Southampton, UK

Lattice 2016

Composite Dark Matter

and insights from the Lattice

Enrico Rinaldi

This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the LLNL LDRD "Illuminating the Dark Universe with PetaFlops Supercomputing" 13-ERD-023.

Computing support comes from the LLNL Institutional Computing Grand Challenge program.

Visible Matter 4.9%

Visible Matter 4.9%

Dark Matter 26.8%

Dark Energy 68.3% Visible Matter 4.9%

 $\rho_{\text{DM}} \approx 5 \rho_{\text{SM}}$ 26.8%

Dark Energy 68.3%

Direct Detection

Indirect Detection

DM DM

Production at Colliders

Production at Colliders

Indirect Detection

Indirect Detection

Production at Colliders

Production at Colliders

What is Dark Matter?

[Planning the Future of U.S. Particle Physics (Snowmass 2013), 1401.6085]

[[]Planning the Future of U.S. Particle Physics (Snowmass 2013), 1401.6085]

[Planning the Future of U.S. Particle Physics (Snowmass 2013), 1401.6085]

Dark Matter is a composite object

Dark Matter is a composite object

e.g. technibaryon or hidden glueball

- Dark Matter is a composite object
- Interesting and complicated internal structure
- Properties dictated by strong dynamics
- Self-interactions are natural

e.g. technibaryon or hidden glueball

- Dark Matter is a composite object
- Interesting and complicated internal structure
- Properties dictated by strong dynamics
- Self-interactions are natural

e.g. technibaryon or hidden glueball

- Dark Matter is a composite object
- Interesting and complicated internal structure
- Properties dictated by strong dynamics
- Self-interactions are natural
- Composite object is neutral
- Constituents may interact with Standard Model particles

e.g. technibaryon or hidden glueball

- Dark Matter is a composite object
- Interesting and complicated internal structure
- Properties dictated by strong dynamics
- Self-interactions are natural
- Composite object is neutral
- Constituents may interact with Standard Model particles

e.g. technibaryon or hidden glueball

Chance to observe them in experiments and give the correct relic abundance

Stability is a direct consequence of accidental **symmetries**

Stability is a direct consequence of accidental **symmetries**

Neutrality follows naturally from **confinement** into singlet objects wrt. SM charges

Stability is a direct consequence of accidental symmetries

Neutrality follows naturally from **confinement** into singlet objects wrt. SM charges

Small **interactions** with SM particles arise from form factor **suppression** (higher dim. operators)

Stability is a direct consequence of accidental **symmetries**

Neutrality follows naturally from **confinement** into singlet objects wrt. SM charges

Small **interactions** with SM particles arise from form factor **suppression** (higher dim. operators)

Self-interactions are included due to strongly coupled dynamics

★ Pion-like (dark quark-antiquark)

- ♦ pNGB DM [Hietanen et al., 1308.4130]
- ◆ Quirky DM [Kribs et al.,0909.2034]
- Ectocolor DM [Buckley&Neil, 1209.6054]
- ◆ SIMP [Hochberg et al.,1411.3727]
- Minimal SU(2) [Lewis, Wed.@11:50]

Pion-like (dark quark-antiquark) PNGB DM [Hietanen et al., 1308.4130]

- ♦ Quirky DM [Kribs et al.,0909.2034]
- Ectocolor DM [Buckley&Neil, 1209.6054]
- ✦ SIMP [Hochberg et al.,1411.3727]
- Minimal SU(2) [Lewis, Wed.@11:50]

★ Baryon-like (multiple quarks)

- "Technibaryons" [LSD, 1301.1693]
- Stealth DM [LSD, 1503.04203-1503.04205]
- One-family TC [LatKMI, 1510.07373]
- Sextet CH [LatHC, 1601.03302][Kuti, Mon.@15:15]

★ Pion-like (dark quark-antiquark)

- ♦ pNGB DM [Hietanen et al., 1308.4130]
- ◆ Quirky DM [Kribs et al.,0909.2034]
- Ectocolor DM [Buckley&Neil, 1209.6054]
- ◆ SIMP [Hochberg et al.,1411.3727]
- Minimal SU(2) [Lewis, Wed.@11:50]

★ Baryon-like (multiple quarks)

- "Technibaryons" [LSD, 1301.1693]
- Stealth DM [LSD, 1503.04203-1503.04205]
- One-family TC [LatKMI, 1510.07373]
- Sextet CH [LatHC, 1601.03302][Kuti, Mon.@15:15]

[Wikipedia]

