Towards the continuum limit with improved Wilson Fermions employing open boundary conditions
–Part 1–

Wolfgang Söldner
for RQCD

Regensburg University

Lattice 2016
The 34rd International Symposium on Lattice Field Theory
July 29th, 2016
Motivation

Lattice QCD today

- more computing power and better algorithms \rightarrow statistically more precise results
- increasingly important to control systematics

\Rightarrow obviously, very important: controlled continuum limit

Problem when lattice spacing $a \rightarrow 0$

\Rightarrow freezing of topology

- lattice simulations get stuck in topological sectors
- problems start at $a \gtrsim 0.05$ fm

\Rightarrow simple solution: lattice simulations with open boundary conditions

$[\text{Lüscher and Schaefer 2011}]$

\rightarrow topology can flow in and out through the boundary
Lattice QCD with Open Boundaries

Open Boundaries

- \(F_{0k}(x)|_{x_0=0} = F_{0k}(x)|_{x_0=T} = 0 \)
- \(P_+\psi(x)|_{x_0=0} = P_-\psi(x)|_{x_0=T} = 0 \)
- \(\bar{\psi}(x)P_-|_{x_0=0} = \bar{\psi}(x)P_+|_{x_0=T} = 0 \)
- \(P_\pm = \frac{1}{2}(1 \pm \gamma_0) \)

Major \(N_f = 2 + 1 \) CLS effort

CLS: HU Berlin, CERN, TC Dublin, Mainz, UA Madrid, Milano Bicocca, Münster, Odense/CP3-Origins, Regensburg, Roma I, Roma II, Wuppertal, DESY Zeuthen
Simulation Details

Simulation Overview

Lattice Action

- Two degenerate light quarks and one strange quark
- Non-perturbatively improved Wilson action (clover)
- Tree-level improved Symanzik gauge action

∃ three different quark mass plane trajectories

1. \(\bar{m} = m_{\text{symm}} \)

\(3\bar{m} = 2m_{(\ell)\text{ght}} + m_{(s)} = \text{const.} \iff \frac{2}{\kappa_{\ell}} + \frac{1}{\kappa_{s}} = \text{const.} \rightarrow \text{renormalized } 2\hat{m}_{\ell} + \hat{m}_{s} = \text{const.} + O(a).\)

2. \(\tilde{m}_{s} = \tilde{m}_{s,\text{ph}} \)

Strange AWI mass \(\tilde{m}_{s} = \text{const.} \rightarrow \text{renormalized } \hat{m}_{s} = \hat{m}_{s,\text{ph}}, \text{ up to tiny } O(a) \text{ effects.} \)

3. \(m_{s} = m_{\ell} \) (Mainz/Regensburg)

For joint non-perturbative renormalization program

→ simulations with anti-periodic boundary conditions (for \(a > 0.05 \text{ fm} \))
Overview of the simulation strategy → 1606.09039

1. generate the $\bar{m} = m_{\text{symm}}$ trajectory, starting from the $m_S = m_\ell$ point where $\bar{m} \approx \bar{m}_{\text{ph}}$.

2. add points along the symmetric trajectory ($m_\ell = m_S$).

3. fit AWI masses (with $O(a)$-improvement) to a known parametrization, using both trajectories.

4. determine the “physical” point on the $\bar{m} = m_{\text{symm}}$ line, imposing $\bar{m}_S/\bar{m}_\ell = 27.46(44)$ [FLAG 2] → $\bar{m}_{S,\text{ph}}$

5. predict κ_ℓ, κ_S pairs for which $\bar{m}_S = \bar{m}_{S,\text{ph}}$ from the parametrization in order to add $\bar{m}_S = \bar{m}_{S,\text{ph}}$ simulation points.
How to predict κ_S as a function of κ_ℓ for \tilde{m}_s fixed

Average AWI masses:
\[
\frac{\tilde{m}_j + \tilde{m}_k}{2} = \tilde{m}_{jk} = \frac{\partial_4 \langle 0 | A_{4j}^{jk} | \pi^{jk} \rangle}{2 \langle 0 | P_{jk} | \pi^{jk} \rangle}
\]

Lattice quark masses:
\[
m_j = \frac{1}{2a} \left(\frac{1}{\kappa_j} - \frac{1}{\kappa_{\text{crit}}} \right)
\]

The Point along the symmetric line ($m_1 = m_2 = m_\ell = m_s = m_3$) where $\tilde{m}_{jk} = 0$ defines $\kappa_j = \kappa_{\text{crit}}$.

