Lattice QCD study of heavy-heavy-light-light tetraquark candidates

Antje Peters

peters@th.physik.uni-frankfurt.de

Goethe-Universität Frankfurt am Main, Germany

in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka Leskovec, Stefan Meinel and Marc Wagner

34th International Symposium on Lattice Field Theory, University of Southampton, UK

Study of four-quark states

Motivation

- A number of mesons observed in particle detectors (LHCb, Belle) is not well understood.
- E.g. charged charmonium- and bottomonium-like states $(Z_c^{\pm} \text{ and } Z_b^{\pm})$
- They include $b\bar{b}$ or $c\bar{c}$, but are also charged: must be 4-quark states

possible tetraquark structures

$B\bar{B}$ systems in the static-light approach

A. Peters, P. Bicudo, K. Cichy and M. Wagner, "Investigation of $B\overline{B}$ four-quark systems using lattice QCD," arXiv:1602.07621 [hep-lat].

Work in progress.

 $B\bar{B}$ systems in the Born-Oppenheimer approximation

The static-light approach

- Computation of 4-quark states very difficult
- If 2 quarks are heavy and 2 quarks are light: Treat degrees of freedom independently in two steps (Born-Oppenheimer approximation [M. Born, R. Oppenheimer, "Zur Quantentheorie der Molekeln," Ann.Phys. 389, Nr. 20, 1927]).
 - 1 Lattice computation of the potential of two static quarks in the presence of two light quarks, i.e. potential can be interpreted as the potential between two *B* mesons

2 Solve Schrödinger's equation to check whether potentials are sufficiently attractive to form a bound state.

The $B\bar{B}$ system

There are several different structures for the experimentally relevant case of $I(J^P) = 1(1^+)$ (i.e. Z_b^+):

To separate some of these structures, we ...

1 implement a correlation matrix

 $C_{jk}(t) = \langle \Omega | \mathcal{O}_j^{\dagger}(t) \mathcal{O}_k(0) | \Omega
angle \mathop{\approx}\limits_{ ext{large } t} A_{jk}^0 \exp{(-V_0(r)t)} + A_{jk}^1 \exp{(-V_1(r)t)} + \dots$

 $\mathcal{O}_0 \equiv \mathcal{O}_{B\bar{B}} = \Gamma_{AB} \tilde{\Gamma}_{CD} \bar{Q}^a_C(\vec{x}) q^a_A(\vec{x}) \bar{q}^b_B(\vec{y}) Q^b_D(\vec{y})$

 $\mathcal{O}_{1} \equiv \mathcal{O}_{Q\bar{Q}+\pi} = \tilde{\Gamma}_{AB}\bar{Q}^{a}_{A}(\vec{x})U^{ab}(\vec{x},t;\vec{y},t)Q^{b}_{B}(\vec{y})\sum_{\vec{z}}\bar{q}^{c}_{C}(\vec{z})(\gamma_{5})_{CD}q^{c}_{D}(\vec{z})$

2 extract the potentials with the Generalized Eigenvalue Problem (GEP).

 $B\bar{B}$ systems in the Born-Oppenheimer approximation

Choice of Γ for the $B\bar{B}$ system

$$\mathcal{O}_0 \equiv \mathcal{O}_{B\bar{B}} = \Gamma_{AB} \tilde{\Gamma}_{CD} \bar{Q}^a_C(\vec{x}) q^a_A(\vec{x}) \bar{q}^b_B(\vec{y}) Q^b_D(\vec{y})$$

- The choice of the matrix Γ is constrained by the quantum numbers of the $\mathcal{O}_{Q\bar{Q}+\pi}$
- Only taking into account ${\cal O}_{{\cal B}\bar{\cal B}}$ we find the strongest attraction for $\Gamma=\gamma_5-\gamma_0\gamma_5$

Preliminary results I

Potentials obtained

- $Q\bar{Q} + \pi$: ground state (blue)
- first excited state of the 2x2 matrix: free of contributions of $Q\bar{Q}+\pi$ (red)

Preliminary results II

• Fit an ansatz to the potentials:

$$V(r) = -\underbrace{\frac{\alpha}{r}}_{Coulomb-like} \underbrace{e^{-\left(\frac{r}{d}\right)^2}}_{Colour \ screening}$$

• solve Schrödinger's equation for the radial component of the *b* resp. \bar{b} quark:

$$(-\frac{1}{2\mu}\frac{d^2}{dr^2} + V(r))R(r) = E_B R(r)$$
, $\psi(r) = R(r)/r$

- Perform a large number of fits varying...
 - temporal separation at which lattice potential is read off the correlator
 - range at which the fit to the potential is performed
- This yields for quantum numbers $I(J^P) = 1(1^+)$ (i.e. Z_b^+):

$$E_B = (-58 \pm 71) \mathrm{MeV}$$

• very vague indication for a $\bar{u}d\bar{b}b$ bound state

Study of BB^* systems by means of NRQCD

in collaboration with

Luka Leskovec, Stefan Meinel and Marc Wagner

Work in progress.