Lattice results for Composite Dark Matter

Template Models	Spectrum	Higgs	Mag. Dip.	Charge r.	Polariz.			
SU(2) N _f =1	\star	[Talk by Lewis, Wed.@11.50, new simulations are in progress]						
SU(2) N _f =2	\bigstar	\star			\star			
SU(3) N _f =2,6	\star		\star					
SU(3) N _f =8	\bigstar	\star						
SU(3) N _f =2 (S)		alk by Kuti, Mon.@	15.15, small component o	f DM and tree-level intera	ction with Z boson]			
SU(4) N _f =4	\bigstar	\star			\star			
SO(4) N _f =2 (V)	\star							
SU(N) Nf=0		[Talk by Soni, W	ed.@11.30, interested in c	alculating self-interactions	s on the lattice]			

Lattice results for Composite Dark Matter

Template Models	Spectrum	Higgs	Mag. Dip.	Charge r.	Polariz.			
SU(2) N _f =1	\star	[Talk by Lewis, Wed.@11.50, new simulations are in progress]						
SU(2) N _f =2	\star	\star	forbidden in pNGB DM		\star			
SU(3) N _f =2,6	\star			\star				
SU(3) N _f =8	\bigstar	\star						
SU(3) N _f =2 (S)	atty in the second seco	alk by Kuti, Mon.@	15.15, small component o	f DM and tree-level intera	ction with Z boson]			
SU(4) N _f =4	\bigstar	\star	forskielden i					
SO(4) N _f =2 (V)	\star		torbidden li	1 Stealth DM				
SU(N) N _f =0			forbidden i	n SUNonia				

Computing Higgs exchange

 Need to non-perturbatively evaluate the dark σ-term

$$\mathcal{M}_a = \frac{y_f y_q}{2m_h^2} \sum_f \langle B|\bar{f}f|B\rangle \sum_q \langle a|\bar{q}q|a\rangle$$

Computing Higgs exchange

 Need to non-perturbatively evaluate the dark σ-term

$$\mathcal{M}_{a} = \frac{y_{f}y_{q}}{2m_{h}^{2}} \sum_{f} \langle B|\bar{f}f|B\rangle \sum_{q} \langle a|\bar{q}q|a\rangle$$

- 1. effective Higgs coupling with dark fermions and quark Yukawa coupling
- 2. dark baryon scalar form factor: need lattice input for generic DM models!
- 3. nucleon scalar form factor: ChPT and lattice input [Plenary talk by Collins, Tue@10:15]

Computing Higgs exchange

- Need to non-perturbatively evaluate the dark σ-term
- Effective Higgs coupling nontrivial with mixed chiral and vector-like masses

$$\mathcal{M}_{a} = \frac{y_{f}y_{q}}{2m_{h}^{2}} \sum_{f} \langle B|\bar{f}f|B\rangle \sum_{q} \langle a|\bar{q}q|a\rangle$$

- 1. effective Higgs coupling with dark fermions and quark Yukawa coupling
- 2. dark baryon scalar form factor: need lattice input for generic DM models!
- 3. nucleon scalar form factor: ChPT and lattice input [Plenary talk by Collins, Tue@10:15]

$$\begin{aligned} y_f B|\bar{f}f|B\rangle &= \frac{m_B}{v} \sum_f \frac{v}{m_f} \frac{\partial m_f(h)}{\partial h} \Big|_{h=v} f_f^{(B)} \\ m_f(h) &= m + \frac{y_f h}{\sqrt{2}} \\ \alpha &\equiv \frac{v}{m_f} \frac{\partial m_f(h)}{\partial h} \Big|_{h=v} = \frac{yv}{\sqrt{2}m + yv} \end{aligned}$$

Computing Higgs exchange

- Need to non-perturbatively evaluate the dark σ-term
- Effective Higgs coupling nontrivial with mixed chiral and vector-like masses
- Model-dependent answer for the cross-section

$$\mathcal{M}_{a} = \underbrace{\frac{y_{f}y_{q}}{2m_{h}^{2}}}_{f} \sum_{f} \langle B|\bar{f}f|B\rangle \sum_{q} \langle a|\bar{q}q|a\rangle$$

- 1. effective Higgs coupling with dark fermions and quark Yukawa coupling
- 2. dark baryon scalar form factor: need lattice input for generic DM models!
- 3. nucleon scalar form factor: ChPT and lattice input [Plenary talk by Collins, Tue@10:15]

$$y_f \left| B | \bar{f}f | B \right) = \frac{m_B}{v} \sum_f \left(\frac{v}{m_f} \left| \frac{\partial m_f(h)}{\partial h} \right|_{h=v} \right) f_f^{(B)}$$
$$m_f(h) = m + \frac{y_f h}{\sqrt{2}}$$
$$\alpha \equiv \frac{v}{m_f} \left| \frac{\partial m_f(h)}{\partial h} \right|_{h=v} = \frac{yv}{\sqrt{2}m + yv}$$