Problem: Different renormalization of flavour-singlet and non-singlet quark mass combinations:
\[
Z_m (m_s - m_\ell) = \frac{1}{2a} \left(\frac{1}{\kappa_s} - \frac{1}{\kappa_\ell} \right) = \tilde{m}_s - \tilde{m}_\ell = \frac{Z_A}{Z_P} 2 \left(\tilde{m}_{13} - \tilde{m}_{12} \right)
\]

but:
\[
Z_m r_m \bar{m} = Z_m r_m \frac{2m_\ell + m_s}{3} = \frac{1}{6a} \left(\frac{2}{\kappa_\ell} + \frac{1}{\kappa_s} - \frac{3}{\kappa_{\text{crit}}} \right) = \frac{Z_A}{Z_P} \tilde{m}
\]

NB: Due to $r_m > 1$ $m_\ell < m_s$ can become negative, away from the symmetric line.
How to predict κ_s as a function of κ_ℓ for \tilde{m}_s fixed II

$$3\tilde{m}_s = 2(\tilde{m}_s - \tilde{m}_\ell) + 3\tilde{m} = \frac{Z}{2a} \left[2 \left(\frac{1}{\kappa_s} - \frac{1}{\kappa_\ell} \right) + r_\text{m} \left(\frac{1}{\kappa_s} + \frac{2}{\kappa_\ell} - \frac{3}{\kappa_\text{crit}} \right) \right],$$

where $Z = Z_mZ_P/Z_A$. Setting $\tilde{m}_s = \tilde{m}_s,\text{ph}$ gives

$$\frac{1}{\kappa_s} = \frac{2}{2 + r_\text{m}} \left(\frac{3a}{Z} \tilde{m}_{s,\text{ph}} + (1 - r_\text{m}) \frac{1}{\kappa_\ell} + \frac{3r_\text{m}}{2} \frac{1}{\kappa_\text{crit}} \right).$$

Subtracting the physical point result from both sides of the equation gives:

$$\frac{1}{\kappa_s} = \frac{1}{\kappa_{s,\text{ph}}} + \frac{2(1 - r_\text{m})}{2 + r_\text{m}} \left(\frac{1}{\kappa_\ell} - \frac{1}{\kappa_{\ell,\text{ph}}} \right),$$

while the target κ_ℓ that corresponds to a given \tilde{m}_ℓ value can be obtained through

$$\frac{1}{\kappa_\ell} = \frac{1}{\kappa_{\ell,\text{ph}}} + \frac{2a(2 + r_\text{m})}{3Zr_\text{m}}(\tilde{m}_\ell - \tilde{m}_{\ell,\text{ph}}).$$
How to predict κ_s as a function of κ_ℓ for \tilde{m}_s fixed III

- Z and $\kappa_{\ell,\text{ph}}$ can be obtained from $\tilde{m}_{13} - \tilde{m}_{12}$ as a function of κ_ℓ along the $\overline{m} = \text{const.}$ line. Then $\kappa_{s,\text{ph}}$ is automatically determined too.
- Zr_m (and κ_{crit} if needed) can be obtained from \tilde{m} as a function of $1/\kappa$ along the symmetric $m = \overline{m} = m_s = m_\ell$ line.
- We carry out full order a improvement. In this case four combinations of improvement coefficients (A, B_0, C_0 and D_0) appear.

Does the κ_s prediction strategy work?