The $I(J^P) = 0(1^+) \ ud \overline{b} \overline{b}$ state

We found strong evidence for a $ud\bar{b}\bar{b}$ bound state in the $I(J^P) = 0(1^+)$ channel from the static-light approach :

The $I(J^P) = 0(1^+) \, u d \, ar b \, ar b$ state with NRQCD

- To confirm static-light result with $\bar{b}\mbox{-}quarks$ of finite mass instead of static quarks
 - \Rightarrow search for a bound state with nonrelativistic QCD (NRQCD)
- positions of \bar{b} quarks not fixed
 - \Rightarrow computation of V(r) not possible

 \Rightarrow but direct computation of mass of lowest BB^* state in $I(J^P) = 0(1^+)$ channel possible

Lattice setup

BB^*	with	NRQCD:
--------	------	--------

Ens.	β	lattice	am _{u,d}	am _s	$m_{\pi}[{ m MeV}]$	<i>a</i> [fm]	<i>L</i> [fm]	confs
C54	2.13	$24^{3} \times 64$	0.005	0.04	336	0.1119(17)	2.7	1676

- Gauge configurations generated by RBC and UKQCD collaborations [arXiv:1409.0497]
- Iwasaki gauge action
- domain-wall fermions

The NRQCD BB* correlator:

$$\begin{split} &\sum_{\vec{x}_1, \vec{x}_2, \vec{x}_1', \vec{x}_2'} \mathrm{e}^{i\vec{p}_1(\vec{x}_1 - \vec{x}_1')} \mathrm{e}^{i\vec{p}_2(\vec{x}_2 - \vec{x}_2')} \delta_{\vec{x}_1, \vec{x}_2} \delta_{\vec{x}_1', \vec{x}_2'} \\ &\left(\vec{b}\gamma_5 d(\vec{x}_1) \vec{b}\gamma_i u(\vec{x}_2) - \vec{b}\gamma_5 u(\vec{x}_1) \vec{b}\gamma_i d(\vec{x}_2) \right) \left(\vec{d}\gamma_5 b(\vec{x}_1') \vec{u}\gamma_i b(\vec{x}_2') - \vec{u}\gamma_5 b(\vec{x}_1') \vec{d}\gamma_i b(\vec{x}_2') \right) \end{split}$$

The $I(J^{P}) = 0(1^{+}) \, u d \bar{b} \bar{b}$ state with NRQCD- details

From static-light computations we can estimate how the absolute value of the binding energy increases if we increase the mass of the *b*-quark:

>

To get a clear signal in a first step we use non-physically heavy \bar{b} quarks (5.0 \times m_b)

The $I(J^P) = 0(1^+) \ ud \overline{b} \overline{b}$ state with NRQCD - preliminary results

- compute masses of B, B^* and BB^*
- if $m_{BB^*} < m_B + m_{B^*}$: bound state in $I(J^P) = 0(1^+)$ channel

(cf. also A. Francis, R. J. Hudspith, R. Lewis and K. Maltman, arXiv:1607.05214 [hep-lat])

To do: Include B^*B^* structure with quantum numbers $I(J^P) = 0(1^+)$.

Summary BB^* and $B\overline{B}$ systems

- $B\bar{B}$ systems are experimentally rather easy to access, but theoretically challenging.
- Candidate for a binding $B\bar{B}$ state with $I(J^P) = 1(1^+)$ (i.e. Z_b^+) is currently investigated, we find $E_B = (-58 \pm 71)$ MeV
- $B^{(*)}B^{(*)}$ systems are experimentally harder to observe, but theoretically easier to investigate
- For a BB^* system with light quarks qq = ud with quantum numbers $I(J^P) = 0(1^+)$ using NRQCD we find qualitative confirmation of our previous static-light result ($E_B = -90^{+43}_{-36}$ MeV)
- Work in progress

Outlook

- Diquark-antidiquark structure
- Inclusion of heavy spin effects to $B\bar{B}$ system

Thank you.

