

Thimble

A thimble is a bell or ring shaped sheath of a hard substance, such as bone, leather, metal or wood, which is worn on the tip or middle of a finger or the thumb to help push a needle while sewing and to protect the finger/thumb from being pricked.
[source: Textile Research Centre (TRC), Leiden, The Netherlands]

Simulating low dimensional QCD on Lefschetz thimbles

Christian Schmidt

 with Felix ZieschéSPONSORED BY THE

Federal Ministry of Education and Research

月 LATTICEE
 Motivation: The QCD sign problem

The QCD partition function
$Z(T, V, m, \mu)=\int \mathcal{D} U \underbrace{\operatorname{det} M[U]}_{\text {conmexerac } \mu>0} e^{-S_{G}[U]}$
Lattice Dirac spectrum

Barbour et al., 1986

$$
T>0
$$

Muroya et al., 2003
$[\operatorname{det} M(\mu)]^{*}=\operatorname{det} M\left(-\mu^{*}\right)$

- standard MC techniques not applicable
- highly oscillatory integral with exponentially large cancellations

Idea:

Deforming the domain of integration

Standard 1d-example: the Airy integral

$$
\begin{aligned}
\mathrm{Ai}[1] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} x \exp \left\{i\left(\frac{x^{3}}{3}+x\right)\right\} \\
x & \rightarrow z=x+i y
\end{aligned}
$$

see also Witten: 1001.2933, 1009.6032

Idea: Deforming the domain of integration

Standard 1d-example: the Airy integral

$$
\begin{aligned}
\operatorname{Ai}[1] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} x \exp \left\{i\left(\frac{x^{3}}{3}+x\right)\right\} \\
x & \rightarrow z=x+i y
\end{aligned}
$$

see also Witten: 1001.2933, 1009.6032

Theory behind: Picard-Lefschetz theory

- use the real valued function
$S_{R}(z)=\operatorname{Re}\left[-i\left(z^{3} / 3+z\right)\right]$ as a Morse function

Idea: Deforming the domain of integration

Standard 1d-example: the Airy integral

$$
\begin{aligned}
\operatorname{Ai}[1] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} x \exp \left\{i\left(\frac{x^{3}}{3}+x\right)\right\} \\
x & \rightarrow z=x+i y
\end{aligned}
$$

see also Witten: 1001.2933, 1009.6032

Theory behind: Picard-Lefschetz theory

- use the real valued function
$S_{R}(z)=\operatorname{Re}\left[-i\left(z^{3} / 3+z\right)\right]$ as a Morse function
- find all separated saddle points $\left(\sigma_{i}\right)$

Idea: Deforming the domain of integration

Standard 1d-example: the Airy integral

$$
\begin{aligned}
\operatorname{Ai}[1] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} x \exp \left\{i\left(\frac{x^{3}}{3}+x\right)\right\} \\
x & \rightarrow z=x+i y
\end{aligned}
$$

see also Witten: 1001.2933, 1009.6032

Theory behind: Picard-Lefschetz theory

- use the real valued function
$S_{R}(z)=\operatorname{Re}\left[-i\left(z^{3} / 3+z\right)\right]$ as a Morse function
- find all separated saddle points $\left(\sigma_{i}\right)$
- associated with each saddle point (σ_{i}), find one stable (\mathcal{J}_{i}) and one unstable thimble $\left(\mathcal{K}_{i}\right)$ as solutions of the steepest descent/ascent flow equation

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=\mp \nabla S_{R}(z) \quad \begin{aligned}
& \text { (note: } S_{I}(z) \text { remains } \\
& \text { const. along flow) }
\end{aligned}
$$

Idea:

