Precision determination of the strong coupling at the electroweak scale

Rainer Sommer @ Lattice2016, Southampton

Mattia Bruno, Mattia Dalla Brida, Patrick Fritzsch, Tomasz Korzec, Alberto Ramos, Stefan Schaefer, Hubert Simma, Stefan Sint, RS

based on simulations by CLS

Four steps

Intermezzo: setting the scale

Mattia Bruno, Tomasz Korzec, Stefan Schaefer arXiv:1608.xxxx

based on simulations by **CLS**

and on determination of Z_A by Mattia Dalla Brida and Tomasz Korzec

Used CLS Ensembles (tr M =const. [QCDSF strategy])

id	eta	$N_{\rm s}$	$N_{ m t}$	κ_u	κ_s	$m_{\pi}[\text{MeV}]$	m_K [MeV]	$m_{\pi}L$
H101	3.40	32	96	0.13675962	0.13675962	420	420	5.8
H102	3.40	32	96	0.136865	0.136549339	350	440	4.9
H105	3.40	32	96	0.136970	0.13634079	280	460	3.9
C101	3.40	48	96	0.137030	0.136222041	220	470	4.7
H400	3.46	32	96	0.13688848	0.13688848	420	420	5.2
H401	3.46	32	96	0.136725	0.136725	550	550	7.3
H402	3.46	32	96	0.136855	0.136855	450	450	5.7
H200	3.55	32	96	0.137000	0.137000	420	420	4.3
N202	3.55	48	128	0.137000	0.137000	420	420	6.5
N203	3.55	48	128	0.137080	0.136840284	340	440	5.4
N200	3.55	48	128	0.137140	0.13672086	280	460	4.4
D200	3.55	64	128	0.137200	0.136601748	200	480	4.2
N300	3.70	48	128	0.137000	0.137000	420	420	5.1
J303	3.70	64	192	0.137123	0.1367546608	260	470	4.1

reasonable lattice spacings: 0.08, 0.07, 0.06, 0.05 fm

Strategy of CLS Ensembles

• simulations: $\operatorname{Tr} M_q = \operatorname{const.}$

 $m_{\pi}^2/f_{\pi K}^2 = phys.$ $m_{\rm K}^2/f_{\pi K}^2 = phys.$ \to $\Phi_4 = 1.11(2)$

Shift to desired trajectory

$$f(m') \approx f(m) + (m' - m)f'(m)$$

$$f'(m) = \sum_{i} \frac{\partial f}{\partial \bar{A}_{i}} \left[\left\langle \partial_{m} A_{i} \right\rangle - \left\langle (A_{i} - \bar{A}_{i})(\partial_{m} S - \overline{\partial_{m} S}) \right\rangle \right]$$

$$\partial_{m} \operatorname{tr} \left[\frac{1}{D + m} \Gamma \frac{1}{D + m'} \Gamma' \right] = -\operatorname{tr} \left[\frac{1}{(D + m)^{2}} \Gamma \frac{1}{D + m'} \Gamma' \right]$$

$$-\partial_{m} \log \det(D + m) = -\operatorname{tr} (D + m)^{-1}$$

XXsymm $X = t_0$ as function of $\phi_2 = 8 t_0 m_{\pi}^2$

 $X = f_{\pi K}$

 $X = f_{\pi K} \sqrt{t_0}$

 $X = \operatorname{tr} M_{\mathrm{R}}$

M. Bruno, T. Korzec, S. Schaefer

M. Bruno, T. Korzec, S. Schaefer

to in physical units

M. Bruno, T. Korzec, S. Schaefer

- Φ₄=1.11 trajectory
- Continuum extrapolation fit $\sqrt{t_0} f_{\pi K} = F^{\text{cont}}(\phi_2) + c \frac{a^2}{t_0^{\text{sym}}}$

$$\phi_2 = 8 t_0 m_\pi^2$$

$$\phi_4 = 8 t_0 (m_k^2 + \frac{1}{2} m_\pi^2)$$

$$f_{\pi K} = \frac{2}{3} (f_K + \frac{1}{2} f_\pi)$$

light quark mass dependence

a-dependence at symm. point

to in physical units

M. Bruno, T. Korzec, S. Schaefer

- Φ₄=1.11 trajectory
- Continuum extrapolation fit $\sqrt{t_0} f_{\pi K} = F^{\text{cont}}(\phi_2) + c \frac{a^2}{t_0^{\text{sym}}}$

$$\phi_2 = 8 t_0 m_\pi^2$$

$$\phi_4 = 8 t_0 \left(m_k^2 + \frac{1}{2} m_\pi^2 \right)$$

$$f_{\pi K} = \frac{2}{3} (f_K + \frac{1}{2} f_\pi)$$

light quark mass dependence

a-dependence at symm. point

to in physical units

M. Bruno, T. Korzec, S. Schaefer

- Φ₄=1.11 trajectory
- Continuum extrapolation fit $\sqrt{t_0} f_{\pi K} = F^{\text{cont}}(\phi_2) + c \frac{a^2}{t_0^{\text{sym}}}$

$$\phi_2 = 8 t_0 m_\pi^2$$

$$\phi_4 = 8 t_0 \left(m_k^2 + \frac{1}{2} m_\pi^2 \right)$$

$$f_{\pi K} = \frac{2}{3} (f_K + \frac{1}{2} f_\pi)$$

light quark mass dependence

a-dependence at symm. point

t_0 in physical units and $a(\beta)$

- ✓8 t₀ = 0.413(4)(1) fm at physical point, N_f =2+1 from continuum extrapolation fit
- ► $\sqrt{8} t_0 = 0.413(4)(2)$ fm at symmetric point (preliminary) from similar fits
- with input from $f_{\rm K}$, f_{π} , $m_{\rm K}$, m_{π}
- and numbers for t_0/a^2 :

