THE 34TH INTERNATIONAL SYMPOSIUM ON LATTICE GAUGE THEORIES UNIVERSITY OF SOUTHAMPTON, JULY 24-30, 2016

CHARGE RADII AND HIGHER ELECTROMAGNETIC MOMENTS WITH LATTICE QCD IN NONUNIFORM BACKGROUND FIELDS

ZOHREH DAVOUDI MIT

ZD and W. Detmold, Phys. Rev. D 92, 074506 (2015), ZD and W. Detmold, Phys. Rev. D 93, 014509 (2016).

ELECTROMAGNETIC EFFECTS IN STRONGLY INTERACTING SYSTEMS

1) DYNAMICAL PHOTONS

GAUSS'S LAW + PERIODICITY ?

Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008) ZD, M. J. Savage, Phys. Rev. D 90, 054503 (2014) Borsanyi, et al., Science 347:1452-1455 (2015). Lucini, et, al., JHEP02(2016)076. Endres, et, al., to appear in PRL, arXiv: 1507.08916 [hep-lat].

ELECTROMAGNETIC EFFECTS IN STRONGLY INTERACTING SYSTEMS

2) CLASSICAL ELECTROMAGNETISM

BACKGROUND FIELDS + PERIODICITY

G. 't Hooft, Nuclear Physics B 153, 141 (1979).
J. Smit and J. C. Vink, Nucl.Phys. B286, 485 (1987).
M. Al-Hashimi and U.-J. Wiese, Annals Phys. 324, 343 (2009).

SOME RECENT STATE-OF-THE-ART APPLICATIONS $np \rightarrow d\gamma \text{ from lattice QCD}$

Beane, at al. [NPLQCD collaboration], Phys. Rev. Lett. 115, 132001 (2015).

SOME RECENT STATE-OF-THE-ART APPLICATIONS $np \rightarrow d\gamma \; {\rm from \; lattice\; QCD}$

AN EFFECTIVE FIELD THEORY RESULT Beane and Savage, Nucl.Phys. A694, 511 (2001).

$$\sigma(np \to d\gamma) = \frac{e^2(\gamma_0^2 + |\mathbf{p}|^2)^3}{M^4 \gamma_0^3 |\mathbf{p}|} \tilde{X}_{M1}|^2 + \dots$$

M1 transition: depends on \overline{L}_1

NEEDS LATTICE QCD INPUT

Beane, at al. [NPLQCD collaboration], Phys. Rev. Lett. 115, 132001 (2015).

SOME RECENT STATE-OF-THE-ART APPLICATIONS $np \to d\gamma \; {\rm from \; lattice \; QCD}$

SET UP A BACKGROUND MAGNETIC FIELD

Detmold and Savage, Nucl. Phys. A743, 170 (2004).

$$\delta E_{{}^{3}S_{1},{}^{1}S_{0}} \equiv \Delta E_{{}^{3}S_{1},{}^{1}S_{0}} - [E_{p,\uparrow} - E_{p,\downarrow}] + [E_{n,\uparrow} - E_{n,\downarrow}] \rightarrow 2\overline{L_{1}}|e\mathbf{B}|/M + \mathcal{O}(\mathbf{B}^{2})$$

Beane, at al. [NPLQCD collaboration], Phys. Rev. Lett. 115, 132001 (2015).

MORE PHYSICS WITH BACKGROUND FIELDS?

1) EM CHARGE RADIUS

2) ELECTRIC QUADRUPOLE MOMENT

4) AXIAL BACKGROUND FIELDS

Detmold, Phys.Rev. D71, 054506 (2005)

IMPLEMENTATION OF U(1) BACKGROUND GAUGE FIELDS ON A PERIODIC HYPERCUBIC LATTICE

ZD and W. Detmold, Phys. Rev. D 92, 074506 (2015)

$$A_{\mu} = \left(-\frac{E_{0}}{2} (\mathbf{x}_{3} - \begin{bmatrix} \mathbf{x}_{3} \\ L \end{bmatrix} L)^{2}, \mathbf{0} \right) \rightarrow \mathbf{E} = E_{0} \mathbf{x}_{3} \hat{\mathbf{x}}_{3}$$

$$\mathbf{F} = e^{ie\hat{Q} \int A_{\mu}(z)dz_{\mu}} \left((T, L) \right)$$

$$(0, 0) \qquad \mathbf{1}$$

 x_3

$$A_{\mu} = \left(-\frac{E_{0}}{2} (\mathbf{x}_{3} - \left[\frac{\mathbf{x}_{3}}{L}\right] L)^{2}, \mathbf{0} \right) \rightarrow \mathbf{E} = E_{0} \mathbf{x}_{3} \mathbf{\hat{x}}_{3}$$

$$= e^{ie\hat{Q}\int A_{\mu}(z)dz_{\mu}} \left(\int_{(0,0)} \int_{$$

U

 x_3

MODIFIED LINKS

$$U^{(\text{QCD})}_{\mu}(x) \rightarrow U^{(\text{QCD})}_{\mu}(x) \times e^{ie\hat{Q}A_{\mu}(x)a_{\mu}} \times \prod_{\nu \neq \mu} e^{ie\hat{Q}\left[A_{\nu}(x_{\mu}=0,x_{\nu})-\tilde{A}_{\nu}(x_{\mu}=L_{\mu},x_{\nu})\right]f_{\mu,\nu}(x_{\nu})\times\delta_{x_{\mu},L_{\mu}-a_{\mu}}}$$

