
This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National 
Laboratory under Contract DE-AC52-07NA27344 and supported by the LLNL LDRD “Illuminating the Dark Universe 

with PetaFlops Supercomputing” 13-ERD-023.  

Computing support comes from the LLNL Institutional Computing Grand Challenge program. LLNL-PRES-669543

Lattice 2016 Southampton, UK

and insights from the Lattice 

Composite 
 Dark Matter

Enrico Rinaldi



[Hubble + Plank/ESA]



[Hubble + Plank/ESA]



[Hubble + Plank/ESA]



[Hubble + Plank/ESA]

𝜌DM ≈ 5 ρSM
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★Gravitational effects of DM show up in CMB, lensing 
and other large scale phenomena 

★Direct Standard Model interactions are needed for 
production in the early Universe 

★Direct detection and Collider experiments rely on SM 
interactions, but they are suppressed 

★ Strong exclusion bounds push theorists to explore a 
wider landscape of models for DM 

★ Problems with cosmological models can hint at strongly 
self-interacting dark matter
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Lattice Field Theory methods
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Natural features of Composite Dark Matter

[review by Kribs & Neil, 1604.04627]

Stability is a direct 
consequence of 

accidental symmetries Neutrality follows naturally 
from confinement into singlet 

objects wrt. SM charges 

Small interactions with 
SM particles arise from form 
factor suppression (higher 

dim. operators)

Self-interactions are 
included due to strongly 

coupled dynamics



Models for Composite Dark Matter
★Pion-like (dark quark-antiquark) 

✦ pNGB DM [Hietanen et al.,1308.4130] 
✦ Quirky DM [Kribs et al.,0909.2034] 
✦ Ectocolor DM [Buckley&Neil,1209.6054] 
✦ SIMP [Hochberg et al.,1411.3727] 

✦ Minimal SU(2) [Lewis, Wed.@11:50]

[review by Kribs & Neil, 1604.04627][list of references focused on lattice results when possible]



★Baryon-like (multiple quarks) 
✦ “Technibaryons” [LSD,1301.1693] 
✦ Stealth DM [LSD,1503.04203-1503.04205] 
✦ One-family TC [LatKMI,1510.07373] 
✦ Sextet CH [LatHC,1601.03302][Kuti, Mon.@15:15]
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★Glueball-like (only gluons) 
✦ SUNonia [Boddy et al.,1402.3629]

[Soni, Wed.@11:30]

★Dark Nuclei [Detmold et 
al.,1406.2276-1406.4116]

[list of references focused on lattice results when possible]
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Lattice results for Composite Dark Matter

SU(2) Nf=1
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lattice
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[references in Kribs & Neil, 1604.04627]

[Talk by Lewis, Wed.@11.50, new simulations are in progress]

[Talk by Kuti, Mon.@15.15, small component of DM and tree-level interaction with Z boson]

[Talk by Soni, Wed.@11.30, interested in calculating self-interactions on the lattice]

forbidden
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Computing Higgs exchange

✦ Need to non-perturbatively 
evaluate the dark σ-term

✦ Effective Higgs coupling non-
trivial with mixed chiral and 
vector-like masses

✦ Model-dependent answer for 
the cross-section

✦ Lattice input is necessary: 
compute mass and form factor
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Bounds from EM moments
Magnetic moment  dominates for MB & 25 GeV

—Dashed lines show charge radius
⌦
r2↵ contribution to full rate

—Suppressed by 1/M2
B relative to magnetic moment contribution
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Mesonic and Baryonic EM form factors 
directly from lattice simulations

[Plenary talk by Collins, Tue@10:15]

★ baryon similar to QCD neutron 

★ dark quarks with Q=Y 
★ calculate connected 3pt 
★ scale set by DM mass 

★ magnetic moment dominates 
★ results independent of Nf

[LSD, 1301.1693]
SU(3) Nf=2,6 dark fermionic baryon
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Mesonic and Baryonic EM form factors 
directly from lattice simulations

[Plenary talk by Collins, Tue@10:15]

★ baryon similar to QCD neutron 

★ dark quarks with Q=Y 
★ calculate connected 3pt 
★ scale set by DM mass 

★ magnetic moment dominates 
★ results independent of Nf

[LSD, 1301.1693]
SU(3) Nf=2,6 dark fermionic baryon

Excluded

MB >~ 10 TeV
pushed to ~100 TeV 

with new LUX



Bounds from EM moments
γ

Mesonic and Baryonic EM form factors 
directly from lattice simulations

[Plenary talk by Collins, Tue@10:15]

★ dm is “mesonic” pNGB 
★ calculate connected 3pt 
★ use VMD with lattice ρ mass 
★ scale set by Fπ=256 GeV 
★ depends on isospin breaking dB 
★ also couples to Higgs (d1+d2)

[Hietanen et al., 1308.4130]
SU(2) Nf=2 pNGB DM 

super CDMS
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γ

Mesonic and Baryonic EM form factors 
directly from lattice simulations
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Concluding remarks

★QCD ideas and lattice QCD techniques can be borrowed 
when exploring the DM landscape (BSM) 

★Composite dark matter is a viable interesting possibility with 
rich phenomenology 

★Lattice methods can help in calculating direct detection 
cross sections, production rates at colliders, and self-
interaction cross sections of phenomenological relevance. 

