Including heavy spin effects in a lattice QCD study of static-static-light-light tetraquarks

34th International Symposium on Lattice Field Theory – Southampton, UK

Marc Wagner

Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik

mwagner@th.physik.uni-frankfurt.de

 $http://th.physik.uni-frankfurt.de/{\sim}mwagner/$

in collaboration with Pedro Bicudo and Jonas Scheunert

July 25, 2016

Motivation

- Previous work:
 - Evidence for the existence of a $\overline{b}\overline{b}ud$ tetraquark, quantum numbers $I(J^P) = 0(1^+)$...
 - ... using the static approximation for the \overline{b} quarks and neglecting heavy spin effects.

[P. Bicudo, M.W., Phys. Rev. D 87, 114511 (2013) [arXiv:1209.6274]]
[P. Bicudo, K. Cichy, A. Peters, B. Wagenbach, M.W., Phys. Rev. D 92, 014507 (2015) [arXiv:1505.00613]]
[P. Bicudo, K. Cichy, A. Peters, M.W., Phys. Rev. D 93, 034501 (2016) [arXiv:1510.03441]]

- Binding energy ($\Delta E = 90^{+43}_{-36} \text{ MeV}$) is of the same order as expected for heavy spin effects $(\mathcal{O}(m_{B^*} m_B) = \mathcal{O}(46 \text{ MeV}))$ \rightarrow essential to include heavy spin effects in the computation.
- Outline:
 - (1) Summary of previous work: $\overline{bb}ud$ tetraquarks without heavy spin effects.
 - (2) Including heavy spin effects.

$\overline{b}\overline{b}ud$ tetraquarks, no heavy spin (1)

- **Basic idea**: Investigate the existence of heavy tetraquarks $\overline{bb}ud$ in two steps.
 - (1) Compute potentials of two static antiquarks \overline{bb} in the presence of two light quarks ud using lattice QCD.
 - (2) Check, whether these potentials are sufficiently attractive, to host a bound state by solving a corresponding Schrödinger equation. (\rightarrow A bound state is an indication for a stable \overline{bbud} tetraquark.)
- $(1) + (2) \rightarrow$ Born-Oppenheimer approximation:
 - Proposed in 1927 for molecular and solid state calculations.
 [M. Born, R. Oppenheimer, "Zur Quantentheorie der Molekeln," Annalen der Physik 389, Nr. 20, 1927]
 - In our computations step (1) not quantum mechanics, but lattice QCD.
 - Approximation valid, if $m_{u,d} \ll m_b$.

$\overline{b}\overline{b}ud$ tetraquarks, no heavy spin (2)

Born-Oppenheimer approximation, step (1)

- Lattice QCD computation of $\overline{b}\overline{b}$ potentials $V_{\overline{b}\overline{b}}(r)$.
 - (1) Use $\bar{b}\bar{b}qq$ creation operators

 $\mathcal{O}_{L,S}(\vec{r}_1, \vec{r}_2) = (\mathcal{C}L)_{AB}(\mathcal{C}S)_{CD}\left(\bar{b}_C(\vec{r}_1)q_A^{(1)}(\vec{r}_1)\right)\left(\bar{b}_D(\vec{r}_2)q_B^{(2)}(\vec{r}_2)\right) , \quad r = |\vec{r}_1 - \vec{r}_2|.$

- * Different isospin $q^{(1)}q^{(2)} \in \{(ud-du)/\sqrt{2} \ , \ uu, (ud+du)/\sqrt{2}, dd\}.$
- * Different light quark spin/parity.
- * Different static quark spin/parity. (Irrelevant for $V_{ar{b}ar{b}}(r)$.)
- $\rightarrow\,$ Many different channels
 - ... some attractive, some repulsive
 - \dots some correspond for large bb separations to pairs of ground state mesons, some to excited mesons.
- (2) Compute temporal correlation functions.
- (3) Determine $V_{\bar{b}\bar{b}}(r)$ from the exponential decays of the correlation functions.

$\overline{b}\overline{b}ud$ tetraquarks, no heavy spin (3)

• I = 0 (left) and I = 1 (right); $|j_z| = 0$ (top) and $|j_z| = 1$ (bottom).

$\overline{b}\overline{b}ud$ tetraquarks, no heavy spin (4)

- Two attractive channels corresponding to pairs of ground state mesons, i.e. *B* and/or *B*^{*} (degenerate in the static limit):
 - I = 0, $j_z = 0$ (light quark spin): more attractive.
 - I = 1, $j_z = 1$ (light quark spin): less attractive.
- Lattice QCD results can be fitted using the phenomenologically motivated ansatz

$$V(r) = -\frac{\alpha}{r} \exp\left(-\left(\frac{r}{d}\right)^p\right)$$

(one-gluon-exchange at short separations, exponential screening at large separations; fitting parameters α , d and p).