Computing Higgs exchange

- Need to non-perturbatively evaluate the dark σ-term
- Effective Higgs coupling nontrivial with mixed chiral and vector-like masses
- Model-dependent answer for the cross-section
- Lattice input is necessary: compute mass and form factor

$$\mathcal{M}_{a} = \frac{y_{f}y_{q}}{2m_{h}^{2}} \sum_{f} \langle B|\bar{f}f|B\rangle \sum_{q} \langle a|\bar{q}q|a\rangle$$

- 1. effective Higgs coupling with dark fermions and quark Yukawa coupling
- 2. dark baryon scalar form factor: need lattice input for generic DM models!
- 3. nucleon scalar form factor: ChPT and lattice input [Plenary talk by Collins, Tue@10:15]

Bounds from Higgs exchange

- Lattice results for the cross-section are compared to experimental bounds
- Coupling space in specific models can be vastly constrained

$SU(4) N_f=4$ Stealth DM

SU(3) Nf=8 "technibaryon"

- Some candidates can be excluded as dominant sources of dark matter
- There is lattice evidence for universality of dark scalar form factors [DeGrand et al., 1501.05665]

Bounds from Higgs exchange

- Lattice results for the cross-section are compared to experimental bounds
- Coupling space in specific models can be vastly constrained

$SU(4) N_f=4$ Stealth DM

SU(3) Nf=8 "technibaryon"

- Some candidates can be excluded as dominant sources of dark matter
- There is lattice evidence for universality of dark scalar form factors [DeGrand et al., 1501.05665]

Bounds from Higgs exchange

- ◆Lattice results for the cross-section are compared to **experimental** bounds
- Coupling space in specific models can be vastly constrained

SU(4) N_f=4 Stealth DM

- ♦Some candidates can be excluded as dominant sources of dark matter
- ◆There is lattice evidence for universality of dark scalar form factors [DeGrand et al., 1501.05665]

SU(3) N_f=8 "technibaryon"

Mesonic and Baryonic EM form factors directly from lattice simulations

SU(3) N_f=2,6 dark fermionic baryon

- \star baryon similar to QCD neutron
- \star dark quarks with Q=Y
- ★ calculate connected 3pt
- \star scale set by DM mass
- ★ magnetic moment dominates
- \bigstar results independent of N_f

Mesonic and Baryonic EM form factors directly from lattice simulations

SU(3) N_f=2,6 dark fermionic baryon

[LSD, 1301.1693]

- \star baryon similar to QCD neutron
- \star dark quarks with Q=Y
- ★ calculate connected 3pt
- \star scale set by DM mass
- ★ magnetic moment dominates
- \star results independent of N_f

 $M_B > \sim 10 \text{ TeV}$

Mesonic and Baryonic EM form factors directly from lattice simulations

SU(3) N_f=2,6 dark fermionic baryon

- \star baryon similar to QCD neutron
- \star dark quarks with Q=Y
- ★ calculate connected 3pt
- \star scale set by DM mass
- ★ magnetic moment dominates
- \star results independent of N_f

M_B >~ 10 TeV pushed to ~100 TeV with new LUX

Mesonic and Baryonic EM form factors directly from lattice simulations

- \bigstar dm is "mesonic" pNGB
- \star calculate connected 3pt
- \bigstar use VMD with lattice ρ mass
- \star scale set by F_n=256 GeV
- \bigstar depends on isospin breaking d_B
- \star also couples to Higgs (d₁+d₂)

Mesonic and Baryonic EM form factors directly from lattice simulations

- ★ dm is "mesonic" pNGB
- \star calculate connected 3pt
- \bigstar use VMD with lattice ρ mass
- \star scale set by F_n=256 GeV
- \bigstar depends on isospin breaking d_B
- \star also couples to Higgs (d₁+d₂)

Mesonic and Baryonic EM form factors directly from lattice simulations

- \star dm is "mesonic" pNGB
- \star calculate connected 3pt
- \bigstar use VMD with lattice ρ mass
- \star scale set by F_n=256 GeV
- \bigstar depends on isospin breaking d_B
- \star also couples to Higgs (d₁+d₂)

 $M_B \sim < 13 \text{ GeV}$ depends on d_B

[Pospelov & Veldhuis, hep-ph/0003010] [Ovanesyan & Vecchi, 1410.0601] [Weiner & Yavin,1206.2910] [Frandsen et al., 1207.3971] [Detmold et al., 0904.1586-1001.1131]