★Dark matter constituents can carry electroweak charges and 
still the stable composites are currently undetectable. Stealth 
cross section.



extra



Open questions and future projects

• Structure formation in galaxies ➜ influenced by DM 
scattering cross-section: hadron-hadron interactions 
are hard to model, but can be studied directly with 
lattice methods 

• Colliders could produce the (lightest) dark mesons, but 
need to know their form factors: lattice methods can be 
used  

• New dark sector ➜ deconfinement phase transition: if 
first order, gravitational wave signals could be soon 
observed
[Schwaller, 1504.07263]
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Axion dark matter

• Axions were originally proposed to deal 
with the Strong-CP problem 

• They also form a plausible DM 
candidate 

• The axion energy density requires non-
perturbative QCD input 

• Being sought in ADMX (LLNL, UW) & 
CAST-IAXO (CERN) with large discovery 
potential in the next few years 

• Requiring Ωa ≤ ΩCDM yields a lower bound 
on the axion mass today

Ωtot = 1.000(7) 
PDG 2014 

[Preskill, Wise & Wilczek, Phys. Lett. B 120 (1983) 127-132]
[Peccei & Quinn: PRL 38 (1977) 1440, PR D16 (1977) 1791]
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Lattice Field Theory methods

[Peccei & Quinn: PRL 38 (1977) 1440, PR D16 (1977) 1791]
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Constraints from lattice simulations

• Pure gauge SU(3) topological susceptibility 
➥ compatible with model predictions, but 
large non-perturbative effects


• is QCD topological susceptibility at high-T 
well described by models? ➥ light 
fermions importantly affect the vacuum

[Bonati et al., 1512.06746]

[Berkowitz, Buchoff, ER., 1505.07455]
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Non-perturbative calculation of QCD topology  
at finite temperature

[Trunin et al., 1510.02265][Petreczky et al., 1606.03145][Borsanyi et al., 1606.07494]
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Non-perturbative calculation of QCD topology  
at finite temperature
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Great effort to control all systematic lattice 
effects in order to impact experiments. 

This direction has started only 1 year ago!

[Talk by Katz, Mon.@14:35][Talk by Szabo, Mon.@13:15]
[Talk by Frison, Mon.@14:35][Talk by Taniguchi, Fri.@17:10]
[Talk by Martinelli, Fri@13:00]



Axion mass lower bound

[ADMX Website] 

[Berkowitz, Buchoff, ER., 1505.07455]
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Axion mass lower bound

Lattice SU(3) 
Pure Glue

fa < (4.10±0.04) 1011 GeV 
ma > (14.6±0.1) μeV

[ADMX Website] 

[Berkowitz, Buchoff, ER., 1505.07455]
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Axion mass lower bound

Lattice SU(3) 
Pure Glue

fa < (4.10±0.04) 1011 GeV 
ma > (14.6±0.1) μeV

[ADMX Website] 

axions < 100% of DM

smaller χ

[Berkowitz, Buchoff, ER., 1505.07455]
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Axion mass lower bound

Lattice QCD with 
physical quarks

ma > (28±2) μeV

[ADMX Website] 

[Borsanyi et al., 1606.07494]

[Talk by Katz, Mon.@14:35][Talk by Szabo, Mon.@13:15]
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baryon excited
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Collider searches dominated by light meson production and decay.

Missing energy signals largely absent!

⇢
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Plot by G. Kribs

★ Signatures are not dominated by missing energy: DM is not 
the lightest particle! The interactions are suppressed (form 
factors)

★ Light meson production and decay give interesting 
signatures: the model can be constrained by collider limits

Composite DM signatures at colliders

VS.



Photon interactions
h�(p0)|jµEM|�(p)i = F (q2)qµ

✦dimension 5 ➥ magnetic dipole 

✦dimension 6 ➥ charge radius 

✦dimension 7 ➥ polarizability

(�̄�µ⌫�)Fµ⌫

⇤dark

(�̄�)vµ@⌫Fµ⌫

⇤2
dark

(�̄�)Fµ⌫Fµ⌫

⇤3
dark

Expansion at low momentum through effective operators

[Bagnasco et al.,hep-ph/9310290]