Deforming the domain of integration

Standard 1d-example: the Airy integral

$$
\begin{aligned}
\operatorname{Ai}[1] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} x \exp \left\{i\left(\frac{x^{3}}{3}+x\right)\right\} \\
x & \rightarrow z=x+i y
\end{aligned}
$$

see also Witten: 1001.2933, 1009.6032

Theory behind: Picard-Lefschetz theory

- use the real valued function
$S_{R}(z)=\operatorname{Re}\left[-i\left(z^{3} / 3+z\right)\right]$ as a Morse function
- find all separated saddle points $\left(\sigma_{i}\right)$
- associated with each saddle point $\left(\sigma_{i}\right)$, find one stable $\left(\mathcal{J}_{i}\right)$ and one unstable thimble (\mathcal{K}_{i}) as solutions of the steepest descent/ascent flow equation

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=\mp \nabla S_{R}(z) \quad \begin{aligned}
& \text { (note: } S_{I}(z) \text { remains } \\
& \text { const. along flow) }
\end{aligned}
$$

- decompose original integral into thimbles
$\int_{\mathbb{R}} \mathrm{d} z e^{-S(z)}=\sum_{i} n_{i} e^{-S_{I}\left(\sigma_{i}\right)} \int_{J_{i}} \mathrm{~d} z e^{-S_{R}(z)}$ (here: $n_{1}=1, n_{2}=0, S_{I}\left(\sigma_{1}\right)=0$)

Idea: Deforming the domain of integration

Original domain of integration
$U^{4 V}$

Complexified space

$$
U_{x, \nu} \in \mathbf{S U}(3)
$$

$$
\text { real dim. } 4 \times V \times 8
$$

real dim. $4 \times V \times 8 \times 2$

New domain(s) of integration: Lefschetz thimble

$$
\mathcal{J}_{0}+\mathcal{J}_{1}+\cdots
$$

$$
\text { real dim. } 4 \times V \times 8
$$

$\mathcal{J}_{0}:=\left\{\tilde{U}_{x, \nu} \mid U(\tau)\right.$ is solution of the SD equation with

$$
\left.U(0)=\tilde{U}_{x, \nu} \text { and } U(\tau \rightarrow \infty)=\mathcal{N}\right\}
$$

here \mathcal{N} denotes the gauge orbit of the unity configuration

Open questions:

How many relevant thimbles are there in full QCD?
How to sample them?

- Langevin on the thimble (Aurora-algorithm)

Cristoforetti et al., PRD 86 (2012) 074506

- HMC on the thimble

Fujii et al., JHEP 1310 (2013) 147

- Use a map of the thimble (projection-, contraction-algorithm)
A. Mukherjee et al., PRD 88 (2013) 051502; A. Alexandru et. al., PRD 93 (2016) 014504
- Sample SD paths on the thimble

Di Renzo et al., PRD 88 (2013) 051502

Open questions:

How many relevant thimbles are there in full QCD?
How to sample them?
How to combine results from different thimbles?

- input a number of physical quantities to determine relative weights

Di Renzo et al., PRD 88 (2013) 051502

$$
X_{i}=\frac{\left\langle e^{i \phi} O_{i}\right\rangle_{0}+\alpha_{1}\left\langle e^{i \phi} O_{i}\right\rangle_{1}+\alpha_{2}\left\langle e^{i \phi} O_{i}\right\rangle_{2}}{\left\langle e^{i \phi}\right\rangle_{0}+\alpha_{1}\left\langle e^{i \phi}\right\rangle_{1}+\alpha_{2}\left\langle e^{i \phi}\right\rangle_{2}} \quad, \quad i=1,2 \quad, \quad \alpha_{i}=\frac{n_{i} e^{S_{I}\left(\sigma_{i}\right)} Z_{i}}{n_{0} e^{S_{I}\left(\sigma_{0}\right)} Z_{0}}
$$

here ϕ denotes the residual phase (see Cristoforetti et al., PRD 89 (2014) 114505)

Open questions:

How many relevant thimbles are there in full QCD?
How to sample them?
How to combine results from different thimbles?