To be addressed later: Scale setting/tuning; we assumed that the physical point is on the $\overline{m} = m_{\text{symm}}$ trajectory that we simulate (at least up to $\mathcal{O}(a^2)$ corrections). But is this true?
$m_s = \tilde{m}_{s,\text{ph}}$: prediction vs. simulation

Predicted and simulated value of physical $\tilde{m}_{s,\text{ph}}$ [hep-lat 1606.09039]

Mismatch at $\beta = 3.4$ due to shift of c_A value but still very constant!
$N_f = 2 + 1$ CLS simulations

Great visibility at Lattice 2016 plenaries:

CLS ensemble overview \rightarrow JHEP 1502 (2015) 043 [hep-lat 1411.3982]

\[\bar{m} = m_{\text{symm}} \]

\[\tilde{m}_s = \tilde{m}_{s,\text{ph}} \]

\[m_\pi \text{[MeV]} \]

\[a^2 \text{[fm}^2\text{]} \]

Physical

- U: 128×24^3
- B: 64×32^3
- H: 96×32^3
- S: 128×32^3
- C: 96×48^3
- N: 128×48^3
- D: 128×64^3
- J: 192×64^3

W. Söldner, G. Bali (Regensburg)

RQCD results on CLS open BC ensembles

Lattice 2016
Tuning details and results for the $\bar{m} = m_{\text{symm}}$ trajectory
Tuning strategy: $\bar{m} = m_{\text{symm}}$

- $\phi_2 = t_0 m_\pi^2 \sim m_l, \quad \phi_4 = 8 t_0 (m_K^2 + m_\pi^2 / 2) \sim \bar{m}$
- At fixed β match lattices with different lattice spacings at flavor symmetric point (i.e. $m_{ud} = m_s \rightarrow m_\pi = m_K \approx 415$ MeV)
- The (small) slope of ϕ_4 as a function of ϕ_2 was determined at $\beta = 3.4$ from a set of preliminary runs: $\phi_4 |_{m_{ud}=m_s} = 1.15$
- Physical target (yellow bands): $\sqrt{t_0} = 0.1465(21)(13)$ fm [BMW], $m_\pi = 134.8(3)$ MeV, $m_K = 494.2(4)$ MeV [FLAG 2]
Chiral extrapolation: $\bar{m} = m_{\text{symm}}$ → hep-lat 1606.09039

- Combination shown is constant to NLO χPT along $\bar{m} = \text{const}$. Corrections are of higher order or $O(a)$.
- Dependence on ϕ_2 becomes weaker towards smaller $a \rightarrow$ mostly lattice artefact?
- At the physical point we are still within the target range!

$\beta = 3.4 \, a \approx 0.085 \text{ fm}$

$\beta = 3.55 \, a \approx 0.064 \text{ fm}$
Simultaneous fit of light and strange AWI masses $\tilde{m}_{(\ell,s)}(\kappa_\ell, \kappa_s)$ from $\bar{m} = m_{\text{symm}}$ and $m_\ell = m_s$ trajectory

$\beta = 3.4$

$\beta = 3.55$

Relevant parameters: $Z \equiv \frac{Z_P Z_m}{Z_A}$, A, B_0 (\rightarrow slope is due to Z)

- use A from Ref. [Korcyl and Bali, arXiv:1607.07090] as input
- Sums of quark masses are sensitive to $Z r_m, \kappa_{\text{crit}}, C_0, (D_0)$
- A, \ldots, D_0 are combinations of $r_m, b_P, b_A, b_m, d_m, \tilde{b}_P, \tilde{b}_A, \tilde{b}_m, \tilde{d}_m$
Physical point [hep-lat 1606.09039]

\[m_s = m_{s,\text{ph}} \text{ line} \]

For \(\beta = 3.4 \)

\[\tilde{m}_s / \tilde{m}_\ell \text{ along } \bar{m} = m_{\text{symm}} \text{ determined from the global fit.} \]

\[\text{physical value} = 27.46(44) \text{ from [FLAG 2] used to define the physical point.} \]
Is the FLAG value consistent with our results?

\[m_s = m_{s,\text{ph}} \]

We find consistency with experiment

- Predicting \(\hat{m}_s / \hat{m}_\ell \) from the experimental pion masses would improve on the FLAG precision.
- However, we need to analyse additional lattice spacings to take the continuum limit.
Fitting Details

Nucleon: Effective mass

Ensemble = N300, Run = run4

- fit range = [2, 35]
- fit range = [2, 30]
- fit range = [2, 35]