Computing polarizability

[Pospelov & Veldhuis, hep-ph/0003010] [Ovanesyan & Vecchi, 1410.0601] [Weiner & Yavin,1206.2910] [Frandsen et al., 1207.3971] [Detmold et al., 0904.1586-1001.1131]

Computing polarizability

[Pospelov & Veldhuis, hep-ph/0003010] [Ovanesyan & Vecchi, 1410.0601] [Weiner & Yavin,1206.2910] [Frandsen et al., 1207.3971] [Detmold et al., 0904.1586-1001.1131]

Computing polarizability

★QCD ideas and lattice QCD techniques can be borrowed when exploring the DM landscape (BSM)

Composite dark matter is a viable interesting possibility with rich phenomenology

★Lattice methods can help in calculating direct detection cross sections, production rates at colliders, and selfinteraction cross sections of phenomenological relevance.

★Dark matter constituents can carry electroweak charges and still the stable composites are currently undetectable. Stealth cross section.

extra

Open questions and future projects

- Structure formation in galaxies → influenced by DM scattering cross-section: hadron-hadron interactions are hard to model, but can be studied directly with lattice methods
- Colliders could produce the (lightest) dark mesons, but need to know their form factors: lattice methods can be used
- New dark sector → deconfinement phase transition: if first order, gravitational wave signals could be soon observed [Schwaller, 1504.07263]

A very familiar picture

The Standard Model of particles

[Wikipedia]

A very familiar picture

[Peccei & Quinn: PRL 38 (1977) 1440, PR D16 (1977) 1791] [Preskill, Wise & Wilczek, Phys. Lett. B 120 (1983) 127-132]

Axion dark matter

- Axions were originally proposed to deal with the Strong-CP problem
 - They also form a plausible DM candidate
 - The axion energy density requires nonperturbative QCD input
- Being sought in ADMX (LLNL, UW) & CAST-IAXO (CERN) with large discovery potential in the next few years
- Requiring $\Omega_a \leq \Omega_{CDM}$ yields a lower bound on the axion mass today

PDG 2014

[Peccei & Quinn: PRL **38** (1977) 1440, PR **D16** (1977) 1791] [Preskill, Wise & Wilczek, Phys. Lett. B **120** (1983) 127-132]

Axion dark matter

- Axions were originally proposed to deal with the Strong-CP problem
 - They also form a plausible DM candidate
 - The axion energy density requires nonperturbative QCD input
- Being sought in ADMX (LLNL, UW) & CAST-IAXO (CERN) with large discovery potential in the next few years
- Requiring $\Omega_a \leq \Omega_{CDM}$ yields a lower bound on the axion mass today

Constraints from lattice simulations

Non-perturbative calculation of QCD topology at finite temperature

Pure gauge SU(3) topological susceptibility
compatible with model predictions, but
large non-perturbative effects

[Kitano&Yamada, 1506.00370][Borsanyi et al., 1508.06917][Frison et al.,1606.07175]

 is QCD topological susceptibility at high-T well described by models? ⇒ light fermions importantly affect the vacuum
[Trunin et al., 1510.02265][Petreczky et al., 1606.03145][Borsanyi et al., 1606.07494]

[Berkowitz, Buchoff, ER., 1505.07455]

Constraints from lattice simulations

Non-perturbative calculation of QCD topology at finite temperature

Pure gauge SU(3) topological susceptibility
compatible with model predictions, but
large non-perturbative effects

[Kitano&Yamada, 1506.00370][Borsanyi et al., 1508.06917][Frison et al.,1606.07175]

 is QCD topological susceptibility at high-T well described by models? → light fermions importantly affect the vacuum
[Trunin et al., 1510.02265][Petreczky et al., 1606.03145][Borsanyi et al., 1606.07494]

Great effort to control all systematic lattice effects in order to impact experiments. This direction has started only 1 year ago!

[Berkowitz, Buchoff, ER., 1505.07455]

Axion mass lower bound

Axion mass lower bound

Axion mass lower bound

Axion mass lower bound

Composite DM signatures at colliders

Composite DM signatures at colliders

 Signatures are not dominated by missing energy: DM is not the lightest particle! The interactions are suppressed (form factors)

Composite DM signatures at colliders

- Signatures are not dominated by missing energy: DM is not the lightest particle! The interactions are suppressed (form factors)
- Light meson production and decay give interesting signatures: the model can be constrained by collider limits

Photon interactions

 $\langle \chi(p') | j^{\mu}_{\rm EM} | \chi(p) \rangle = F(q^2) q^{\mu}$

Expansion at low momentum through effective operators

✦dimension 5 ➡ magnetic dipole

 \bullet dimension 6 \blacktriangleright charge radius

 \bullet dimension 7 \blacktriangleright polarizability