$\overline{b}\overline{b}ud$ tetraquarks, no heavy spin (5)

Born-Oppenheimer approximation, step (2)

• Solve the Schrödinger equation for the relative coordinate \vec{r} of the two \bar{b} quarks,

$$\left(-\frac{1}{2\mu}\Delta + V_{\bar{b}\bar{b}}(r)\right)\psi(\vec{r}) = E\psi(\vec{r}) , \quad \mu = m_b/2;$$

possibly existing bound states, i.e. E < 0, indicate $\bar{b}\bar{b}ud$ tetraquarks.

- A single bound state for one specific potential $V_{\bar{b}\bar{b}}(r)$ $(I = 0, j_z = 0)$:
 - Binding energy $\Delta E = -E = 90^{+43}_{-36}$ MeV, i.e. confidence level $\approx 2 \sigma$.
 - Quantum numbers of the $\overline{b}\overline{b}ud$ tetraquark: $I(J^P) = 0(1^+)$.
 - * \overline{bb} : flavor symmetric ... color triplet, i.e. antisymmetric (otherwise no attraction) \rightarrow due to Pauli principle heavy spin symmetric, i.e. $j_b = 1$.
 - * ud: I = 0, i.e. flavor antisymmetric, color triplet, i.e. antisymmetric (otherwise four quark system not in a color singlet)
 - \rightarrow due to Pauli principle light spin antisymmetric, i.e. j=0.
 - * $j_b = 1$ and $j = 0 \rightarrow J = 1$.
 - * Ground state mesons B and B^* both have $P=-\quad \rightarrow P=+.$
 - \rightarrow Prediction of a tetraquark.

Including heavy spin effects (1)

• Interpret static-static-light-light creation operators and the corresponding potentials $V_L(r)$, $r = |\vec{r_1} - \vec{r_2}|$ in terms of two heavy-light mesons,

$$\mathcal{O}_{L,S}(\vec{r}_1, \vec{r}_2) = (\mathcal{C}L)_{AB}(\mathcal{C}S)_{CD} \Big(\bar{Q}_C(\vec{r}_1) q_A^{(1)}(\vec{r}_1) \Big) \Big(\bar{Q}_D(\vec{r}_2) q_B^{(2)}(\vec{r}_2) \Big) = = \mathbb{G}(S, L)_{ab} \Big(\bar{Q}(\vec{r}_1) \Gamma^a q^{(1)}(\vec{r}_1) \Big) \Big(\bar{Q}(\vec{r}_2) \Gamma^b q^{(2)}(\vec{r}_2) \Big).$$

 $- \mathbb{G}(S, L)_{ab}$: Coefficients, which can be computed using the Fierz identity.

$$-\Gamma^a = (1 + \gamma_0)\gamma_5 \rightarrow J^P = 0^-$$
 (the pseudoscalar *B* meson).

$$-\Gamma^a = (\mathbb{1} + \gamma_0)\gamma_j \ (j = 1, 2, 3) \quad \rightarrow \quad J^P = 1^- \ (\text{the vector } B^* \text{ meson}).$$

$$- \ \Gamma^a = (1 + \gamma_0) 1 \quad o \quad J^P = 0^+$$
 (the scalar B^*_0 meson).

$$-\Gamma^a = (\mathbb{1} + \gamma_0)\gamma_j\gamma_5 \ (j = 1, 2, 3) \rightarrow J^P = 1^+ \ (\text{the pseudovector } B_1^* \text{ meson}).$$

Focus on B and B^{*} mesons (the two lightest bottom mesons), which are degenerate in the static limit and have similar mass in nature (m_{B*} - m_B ≈ 45 MeV)
 → 16 posibilities of light and static spin couplings,

$L, S \in \{(1 + \gamma_0)\gamma_5, (1 + \gamma_0)\gamma_j\}.$

Including heavy spin effects (2)

- Corresponding $\bar{Q}\bar{Q}qq$ potentials depend only on L,
 - (1) $V_5(r) \equiv V_{(1+\gamma_0)\gamma_5}$, i.e. $L = (1 + \gamma_0)\gamma_5$, attractive for isospin I = 0, repulsive for isospin I = 1,
 - (2) $V_j(r) \equiv V_{(1+\gamma_0)\gamma_j}$, i.e. $L = (1 + \gamma_0)\gamma_j$, repulsive for isospin I = 0, attractive for isospin I = 1.
- Neither for $V_5(r)$ nor for $V_j(r)$ it is possible to choose S such that it corresponds exclusively to a B meson pair.
- One always finds linear combinations of B and B^* mesons, e.g. for $L = S = (1 + \gamma_0)\gamma_5$

 $B(\vec{r}_1)B(\vec{r}_2) + B_x^*(\vec{r}_1)B_x^*(\vec{r}_2) + B_y^*(\vec{r}_1)B_y^*(\vec{r}_2) + B_z^*(\vec{r}_1)B_z^*(\vec{r}_2).$

• Vice versa, a $B(\vec{r_1})B(\vec{r_2})$ pair does not have defined light quark spin and hence corresponds to a mixture of both $V_5(r)$ or $V_j(r)$ (one attractive, the other repulsive).