N300 Ensemble

- mass: $m_\pi = m_K \approx 420$ MeV
- lattice size: 128×48^3

Fitting: Two stage procedure

1. Determine actual fit range where excited state contribution is negligible by double exp fit
2. With determined fit range perform actual fit

Autocorrelations

→ binning analysis, extrapolate error to infinite bin size
Pion: Effective mass

Ensemble = N300, Run = run4

Fit range = [4, 66]

fit range = [4, 34]

fit range = [4, 52]

N300 Ensemble

- mass: $m_\pi = m_K \approx 420$ MeV
- lattice size: 128×48^3

Fitting: Two stage procedure

1. Determine actual fit range where excited state contribution is negligible by double exp fit, boundary effects described by sinh
2. With determined fit range perform actual fit

Autocorrelations

→ binning analysis, extrapolate error to infinite bin size
Comparing extrapolations $\bar{m} = m_{\text{symm}}$ with $\tilde{m}_s = \tilde{m}_{s,\text{ph}}$

Average Hadron Masses

- Average pion mass: $X_\pi^2 = (2M_K^2 + M_\pi^2)/3$
- Average octet baryon mass: $X_N = (M_\Xi + M_\Sigma + M_N)/3$ (no Σ_0 to circumvent Λ-Σ mixing)
- Average decuplet baryon mass: $X_\Delta = (2M_\Delta + M_\Omega)/3$

For the experimental values we take the charge combinations of QCDSF: 1101.5300.

All combinations scale in the Gell-Mann–Okubo expansion and NLO ChiPT $\propto \bar{m}$ and $\propto (m_s - m_\ell)^2$.

$m_s = m_{s,\text{ph}}$ line
Comparing extrapolations along the two mass trajectories

Pseudoscalar masses $\bar{m} = m_{\text{symm}}$

Preliminary

$M = K$

$M = \pi$

physical point

$\beta = 3.4, \bar{m} = m_{\text{symm}}$

$\beta = 3.55, \bar{m} = m_{\text{symm}}$

X^2/π^2_{symm}

X^2/π^2_{symm}

$\tilde{m}/\tilde{m}_{\text{ph}}$

$\tilde{m}/\tilde{m}_{\text{ph}}$

$\tilde{m}/\tilde{m}_{\text{ph}}$

$\tilde{m}/\tilde{m}_{\text{ph}}$

W. Söldner, G. Bali (Regensburg)

RQCD results on CLS open BC ensembles

Lattice 2016 21 / 36
Comparing extrapolations along the two mass trajectories

Pseudoscalar masses $\bar{m} = m_{\text{symm}}$ and $\tilde{m}_s = \tilde{m}_{s,\text{ph}}$

preliminary
Comparing extrapolations along the two mass trajectories

Octet baryons $\vec{m} = m_{symm}$

Preliminary

$m_B/X_{N,symm}$

$m_{\pi}/m_{\pi,ph}$

Physical point $\beta = 3.4$, $\vec{m} = m_{symm}$

Physical point $\beta = 3.55$, $\vec{m} = m_{symm}$
Comparing extrapolations along the two mass trajectories

Octet baryons $\bar{m} = m_{\text{symm}}$ and $\tilde{m}_s = \tilde{m}_{s,\text{ph}}$

W. Söldner, G. Bali (Regensburg)
RQCD results on CLS open BC ensembles
Lattice 2016
Comparing extrapolations along the two mass trajectories

Decuplet baryons $\bar{m} = m_{\text{symm}}$

preliminary

![Graphs showing extrapolations for different mass trajectories](image)

W. Söldner, G. Bali (Regensburg)
RQCD results on CLS open BC ensembles
Lattice 2016 25 / 36
Comparing extrapolations along the two mass trajectories

