
The Slab Method to Measure

the Topological Susceptibility

• Topological susceptibility

• Numerical measurement: direct, or in a fixed sector

Slab method

• Results: 1d O(2) model, 2d O(3) model, 2-flavour QCD

W.B., K. Cichy, P. de Forcrand, A. Dromard, U. Gerber, M. Wagner

JHEP 12(2015)070 and arXiv:1605.08637

1



In a number of important models (with periodic boundary conditions),

the configurations occur in top. sectors, labelled by the top. charge Q ∈ ZZ.

Continuum (lattice) :

continuous deformations of a conf. can never (only painfully) alter Q.

Top. susceptibility

χt =
1

V

(

〈Q2〉 − 〈Q〉2
)

, here : 〈Q〉 = 0 (P invariance)

Non-perturbative quantity ⇒ issue for lattice simulations.
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Phenomenological relevance:

Quantitative solution of the U(1) problem [Witten, Veneziano ’79]

’t Hooft: re-scale strong coupling as g2 = g2sNc, for large Nc , small gs

• Nf massless quark flavours

χquenched
t ≃

F 2
πM

2
η′

2Nf
; F 2

π ∝ Nc , M2
η′ ∝ 1/Nc (NGB at Nc → ∞)

predicts Mη′ ∝ 1/
√
Nc , no SSB for U(1) sym.

• For mu = md = 0, ms > 0 :

χquenched
t ≃ F 2

π

6

(

M2
η′ +M2

η − 2M2
K

)

[Recent analysis: Fukaya et al. ’15]
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Example for a direct measurement of 〈Q2〉 in quenched QCD [W.B./Shcheredin ’06]

Q := index of Doverlap (V = 123 × 24, β = 5.85 ⇒ a ≃ 0.123 fm)
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History well de-correlated

histograms for standard overlap and overlap hypercube ≈ Gaussian

width ⇔ χt

(roughly) compatible with Witten-Veneziano formula at Mη′ = 958MeV

High statistics and cont. extrapolation: Del Debbio et al. ’05, Dürr et al. ’07

With dynamical quarks: χt ⇒ axion mass (similar to Witten-Veneziano formula)

Cold Dark Matter candidate ? [e.g. Petreczky/Schadler/Sharma ’16]
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Fine lattices:

top. sectors separated by high potential walls (→ ∞ in continuum limit).

Markov chain for small update steps:

confined to one sector over a LONG computation time.

Extreme cases with light chiral quarks (also suppress top. transitions, and |Q|)
long HMC histories entirely at Q = 0. (ergodicity?)

[Fukaya et al., ’07, Aoki et al., ’08, Borsanyi et al., ’15]

Can we still measure χt ? Yes, we can, by indirect methods !
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• Brower-Chandrasekharan-Negele-Wiese ’03: formula for observable O measured at

fixed Q (expansion in 1/(V χt) = 1/〈Q2〉):

〈O〉|Q ≃ 〈O〉 + const.

V χt

(

1 − Q2

V χt

)

Requires 〈O〉|Q in several |Q| and V
fit

︷︸︸︷
=⇒ 〈O〉, χt (if 〈Q2〉 > 1, |Q| ≤ 1 or 2)∗

Works well for 〈O〉, but large uncertainties for χt [W.B. et al., ’16]

• Aoki-Fukaya-Hashimoto-Onogi ’07: formula: exclusively for χt:

〈q0 qx〉||Q|, large |x| ≃ −χt

V
+

Q2

V 2
= −χt

V

(

1 − Q2

V χt

)

qx: top. charge density, plateau value of correlation ⇒ χt

Successful in a suitable regime∗; large V → tiny signal, to be extracted by all-to-all

correlations. [Tests in σ-models and 4d SU(2) Yang-Mills theory: Bautista et al., ’15]
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Slab Method idea first expressed by de Forcrand et al. ’99

[similar for instanton liquids: Shuryak/Verbaarschot ’95]

Assume Gaussian distribution of top. charges,

p(Q) ∝ e−Q2/(2χtV )

well confirmed, up to lattice artifacts (see below)