Including heavy spin effects (3)

• Study a coupled channel Schrödinger equation for the two \bar{b} quarks:

$$H\Psi(\vec{r_1}, \vec{r_2}) = \left(\frac{H_0 + H_{\text{int}}}{\Psi(\vec{r_1}, \vec{r_2})}\right) = E\Psi(\vec{r_1}, \vec{r_2})$$

with a 16-component wave function Ψ ($1 \equiv B(\vec{r_1})B(\vec{r_2})$, $2 \equiv B(\vec{r_1})B_x^*(\vec{r_2})$, etc.).

• Free part of the Hamiltonian *H*:

$$H_0 = \frac{\vec{p}_1^2}{2m_b} \mathbb{1}_{16 \times 16} + \frac{\vec{p}_2^2}{2m_b} \mathbb{1}_{16 \times 16} + M \otimes \mathbb{1}_{4 \times 4} + \mathbb{1}_{4 \times 4} \otimes M$$

with $M = \text{diag}(m_B, m_{B^*}, m_{B^*}, m_{B^*})$, $m_b = 4977$ (from the quark model) and $m_B = 5280 \text{ MeV}$, $m_{B^*} = 5325 \text{ MeV}$ from the PDG.

• Interacting part of the Hamiltonian *H*:

$$H_{\text{int}} = T^{-1}V(r)T \quad , \quad V(r) = \text{diag}\left(\underbrace{V_5(r), \dots, V_5(r)}_{4\times}, \underbrace{V_j(r), \dots, V_j(r)}_{12\times}\right),$$

where T is the transformation between the 16 components of Ψ and the 16 static-static-light-light channels defined by S and L (T is equivalent to $\mathbb{G}(S, L)_{ab}$).

Including heavy spin effects (4)

• Due to rotational symmetry the coupled channel Schrödinger equation for the two \bar{b} quarks,

$$H\Psi(\vec{r}_1, \vec{r}_2) = (H_0 + H_{\text{int}})\Psi(\vec{r}_1, \vec{r}_2) = E\Psi(\vec{r}_1, \vec{r}_2),$$

- can be transformed to have block diagonal structure, i.e. the 16×16 problem separates into a 2×2 problem (corresponding to J = 0), a 2×2 and a 1×1 problem (corresponding to J = 1; $3 \times$ degenerate), a 1×1 problem (corresponding to J = 2; $5 \times$ degenerate).
- Including heavy spin effects will reduce the binding energy \rightarrow focus on $I(J^P) = 0(1^+)$, the only channel, for which a $\overline{b}\overline{b}ud$ tetraquark has been predicted without taking heavy spin effects into account.
- The 1×1 problem contains only the repulsive V_i , i.e. will not have a bound state.
- The 2×2 problem contains both the attractive V_5 and the repulsive V_j :

$$H_{\text{int},J=1,2\times 2} = \frac{1}{2} \begin{pmatrix} V_5 + V_j & V_j - V_5 \\ V_j - V_5 & V_5 + V_j \end{pmatrix},$$

first component of Ψ corresponds to BB^* , second component of Ψ corresponds to B^*B^* .

Including heavy spin effects (5)

- Numerical solution of the 2×2 coupled channel Schrödinger equation with a Runge-Kutta shooting method.
- Results and conclusions:
 - (1) The $\bar{b}\bar{b}ud$ tetraquark persists, binding energy $\Delta E = m_B + m_B^* E = 59^{+30}_{-38} \text{ MeV}$ (without taking heavy spin effects into account $\Delta E = 90^{+43}_{-36} \text{ MeV}$).
 - (2) The wave function Ψ is a roughly 50%/50% mixture of BB^* and B^*B^* .
 - (3) The average separation of the two \bar{b} quarks is around 0.25 fm.

Summary and outlook

- Prediction of a $\overline{b}\overline{b}ud$ tetraquark with quantum numbers $I(J^P) = 0(1^+)$,
 - binding energy $\Delta E = m_B + m_B^* E = 59^{+30}_{-38} \,\text{MeV}$,
 - mass $m = m_B + m_B^* \Delta E = (5280 + 5325 59^{+38}_{-30}) \text{ MeV} = 10546^{+38}_{-30} \text{ MeV},$

using static-static-light-light lattice QCD potentials and the Born-Oppenheimer approximation with heavy spin effects taken into account.

- Work in Progress:
 - Investigation of the structure of the \overline{bbud} tetraquark ... is it a mesonic molecule ... or a diguark-antidiguark pair?
 - The experimentally simpler/theoretically harder case $\bar{b}b\bar{q}q$ (e.g. $Z_b(10610)^+$, $Z_b(10650)^+$).
 - \rightarrow Talk by Antje Peters, "Lattice QCD study of heavy-heavy-light-light tetraquark candidates" ... now in this session.