WITH LINK FUNCTIONS SATISFYING

$$\left[A_{\nu}(x_{\mu}=0,x_{\nu}+a_{\nu})-\widetilde{A}_{\nu}(x_{\mu}=L_{\mu},x_{\nu}+a_{\nu})\right]f_{\mu,\nu}(x_{\nu}+a_{\nu}) = \left[A_{\nu}(x_{\mu}=0,x_{\nu})-\widetilde{A}_{\nu}(x_{\mu}=L_{\mu},x_{\nu})\right](f_{\mu,\nu}(x_{\nu})+a_{\nu})$$

QUANTIZATION CONDITIONS

$$\begin{bmatrix} L_{\mu} - a_{\mu} \\ \prod_{x_{\mu}=0} e^{-ie\hat{Q}\left[A_{\mu}(x_{\mu}, x_{\nu}=0) - \tilde{A}_{\mu}(x_{\mu}, x_{\nu}=L_{\nu})\right]a_{\mu}} \end{bmatrix} \begin{bmatrix} L_{\nu} - a_{\nu} \\ \prod_{x_{\nu}=0} e^{ie\hat{Q}\left[A_{\nu}(x_{\mu}=0, x_{\nu}) - \tilde{A}_{\nu}(x_{\mu}=L_{\mu}, x_{\nu})\right]a_{\nu}} \end{bmatrix} = 1$$

TOWARDS AN EXTRACTION OF ELECTRIC QUADRUPOLE MOMENT AND CHARGE RADIUS

ZD and W. Detmold, Phys. Rev. D 93, 014509 (2016)

THE GENERAL STRATEGY: AN EFFECTIVE SINGLE-PARTICLE DESCRIPTION

SPECIAL CARE MUST BE GIVEN TO EOM OPERATORS IN NR THEORY WITH BACKGROUND FIELDS Lee and Tiburzi, Phys. Rev. D 89, 054017 (2014), Phys. Rev. D 90, 074036 (2014).

A SPIN-1 THEORY

$$\mathcal{L} = \frac{1}{2} W^{\dagger \mu \nu} W_{\mu \nu} + M^2 V^{\dagger \alpha} V_{\alpha} - \frac{1}{2} W^{\dagger \mu \nu} (D_{\mu} V_{\nu} - D_{\nu} V_{\mu}) - \frac{1}{2} ((D_{\mu} V_{\nu})^{\dagger} - D_{\nu} V_{\mu}^{\dagger}) W^{\mu \nu} + ieC^{(0)}_{\mu \nu} F_{\mu \nu} V^{\dagger \mu} V^{\nu} + \frac{ieC^{(2)}_{1}}{M^2} \partial_{\mu} F^{\mu \nu} ((D_{\nu} V^{\alpha})^{\dagger} V_{\alpha} - V^{\dagger \alpha} D_{\nu} V_{\alpha}) + \frac{ieC^{(2)}_{2}}{M^2} \partial^{\alpha} F^{\mu \nu} ((D_{\alpha} V_{\mu})^{\dagger} V_{\nu} - V_{\nu}^{\dagger} D_{\alpha} V_{\mu}) + \frac{ieC^{(2)}_{3}}{M^2} \partial^{\nu} F^{\mu \alpha} ((D_{\mu} V_{\alpha})^{\dagger} V_{\nu} - V_{\nu}^{\dagger} D_{\mu} V_{\alpha}) + \mathcal{O}\left(\frac{1}{M^4}, F^2\right)$$

ONE-PHOTON MATCHING

$$\begin{split} C^{(0)} &= \overline{\mu_1} - Q_0, \\ C_1^{(2)} &= \frac{1}{6e} \left(M^2 \langle r^2 \rangle_E + e \overline{Q_2} \right), \\ C_2^{(2)} &= \frac{1}{4} (-Q_0 + \overline{Q_2} + \overline{\mu_1}) + \frac{1}{6e} M^2 \langle r^2 \rangle_M, \\ C_3^{(2)} &= \frac{1}{2} (-Q_0 + \overline{Q_2} + \overline{\mu_1}). \end{split}$$

ZD and W. Detmold, Phys. Rev. D 92, 074506 (2015)

1) MATCHING TO CORRELATION FUNCTIONS

2) MATCHING TO ENERGIES

Lattice QCD correlation functions

 $C_{\alpha\beta}(\boldsymbol{x},\tau;\boldsymbol{x}',\tau') = \langle 0 | [\mathcal{O}_{\psi}(\boldsymbol{x},\tau)]_{\alpha} [\mathcal{O}_{\psi^{\dagger}}(\boldsymbol{x}',\tau')]_{\beta} | 0 \rangle_{A_{\mu}}$

Spatially projected Correlation functions at large Euclidean times

$$C_{M_S,M'_S}(\tau,\tau') \to \mathcal{Z}_{M_S} e^{-\mathcal{E}_n^{(M_S)}(\tau-\tau')}$$

A POSITIVELY CHARGED PARTICLE IN A LINEARLY DECREASING ELECTRIC FIELD IN THE X3 DIRECTION

MOMENT CONTRIBUTION

MORE PHYSICS WITH BACKGROUND FIELDS? Some implementations underway

1) EM CHARGE RADIUS

2) ELECTRIC QUADRUPOLE MOMENT

4) AXIAL BACKGROUND FIELDS

Detmold, Phys.Rev. D71, 054506 (2005)

THANK YOU