Split volume V into sub-volumes := slabs of sizes xV , (1 − x)V (0 < x < 1)

Q − q

V Q

(1−x) Vx V

q

Fixed total Q ⇒ slab charges
∑

x qx : q, Q−q ∈ RI (face between slabs non-periodic)
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Probability distribution (at fixed V , x, Q):

p1(q) p2(Q − q) ∝ exp
(

− q2

2χtV x

)

· exp
(

− (Q − q)2

2χtV (1 − x)

)

∝ exp
(

− 1

2χtV

q′ 2

x(1 − x)

)

, q
′
:= q − xQ

〈q〉 = xQ ⇒ 〈q′ 2〉 = 〈q 2〉 − x2Q2

Measure 〈q 2〉 , 〈q′ 2〉 at various x, fit to parabola ⇒ χt

Quantum rotor (1d XY model)

Periodic time lattice t = 1 . . . L, angular variable φt . Geometrical definition:

Q[φ] =
1

2π

∑

t

∆φt , ∆φt = (φt+1 − φt)mod 2π ∈ (−π, π]
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Lattice actions:

Sstandard[φ] = β
∑

t

(1 − cos(∆φt)) , SManton[φ] =
β

2

∑

t

(∆φt)
2

Sconstraint[φ] =

{
0 ∆φt < δ ∀t

+∞ otherwise
Cont. limit : β → ∞, δ → 0
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〈q2〉 at Q = 0 |Q| = 1 |Q| = 2 |Q| = 1, 2 : 〈q2〉 〈q′ 2〉 fit

〈q2〉(x) : Parabola from 〈q2〉(0) = 0 to 〈q2〉(1) = Q2

〈q′ 2〉(x) : Lχt x(1 − x) , vanishes at x = 0 and x = 1
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Results for scaling quantity χt ξ (ξ: correlation length)
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Thermodynamic limit (L → ∞) known analytically for all three lattice actions;

converges slowly, best for for small |Q|.
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2d O(3) model (Heisenberg model)

χt ξ
2 diverges logarithmically in cont. limit ⇒ consider just χt at finite ξ (lattice units)

Again: geometric formulation of Q, analogous three lattice actions
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Each set of data points shows (from left to right): χt directly measured (feasible with

cluster algorithm), and with slab method at |Q| = 0, 1, 2 [data in JHEP 12(2015)070]
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Kurtosis

c4 =
1

V

(

3〈Q2〉2 − 〈Q4〉
)

measures deviation from a Gauss distribution (Gaussian: c4 = 0)
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2-flavour QCD

• Wilson gauge action, qx from lattice field strength tensor

after smoothing,
∑

x qx is slightly re-scaled and rounded to Q ∈ ZZ

• twisted mass quarks (full twist, µ = 0.015); Mπ ≃ 650MeV

• 105 confs, V = 163 × 32, β = 3.9 ⇒ a ≃ 0.079 fm

Gradient flow with Runge-Kutta integration in flow time t

(results for ǫ = 0.01 and 0.001 agree)

Lüscher’s reference scale t20 〈E〉clover = 0.3 , here: t0 = 2.42

Slabs: 163 × 32x and 163 × 32(1 − x)
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Result consistent with other methods:

χt a
4
=






7.76(20) · 10−5 direct

7.63(14) · 10−5 slab method for |Q| ≤ 2

7.69(22) · 10−5 AFHO method ” ”
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Conclusions

Slab method:

Simple approach to measure χt within a single top. sector, best at small |Q|

Only assumption: Gauss-distribution of top. charges

(well confirmed, up to lattice artifacts).

Precision not affected by “topological slowing down”,

but persistent finite-size effects (often polynomial at fixed topology)

Successful tests in

• non-linear σ-models: straight application

2d O(3) model: %-level precision, 1d O(2): far beyond

• 2-flavour QCD: %-level, after gradient flow time ≈ 5t0

Requires additive constant, and discarding very narrow slabs (x & 0 or x . 1).
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