SI(�i)

Z

Ji

dz e�SR(z)
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Idea: 
Deforming the domain of integration

Original domain of integration 

U
x,⌫

2 SU(3) real dim. 4 ⇥ V ⇥ 8

Ũ
x,⌫

2 SL(3,C) 4 ⇥ V ⇥ 8 ⇥ 2real dim. 

Complexified space 

New domain(s) of integration: Lefschetz thimble  

U = exp

(
�i

X

a

!aTa

)

J0 :=
n
Ũ

x,⌫

| U(⌧ ) is solution of the SD equation with   
U(0) = Ũ

x,⌫

U(⌧ ! 1) = Nand   
o

Nhere       denotes the gauge orbit of the unity configuration

real dim. 4 ⇥ V ⇥ 8

U4V

Ũ4V

J0 + J1 + · · ·
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Open questions:

How many relevant thimbles are there in full QCD?

How to sample them?

• Langevin on the thimble (Aurora-algorithm)
Cristoforetti et al., PRD 86 (2012) 074506

• HMC on the thimble
Fujii et al., JHEP 1310 (2013) 147

• Use a map of the thimble (projection-, contraction-algorithm)  
A. Mukherjee et al., PRD 88 (2013) 051502; A. Alexandru et. al., PRD 93 (2016) 014504

• Sample SD paths on the thimble 
Di Renzo et al., PRD 88 (2013) 051502
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Open questions:

How many relevant thimbles are there in full QCD?

How to sample them?

How to combine results from different thimbles?

• input a number of physical quantities to determine relative weights 

Xi =

⌦
ei�Oi

↵
0
+ ↵1

⌦
ei�Oi

↵
1
+ ↵2

⌦
ei�Oi

↵
2

hei�i0 + ↵1 hei�i1 + ↵2 hei�i2
i = 1, 2 ↵i =

nieSI(�i)Zi

n0eSI(�0)Z0
, ,

Di Renzo et al., PRD 88 (2013) 051502

here     denotes the residual phase (see                                                )� Cristoforetti et al., PRD 89 (2014) 114505
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plane. The full (blue) circles are the critical points of S, the empty (blue) circles the log singularities
of S (points where the fermion determinant vanishes). The full (blue) line are five of the thimbles. The red dashed line is the main
tangent space. The red, purple and violet lines are the result of flowing the tangent space by T

flow

= 0.01, 0.05 and 0.5, respectively.

be defined there has to be a path to infinity L

t

on M(t) over which S

R

is bounded from above. Consider then the pre-image
L

0

of L
t

under the flow by t. Since the flow only increases the value of S
R

, the values which S

R

takes along L

0

would also be
bounded and the integral over M(0) would not be well defined, which is contrary to our assumption. Consequently, M(T

flow

)
is in the same homology class as M(0).

In the fermionic model we are considering, the action is not a polynomial and two small modifications are needed to the
argument we just made. The first is that the real parts of the field variables � are bounded. The second one is that S

R

diverges at finite values of the field and we consider finite manifolds that end on these singularities. It is the behavior of S
R

as these points are approached that determine the homology class of the manifolds. The points where S

R

diverges play the
role that points at infinity play in the bosonic (polynomial S) case.

In the present model (and similar ones) the main tangent space is purely real, and thus parallel to the original domain of
integration RN . Consequently, the main tangent space has the same asymptotic behavior and belongs to the same homology
class as RN . Now, consider the manifold M(T

flow

) obtained by flowing the main tangent space along the upward flow by
a flow time T

flow

. As argued above, M(T
flow

) is also in the same homology class as the main tangent space M(0). As
T

flow

increases, the evolution of some special points of M(0) approaches critical points of the action. Points in M(0) near
those special points will flow towards points close to the thimbles associated with each one of these critical points. As the
flow is tangent to the thimbles it cannot cross a thimble but, instead, approaches it asymptotically. Other points in M(0)
flow towards infinity or, in non-polynomial actions, to singularities of S. The result is that M(T

flow

) will approach all the
thimbles contributing to the original integral, and only those. If that was not the case, the integral over M(T

flow

) for large
T

flow

would have a di↵erent value from the one over M(0), in contradiction to the argument that they belong to the same
homology class. This argument is one way of understanding the rule determining the coe�cients n