 β = 3.4 3.46 3.55 3.7 [3.85] t₀/a² = 2.862 3.662 5.166 8.596 [13.8] δ t₀ = 0.006 0.012 0.015 0.027 [0.3]

 \sim chiral extrapolation

- very precise relative scale
- absolute scale to ~ 1%

t_0 in physical units and $a(\beta)$

- ► $\sqrt{8} t_0 = 0.413(4)(1)$ fm at physical point, N_f =2+1 from continuum extrapolation fit
- ► $\sqrt{8} t_0 = 0.413(4)(2)$ fm at symmetric point (preliminary) from similar fits
- with input from $f_{\rm K}$, f_{π} , $m_{\rm K}$, m_{π}
- and numbers for t_0/a^2 :

 β = 3.4 3.46 3.55 3.7 [3.85] t₀/a² = 2.862 3.662 5.166 8.596 [13.8] δ t₀ = 0.006 0.012 0.015 0.027 [0.3]

 \sim chiral extrapolation

- very precise relative scale
- absolute scale to ~ 1%

Back on track: use the scale for Λ

$$\bar{g}_{\rm GF}^2(L_{\rm max}) = 11.308(99)$$

• at fixed L/a find β with same coupling (but m(L/2)=0)

$L_{max} / \sqrt{t_0}$ (t₀ at symmetric point)

• at $\tilde{\beta}_{CLS} = \beta_{CLS}/(1+0.216 \, am_q/\beta_{CLS})$ $(N_f = 3)$ S. Sint, RS; 97

combine L_{max}/a and t_0/a^2

β	β -tilde	a m _q
3.400	3.3988	0.0052
3.460	3.4589	0.0048
3.550	3.5491	0.0041
3.700	3.6992	0.0032
3.850	3.8494	0.0027

extrapolate

$L_{max} / \sqrt{t_0}$ (t₀ at symmetric point)

• at $\tilde{\beta}_{CLS} = \beta_{CLS}/(1 + 0.216 am_q/\beta_{CLS})$ $(N_f = 3)$ combine L_{had}/a and t₀/a²

extrapolate

$L_{max} / \sqrt{t_0}$ (t₀ at symmetric point)

• at $\tilde{\beta}_{CLS} = \beta_{CLS}/(1 + 0.216 am_q/\beta_{CLS})$ $(N_f = 3)$ combine L_{had}/a and t₀/a²

extrapolate

Step 4: Perturbative conversion $N_f=3 \implies N_f=5$

Use relation of Λ-parameters [cf. Bruno et al., PoS LATTICE2015 (2016) 256] input: m_c(m_c), m_b(m_b) from PDG:

$$\Lambda_{\overline{MS}}^{(4)} = 289(14) \text{MeV}, \ \Lambda_{\overline{MS}}^{(5)} = 207(11) \text{MeV},$$

 $\alpha_{\overline{\text{MS}}}(m_{\mathrm{Z}}) = 0.1179(10)(2)$

Error estimate

n (= loops)	$oldsymbol{lpha}_{n}$	α n - α n-1
2	0.11670	_
3	0.11771	0.00109
4	0.11787	0.00016
5-loop beta	0.11794	0.00007

Preliminary result for α

- $\qquad \Lambda_{\overline{\mathrm{MS}}}^{(3)} = 332(14) \mathrm{MeV}$
- $\ \ \, \sim \alpha_{\overline{\rm MS}}(m_{\rm Z}) = 0.1179(10)(2)$
- using 3-flavor theory (decoupling)
- error budget:

Preliminary result for α

- $\qquad \Lambda_{\overline{\mathrm{MS}}}^{(3)} = 332(14) \mathrm{MeV}$
- $\ \ \, \sim \alpha_{\overline{\rm MS}}(m_{\rm Z}) = 0.1179(10)(2)$
- using 3-flavor theory (decoupling)
- error budget:

quantity	value	error	rel. err.	comment
$\Lambda^{(3)}_{\overline{ m MS}}L_0$	0.0791	0.0021	0.026	arXiv:1604.06193
$L_{2.6723}/(2L_0)$	1	0.0080	0.008	scheme change arXiv:1607.06423
s(11.31, 2.6723)	10.93	0.21	0.019	scale factor
$t_{0,{ m symm}}^{1/2}/L_{11.31}$	0.1420	0.0036	0.025	preliminary, Lat16
$[8t_{0,\text{symm}}]^{1/2}$ [fm]	0.4130	0.0045	0.011	at $\phi_4 = 1.11$ preliminary, Lat16
$t_{0,\mathrm{symm}}^{-1/2} \; [\mathrm{GeV}]$	1.3514	0.0146	0.0108	at $\phi_4 = 1.11$
$\Lambda^{(3)}_{\overline{ m MS}}~[{ m GeV}]$	0.332	0.014	0.042	
				preliminary, Lat16
$lpha(m_{ m Z})$	0.1179	0.0010	0.009	\pm 0.00016 = conversion error
$\alpha(m_{ m Z})$	0.1177	0.0010	0.0085	3-loop conversion
$lpha(m_{ m Z})$	0.1179	0.0009	0.0085	5-loop β -function
$\Lambda^{(3)}_{\overline{ m MS}}~[{ m GeV}]$	0.336	0.019		FLAG3 [arXiv:1607.00299]

Thank you.