- input a number of physical quantities to determine relative weights
- sample multiple thimbles at once, or one manifold that comes arbitrary close to multiple thimbles

C. Schmidt, Lattice 2016, Southampton, UK

Open questions:

How many relevant thimbles are there in full QCD?
How to sample them?
How to combine results from different thimbles?

How to deal with the gauge orbits?

- perform simulations in a fixed gauge
- make use of the gauge gauge transformations

Systems studied so far:

ϕ^{4}-theory

Cristoforetti et al., PRD 88 (2013) 051501; Fujii et al., JHEP 1310 (2013) 147
Cristoforetti et al., PRD 89 (2014) 114505
Hubbard model, one-site Hubbard model
A. Mukherjee et al., PRD 88 (2013) 051502
(0+1)dim. Thirring model
Fujii et al., JHEP 1511 (2015) 078; Fujii et al., JHEP 1512 (2015) 125;

Chiral random matrix model
Di Renzo et al., PRD 88 (2013) 051502
: (also applications to QM-systems in real time)

Agenda:

QCD in (0+1) dim. with std. staggered quarks

- simulations in Polyakov loop diagonal form
- simulations with a general Polyakov loop

QCD in ($\mathrm{n}+1$) dim. with std. staggered quarks

- simulations at strong coupling
- simulations away from strong coupling

Agenda:

QCD in (0+1) dim. with std. staggered quarks

- simulations in Polyakov loop diagonal form
- simulations with a general Polyakov loop

QCD in ($\mathrm{n}+1$) dim. with std. staggered quark

- simulations at strong coupling
- simulations away from strong coupling
this talk :-)
not yet :-(

(0+1) dimensional QCD

partition function in the reduced form

$$
\begin{aligned}
& Z^{\left(N_{f}\right)}=\int \mathrm{d} P \operatorname{det}^{N_{f}} \underbrace{\left[A+e^{\mu / T} P+e^{-\mu / T} P^{-1}\right]} \\
& A=2 \cosh \left(\hat{\mu}_{c}\right) \mathbb{1}_{3}
\end{aligned} \quad \begin{aligned}
& \text { Bilic et al. Phys. Lett. B212 (1988) 83 } \\
& \hat{\mu}_{c}=\operatorname{arcsinh}(\hat{m})
\end{aligned} \quad \text { (see e.g. Ammon et al., arXiv:1607.05027) }
$$

diagonalize Polyakov loop

$$
\begin{aligned}
& P=\operatorname{diag}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, e^{-i\left(\theta_{1}+\theta_{2}\right)}\right) \\
& J\left(\theta_{1}, \theta_{2}\right)=\frac{8}{3 \pi^{2}} \sin ^{2}\left(\frac{\theta_{1}-\theta_{2}}{2}\right) \sin ^{2}\left(\frac{2 \theta_{1}+\theta_{2}}{2}\right) \sin ^{2}\left(\frac{\theta_{1}+2 \theta_{2}}{2}\right) \\
& Z^{\left(N_{f}\right)}=\int \mathrm{d} \theta_{1} \mathrm{~d} \theta_{2} e^{-S_{e f f}\left(N_{f}, \theta_{1}, \theta_{2}\right)} \\
& S_{e f f}=-(\ln J+\operatorname{Tr} \ln D)
\end{aligned}
$$

(0+1) dimensional QCD

find saddle points: minimize $\left\|\nabla_{z} S_{e f f}^{R}\right\|$, with $z=\left(\operatorname{Re} \theta_{1}, \operatorname{Re} \theta_{2}, \operatorname{Im} \theta_{1}, \operatorname{Im} \theta_{2}\right)^{t}$

$$
\mu / T=0 \quad m / T=0.2
$$

- thimbles are separated by lines of zero probability (infinite action)
- saddle points are $\boldsymbol{\mu}$-dependent
- all thimbles are equivalent (give the same contribution)