�

in Eq. (2.8) stating that
n

�

are determined by the intersection of the downward set of the thimble � with the original domain of integration. For
example, if 2 points on M(0) flow to the critical point of thimble �, then n

�

is 2. If the flow transports a tangent basis
attached to one of these special points to an oppositely oriented basis, then n

�

is negative (or the integral over thimble � is
defined to have an opposite orientation).

The observations above suggest a practical way of performing the original integral even in the case where many thimbles
contribute and even if no direct knowledge of the location of the critical points is available. The contraction algorithm with
T

flow

= 0 computes the integral over the main tangent space that, as mentioned above, is equivalent to the integral over
RN . However, a severe sign problem may still exist on the main tangent space and a way to ameliorate that is to use a
manifold obtained by flowing by a finite amount T

flow

. In M(T
flow

) the regions with small value of S
R

– which dominate
the integral – are smaller than in M(0). On the other hand the imaginary part S

I

is the same in corresponding points
of M(T

flow

) and M(0) (since the flow preserves S

I

). Thus, the regions of M(T
flow

) with large statistical weight have a
smaller phase fluctuation and the sign problem is reduced in M(T

flow

). In the limit of large flow time T

flow

, a set of small

8
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FIG. 4. Real (left panel) and imaginary (right panel) parts of the action along the curves shown in Fig. 3. As the flow increases the
imaginary part of the action becomes more (piecewise) constant while the barriers on the real part become more prominent.

regions in the main tangent space are mapped by the flow into manifolds approaching each of the relevant thimbles (the ones
that contribute to the original integral). The regions that are not in this set, flow to regions where S

R

approaches infinity.
Also, S

I

in each of these patches in this set is approximately constant since at large T

flow

the regions are small and S

I

cannot vary much over them. The whole picture is exemplified in Figs. 3 and 4. The mapping between the main tangent
plane and M(T

flow

) has some confusing features so it is worthwhile picturing an example. Fig. 3 was generated with the
parameters N = 8, m̂ = 1, µ̂ = 1.6, ĝ2 = 1) and we projected the N = 8 dimensions onto the complex plane of the average
field �̂ = 1

N

P
t

�̂

t

for better visualization. As explained above, the thimbles (blue lines) are joined by the points where the
fermion determinant vanishes and the action has a singularity. By increasing the flow time (T

flow

= 0.01, 0.05 and 0.5) the
tangent space is transported closer to the location of the thimbles. Thimbles that do not contribute to the partition function
(not shown in the figure) are not approached by flowing from the tangent space.

All algorithms previously proposed for the integration over one thimble require the corresponding critical point to be known
analytically. In a more realistic field theory, the integration over all relevant thimbles would require that all solutions of the
(euclidean) equation of motion, even with complexified fields, be known. Furthermore, one would have to determine which one
of those contribute to the original integral over real fields, a daunting task that has only been accomplished in 0+0 and 0+1
dimensional models. A main point of this paper is that the observations of this section imply that the contraction algorithm,
used at finite values of T

flow

, is an alternative way of computing the original integral without assuming the dominance of a

single thimble. In other words, as the points of the tangent space (�̃) parametrize (through the flow) a manifold in the same
homology class as RN , a Markov chain in the tangent space generated with the e↵ective action S � log |J | will sample all

relevant thimbles, bypassing the need to analytically find all critical points and their corresponding coe�cients n
�

.
Let us now illustrate the points above with explicit calculations. The integral over the main tangent space is extremely

cheap computationally as the flow equations Eq. (2.5) do not need to be solved (the equations for the matrix J

ij

are by far
the most expensive part of the algorithm). Of course, the integrand is not real over the main tangent space and a potential
sign problem arises. Still, for some models/parameter sets the phase e