Decuplet baryons $\bar{m} = m_{\text{symm}}$ and $\tilde{m}_s = \tilde{m}_{s,\text{ph}}$

preliminary
Comparing extrapolations along the two mass trajectories

\[\hat{X}_N, \hat{X}_\Delta \]

\[\hat{X}_N, \hat{X}_\Delta \]

\[\hat{X}_N, \hat{X}_\Delta \]

\[\hat{X}_N, \hat{X}_\Delta \]

\[\beta = 3.4, \bar{m}_s = \bar{m}_{s, ph} \]

\[\beta = 3.4, \bar{m} = \bar{m}_{symm} \]

\[\beta = 3.55, \bar{m}_s = \bar{m}_{s, ph} \]

\[\beta = 3.55, \bar{m} = \bar{m}_{symm} \]

W. Söldner, G. Bali (Regensburg)

RQCD results on CLS open BC ensembles

Lattice 2016

27 / 36
\[\beta = 3.4 \text{ RQCD(CLS) data} \]

\[\beta = 3.55 \text{ RQCD(CLS) data} \]

Compare scale setting

- relative error on \(a \) from \(m_\Xi \approx 0.4\%, m_\Xi^* \approx 0.9\%, m_\Omega \approx 0.7\%, X_N \approx 0.6\% \) \(\rightarrow \) from BMW \(t_0 \approx 1.7\% \)
- \(a \) for \(\beta = 3.40 \): \(a_{X_N} \approx 0.0833(4) \text{ fm} \) \(\rightarrow \) from BMW \(a_{t_0} = 0.0854(15) \text{ fm} \)
- \(a \) for \(\beta = 3.55 \): \(a_{X_N} \approx 0.0632(5) \text{ fm} \) \(\rightarrow \) from BMW \(a_{t_0} = 0.0644(11) \text{ fm} \)
Continuum extrapolation along the symmetric line

- \(\phi_4 \) (target \(\phi_4 = 1.15 \)) was slightly mistuned
- This is reflected in other quantities
- As \(\phi_4,_{\text{ph}} / \phi_4,_{\text{symm}} \) is subject to \(\mathcal{O}(\bar{m}a) \) corrections this was fortunate in some cases, however:
 - need for correction (see also talk by Rainer Sommer)
weak dependence on \overline{m} allows for a continuum extrapolation
Continuum limit of g_A at $M_\pi \approx 415$ MeV

Preliminary result for $RQCD$ with $N_f = 2 + 1$ quark flavors:

- g_A as a function of a^2 [fm2]
- The plot shows the trend of g_A with a^2 and includes experimental data.

RQCD results on CLS open BC ensembles

W. Söldner, G. Bali (Regensburg)

Lattice 2016
Continuum limit of g_A at $M_\pi \approx 415$ MeV.
Continuum limit of g_A at $M_\pi \approx 415$ MeV

Continuum Extrapolation

g_A vs. a^2 [fm2]

RQCD $N_f = 2 + 1$

Expt

PRELIMINARY
Continuum limit of g_A at $M_\pi \approx 415$ MeV
Disclaimer

The work presented was carried out in collaboration with Sara Collins, Meinulf Göckeler, Fabian Hutzler, Rudolf Rödl, Andreas Schäfer, Enno Scholz, Jakob Simeth, André Sternbeck and Thomas Wurm.

Code development and software support: Benjamin Gläßle, Piotr Korcyl, Daniel Richtmann.

Gauge configurations were generated using OPENQCD within CLS.

We thank all other CLS colleagues who made this possible.
Summary

Lattice Simulations with Open Boundaries

- avoid topological freezing as $a \to 0$
- long term effort within CLS

$\overline{m} = m_{\text{symm}}$ trajectory: Meson/Baryon Spectrum

- fitting to Gell-Mann–Okubo expansion and SU(3) ChiPT (combined within the other 2 trajectories) in progress

$\tilde{m}_s = \tilde{m}_{s,\text{ph}}$ trajectory: Meson/Baryon Spectrum

- achieved a very constant strange quark mass
- reasonable overall agreement of quark and hadron masses at the physical point with $\overline{m} = \text{const.}$ trajectory
- fitting SU(2) and SU(3) ChiPT in progress

Strategy allows us

- to determine SU(2) as well as SU(3) low energy constants
- to safely extrapolate to the physical quark mass point

Outlook

- extend present study: continuum limit with ≥ 4 lattice spacings
- nucleon structure and other additional observables