(0+1) dimensional QCD

find tangent space of the thimble at the saddle points:
diagonalize hessian $\partial_{z_{i}} \partial_{z_{j}} S_{\text {eff }}^{R}$ (at the saddle point)

- eigenvectors with positive eigenvalues span the tangent space
sample the thimble using the contraction algorithm (A. Alexandru et. al., PRD 93 (2016) 014504)
$<\mathcal{O}>=\int \mathrm{d} z \mathcal{O}(z) e^{-S_{e f f}(z)}=\int \mathrm{d} \bar{z} \operatorname{det} J \mathcal{O}(z(\bar{z})) e^{-S_{\text {eff }}(z(\bar{z}))}$
- \bar{z} are elements of the tangent space
- $z(\bar{z})$ is defined by flowing \bar{z} along the SA for a fixed time T (note: the SA flow is numerically stable)
- $J_{i j}=\partial z_{i} / \partial \bar{z}_{j}$ is the Jacobian, which is in practice obtained by transporting a parallelepipet $P(z)$ along the SA flow: $\operatorname{det} J=\operatorname{det} P(z(\bar{z})) / \operatorname{det} P(\bar{z})$
- $\operatorname{det} J$ has a complex phase (residual phase), sample according to $|\operatorname{det} J| e^{-S_{e f f}^{R}}$ and take the residual phase into account by reweighting
C. Schmidt, Lattice 2016, Southampton, UK

(0+1) dimensional QCD

find tangent space of the thimble at the saddle points:
diagonalize hessian $\partial_{z_{i}} \partial_{z_{j}} S_{e f f}^{R}$ (at the saddle point)

- eigenvectors with positive eigenvalues span the tangent space
sample the thimble using the contraction algorithm (A. Alexandru et. al., PRD 93 (2016) 014504)

C. Schmidt, Lattice 2016, Southampton, UK

(0+1) dimensional QCD

results for the Polyakov loop:

- exact results are reproduced
- only one relevant thimble found

(0+1) dimensional QCD

sample non-diagonal Polyakov loops $P=\exp \left\{-i \sum_{a} \omega_{a} T_{a}\right\}$ fist step: find saddle points (now in 16 dim.)

$$
\mu / T=0
$$

- find 3 thimbles, related to $Z(3)$ symmetry
- at $m=0$, the thimbles are separated by singular points

(0+1) dimensional QCD

sample non-diagonal Polyakov loops $P=\exp \left\{-i \sum_{a} \omega_{a} T_{a}\right\}$
fist step: find saddle points (now in 16 dim.)

$$
a m=0.1
$$

C. Schmidt, Lattice 2016, Southampton, UK

(0+1) dimensional QCD

sample non-diagonal Polyakov loops $P=\exp \left\{-i \sum_{a} \omega_{a} T_{a}\right\}$
fist step: find saddle points (now in 16 dim.)

- find 3 thimbles, related to $Z(3)$ symmetry
- at $m=0$, the thimbles are separated by singular points
- at $m=\mu_{c}$, the thimbles are separated by singular points
- saddle points are not $\boldsymbol{\mu}$-dependent
second step: diagonalize the hessian

$$
\partial_{a} \partial_{b} S_{e f f}^{R}=\operatorname{Tr}\left[D^{-1} \partial_{a} \partial_{b} D\right]-\operatorname{Tr}\left[D^{-1}\left(\partial_{a} D\right) D^{-1}\left(\partial_{b} D\right)\right]
$$

- implementation is work in progress ...

Summary

- still many open question in the Lefschetz thimble approach that need to be clarified before it can be applied to full QCD
- (0+1) dimensional QCD is doable (at least in the reduced case)
- $(\mathrm{n}+1)$ dimensional QCD will be the next

Advertisement

2017 workshop at ECT*

EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

Simulating QCD with Lefschetz thimbles

Organizers: A. Alexandru, P. Bedaque, CS.
to vote for your favored date, goto
http://doodle.com/poll/8beimhb73ih286gq