�iSI can be reweighted even in cases when a similar

reweighting on the original domain of integration is not feasible. An example of this is shown in Fig. 2 where the result of the
calculation in [14] (corresponding to the contribution of the main thimble only) is plotted together with a similar calculation
performed with flow T

flow

= 0 (corresponding to an integration over the tangent space M(0)).
The possibility of reweighting the e

�iSI phase on the main tangent space is not an artifact of small coupling. In the
strong coupling N = 8, m̂ = 1, ĝ2 = 1/2 case, where the quenched phase he�iSI i

R

essentially vanishes beyond µ̂ ⇡ 1.4, the
e

�iSI phase is not smaller than ⇡ 0.3 in the main tangent plane and is easily reweighted. As shown in Fig. 5 the results
for the condensate agree with the exact result. On the other hand, the T

flow

= 2 flow result does not agree with the exact
result. In view of our discussion above we can see why it fails. The contraction algorithm computes the integral over the
manifold M(T

flow

) obtained by the upward flow of the main tangent space. As S

R

is increased by the flow, the region of
the tangent space that is mapped into a manifold close to the main thimble becomes separated from the regions mapped
into other thimbles by broader and taller action barriers. Our algorithm, based on a Metropolis chain in the tangent space
using the e↵ective action S

R

� log |J |, “gets stuck” in a small region mapped into the main thimble. Consequently, only
the main thimble is sampled. In fact, the T

flow

= 2 results agrees with [12] obtained with a di↵erent algorithm sampling
(by construction) only the main thimble. These results demonstrate that i) the disagreement between the results in [12, 14]
and the exact result come indeed from the neglected contribution from other thimbles and ii) the contribution from other

11

Open questions:

How many relevant thimbles are there in full QCD?

How to sample them?

How to combine results from different thimbles?

• input a number of physical quantities to determine relative weights 

• sample multiple thimbles at once, or one manifold that comes 
arbitrary close to multiple thimbles
A. Alexandru et. al., JHEP 1605 (2016) 053 
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Open questions:

How many relevant thimbles are there in full QCD?

How to sample them?

How to combine results from different thimbles?

How to deal with the gauge orbits?

• perform simulations in a fixed gauge

• make use of the gauge gauge transformations
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Systems studied so far:

   -theory�4

Cristoforetti et al., PRD 88 (2013) 051501; Fujii et al., JHEP 1310 (2013) 147

Hubbard model, one-site Hubbard model
A. Mukherjee et al., PRD 88 (2013) 051502

Cristoforetti et al., PRD 89 (2014) 114505

(0+1)dim. Thirring model
Fujii et al., JHEP 1511 (2015) 078; Fujii et al., JHEP 1512 (2015) 125;

Chiral random matrix model
Di Renzo et al., PRD 88 (2013) 051502

... (also applications to QM-systems in real time)
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Agenda:

QCD in (0+1) dim. with std. staggered quarks

• simulations in Polyakov loop diagonal form
• simulations with a general Polyakov loop

QCD in (n+1) dim. with std. staggered quarks 

• simulations at strong coupling 

• simulations away from strong coupling
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Agenda:

QCD in (0+1) dim. with std. staggered quarks

• simulations in Polyakov loop diagonal form
• simulations with a general Polyakov loop

QCD in (n+1) dim. with std. staggered quark 

• simulations at strong coupling 

• simulations away from strong coupling

} this talk :-)

} not yet  :-(
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(0+1) dimensional QCD

partition function in the reduced form 

diagonalize Polyakov loop

P = diag(ei✓1 , ei✓2 , e�i(✓1+✓2))

J(✓1, ✓2) =
8

3⇡2
sin2

✓
✓1 � ✓2

2

◆
sin2

✓
2✓1 + ✓2

2

◆
sin2

✓
✓1 + 2✓2

2

◆

Z(Nf ) =

Z
d✓1d✓2 e�Seff (Nf ,✓1,✓2)