Backup

Meson content of a four-quark state

- One can extend the meson content of the four-quark states by application of the following light quark projectors on \mathcal{O} :
 - Parity projectors: $\mathcal{P}_{P=+} = \frac{1+\gamma_0}{2}$ and $\mathcal{P}_{P=-} = \frac{1-\gamma_0}{2}$
 - Spin projectors: $\mathcal{P}_{j_z=\uparrow} = \frac{1+i\gamma_0\gamma_3\gamma_5}{2}$ and $\mathcal{P}_{j_z=\downarrow} = \frac{1-i\gamma_0\gamma_3\gamma_5}{2}$
- P = -: **S** state, meson in the ground state
- P = +: **P** state, first excitation
- $\uparrow\downarrow$: light quark angular momentum
- An example for $\mathcal{O}_{B\bar{B}}$:
 - $\Gamma = \gamma_5$ $\hat{=}$ $+ S \uparrow S \uparrow + S \downarrow S \downarrow + P \uparrow P \uparrow + P \downarrow P \downarrow$
 - $\Gamma = \gamma_0 \gamma_5 \quad \hat{=} \quad -S \uparrow S \uparrow S \downarrow S \downarrow + P \uparrow P \uparrow + P \downarrow P \downarrow$
 - Therefore a $B\overline{B}$ state with $\Gamma = \gamma_5 \gamma_0\gamma_5$ only contains S mesons.

The BB system - Expectations

small separations of the static antiquarks:

- interaction due to 1-gluon exchange
- bound state: static $\bar{Q}\bar{Q}$ pair in a color triplet (attractive) \longrightarrow antidiquark

large separations of the static antiquarks:

- screening of the antiquark-antiquark interaction due to light quarks (stronger, the more massive the light quarks)
- basically 2 static-light mesons

Lattice Setups

BB and $B\bar{B}$ in the static-light approach:

Ens.	β	lattice	а μ	$m_{\pi}[{ m MeV}]$	<i>a</i> [fm]	<i>L</i> [fm]	confs
B40.24	3.90	$24^{3} \times 48$	0.0040	340	0.0790(26)	1.9	480
B85.24	3.90	$24^3 imes 48$	0.0085	480	0.0790(26)	1.9	400
B150.24	3.90	$24^3 imes 48$	0.0150	650	0.0790(26)	1.9	260
Gauge configurations generated by ETMC							

BB* with NRQCD:								
Ens.	β	lattice	am _{u,d}	am _s	$m_{\pi}[{ m MeV}]$	<i>a</i> [fm]	<i>L</i> [fm]	confs
C54	2.13	$24^3 \times 64$	0.005	0.04	336	0.1119(17)	2.7	1676
Gauge configurations generated by RBC and UKQCD collaborations								

Different attractive BB channels

- spin scalar isosinglet:
 - $qq \text{ spin } j_z = 0$
 - antisymmetric flavour $qq \in \{(ud - du)/\sqrt{2}, (s^1s^2 - s^2s^1)/\sqrt{2}, (c^1c^2 - c^2c^1)/\sqrt{2})\}$ • $I(J^P) = O(1^+)$
- spin vector isotriplet:
 - $qq \text{ spin } j_z = 1$
 - symmetric flavour $qq \in \{uu, (ud + du)/\sqrt{2}, dd, ss, cc\}$
 - $I(J^P) \in \{1(0^+), 1(1^+), 1(2^+)\}$

Perform a large number of fits varying...

- the temporal separation at which the lattice potential is read of the correlation function
- the range at which the fit to the potential is performed

Binding for light isosinglet channel only!

Extrapolation to the physical pion mass

Example plots for a *t*-range [4*a*...9*a*]

- **1** Build a matrix C(t) of correlation functions $C_{ij}(t)$
- 2 Solve the GEP:

$$C_{jk}(t)v_k^{(n)}(t,t_0) = \lambda^{(n)}(t,t_0)C_{jk}(t_0)v_k^{(n)}(t,t_0)$$

3 And find:

$$m_{ ext{eff}}^{(n)}(t,t_0) = \lim_{t \to \infty} rac{1}{a} \log rac{\lambda^{(n)}(t,t_0)}{\lambda^{(n)}(t+a,t_0)}$$