Ammon et al., arXiv:1607.05027(see e.g.                                       )
Bilic et al. Phys. Lett. B212 (1988) 83

Seff = �(ln J + Tr lnD)

Z(Nf ) =

Z
dP detNf [A + eµ/TP + e�µ/TP�1]| {z }

D
A = 2 cosh(µ̂c)13

µ̂c = arcsinh(m̂)
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(0+1) dimensional QCD

find saddle points: minimize                   , with

-4

-2

 0

 2

 4

-4 -2  0  2  4

Re(e1)

Re(e2)

µ/T = 0 m/T = 0.2
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Re(e2)
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• thimbles are separated by lines of zero probability (infinite action)

• saddle points are    -dependentµ

• all thimbles are equivalent (give the same contribution)

||rzS
R
eff || z = (Re✓1,Re✓2, Im✓1, Im✓2)

t
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(0+1) dimensional QCD

find tangent space of the thimble at the saddle points: 
diagonalize hessian                      (at the saddle point)@zi@zjS

R
eff

• eigenvectors with positive eigenvalues span the tangent space

sample the thimble using the contraction algorithm (                                                 ) A. Alexandru et. al., PRD 93 (2016) 014504

< O >=

Z
dz O(z)e�Seff (z) =

Z
dz̄ detJ O(z(z̄)) e�Seff (z(z̄))

•    are elements of the tangent spacez̄

•         is defined by flowing    along the SA for a fixed time T (note: the SA flow is 
numerically stable)
z(z̄) z̄

•                            is the Jacobian, which is in practice obtained by transporting a 
P (z)parallelepipet          along the SA flow: detJ = detP (z(z̄))/detP (z̄)

Jij = @zi/@z̄j

•           has a complex phase (residual phase), sample according to |detJ |e�SR
effdetJ

and take the residual phase into account by reweighting
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(0+1) dimensional QCD

find tangent space of the thimble at the saddle points: 
diagonalize hessian                      (at the saddle point)@zi@zjS

R
eff

• eigenvectors with positive eigenvalues span the tangent space

sample the thimble using the contraction algorithm (                                                 ) A. Alexandru et. al., PRD 93 (2016) 014504
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(0+1) dimensional QCD

results for the Polyakov loop:

• exact results are reproduced 

• only one relevant thimble found
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sample non-diagonal Polyakov loops

fist step: find saddle points  (now in 16 dim.)
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• find 3 thimbles, related to Z(3) symmetry 

Re !8 Re !8

P = exp

(
�i

X

a

!aTa

)

• at m=0, the thimbles are separated by singular points
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sample non-diagonal Polyakov loops

fist step: find saddle points  (now in 16 dim.)

(0+1) dimensional QCD

P = exp

(
�i

X

a

!aTa

)
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• find 3 thimbles, related to Z(3) symmetry 
• at             , the thimbles are separated by singular points

sample non-diagonal Polyakov loops

fist step: find saddle points  (now in 16 dim.)

P = exp

(
�i

X

a

!aTa

)

• at               , the thimbles are separated by singular pointsm = µc

m = 0

• saddle points are not    -dependent µ

(0+1) dimensional QCD

second step: diagonalize the hessian

• implementation is work in progress ...

@a@bS
R
eff = Tr

⇥
D�1@a@bD

⇤
� Tr

⇥
D�1(@aD)D�1(@bD)

⇤
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Summary

• still many open question in the Lefschetz thimble approach that 
need to be clarified before it can be applied to full QCD

• (0+1) dimensional QCD is doable (at least in the reduced case)

• (n+1) dimensional QCD will be the next 
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Advertisement

2017 workshop at 

Simulating QCD with Lefschetz thimbles
Organizers: A. Alexandru, P. Bedaque, CS.

to vote for your favored date, goto 
http://doodle.com/poll/8beimhb73ih286gq

http://doodle.com/poll/8beimhb73ih286gq
http://doodle.com/poll/8beimhb73ih286gq

