THE 34TH INTERNATIONAL SYMPOSIUM ON LATTICE GAUGE THEORIES UNIVERSITY OF SOUTHAMPTON, JULY 24-30, 2016

CHARGE RADII AND HIGHER ELECTROMAGNETIC MOMENTS WITH LATTICE QCD IN NONUNIFORM BACKGROUND FIELDS

ZOHREH DAVOUDI MIT

ZD and W. Detmold, Phys. Rev. D 92, 074506 (2015),
ZD and W. Detmold, Phys. Rev. D 93, 014509 (2016).

ELECTROMAGNETIC EFFECTS IN STRONGLY INTERACTING SYSTEMS

1) DYNAMICAL PHOTONS

GAUSS'S LAW + PERIODICITY?

Hayakawa and Uno, Prog. Theor. Phys. 120, 413 (2008)
ZD, M. J. Savage, Phys. Rev. D 90, 054503 (2014)
Borsanyi, et al., Science 347:1452-1455 (2015).

Lucini, et, al., JHEP02(2016)076.
Endres, et, al., to appear in PRL, arXiv:
1507.08916 [hep-lat].

ELECTROMAGNETIC EFFECTS IN STRONGLY INTERACTING SYSTEMS
2) CLASSICAL ELECTROMAGNETISM

BACKGROUND FIELDS + PERIODICITY
G. 't Hooft, Nuclear Physics B 153, 141 (1979).
J. Smit and J. C. Vink, Nucl.Phys. B286, 485 (1987).
M. Al-Hashimi and U.-J. Wiese, Annals Phys. 324, 343 (2009).

SOME RECENT STATE-OF-THE-ART APPLICATIONS

 $n p \rightarrow d \gamma$ FROM LATTICE OCD

SOME RECENT STATE-OF-THE-ART APPLICATIONS

 $n p \rightarrow d \gamma$ FROM LATTICE OCDAN EFFECTIVE FIELD THEORY RESULT Beane and Savage, Nucl.Phys. A694, 511 (2001).

$$
\sigma(n p \rightarrow d \gamma)=\frac{e^{2}\left(\gamma_{0}^{2}+|\mathbf{p}|^{2}\right)^{3}}{M^{4} \gamma_{0}^{3}|\mathbf{p}|}\left|\tilde{X}_{M 1}\right|^{2}+\ldots
$$

M1 transition: depends on \bar{L}_{1}

Beane, at al. [NPLOCD collaboration], Phys. Rev. Lett. 115, 132001 (2015).

SOME RECENT STATE-OF-THE-ART APPLICATIONS

 $n p \rightarrow d \gamma$ FROM LATTICE QCDSET UP A BACKGROUND MAGNETIC FIELD
Detmold and Savage, Nucl.Phys. A743, 170 (2004).

$$
\delta E_{S_{S_{1}},{ }^{1} S_{0}} \equiv \Delta E_{3_{S_{1}},{ }^{1} S_{0}}-\left[E_{p, \uparrow}-E_{p, \downarrow}\right]+\left[E_{n, \uparrow}-E_{n, \downarrow}\right] \rightarrow 2 \overline{L_{1}}|e \mathbf{B}| / M+\mathcal{O}\left(\mathbf{B}^{2}\right)
$$

Beane, at al. [NPLQCD collaboration], Phys. Rev. Lett. 115, 132001 (2015).

MORE PHYSICS WITH BACKGROUND FIELDS?

1) EM CHARGE RADIUS

2) ELECTRIC QUADRUPOLE MOMENT

3) FORM FACTORS

Detmold, Phys.Rev. D71, 054506 (2005)
4) AXIAL BACKGROUND FIELDS

IMPLEMENTATION OF U(1) BACKGROUND GAUGE FIELDS ON A PERIODIC HYPERCUBIC LATTICE

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

$$
A_{\mu}=\left(-\frac{E_{0}}{2}\left(\mathbf{x}_{3}-\left[\frac{\mathbf{x}_{3}}{L}\right] L\right)^{2}, \mathbf{0}\right) \quad \rightarrow \quad \mathbf{E}=E_{0} \mathbf{x}_{3} \hat{\mathbf{x}}_{3}
$$

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

$$
A_{\mu}=\left(-\frac{E_{0}}{2}\left(\mathbf{x}_{3}-\left[\frac{\mathbf{x}_{3}}{L}\right] L\right)^{2}, \mathbf{0}\right) \quad \rightarrow \quad \mathbf{E}=E_{0} \mathbf{x}_{3} \hat{\mathbf{x}}_{3}
$$

PERIODIC BC

$\square=e^{i e \hat{Q} E_{0} a_{t} a_{s} / 2}$

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

$$
A_{\mu}=\left(-\frac{E_{0}}{2}\left(\mathbf{x}_{3}-\left[\frac{\mathbf{x}_{3}}{L}\right] L\right)^{2}, \mathbf{0}\right) \quad \rightarrow \quad \mathbf{E}=E_{0} \mathbf{x}_{3} \hat{\mathbf{x}}_{3}
$$

PERIODIC BC

$\square=e^{i e \hat{Q} E_{0} a_{t} a_{s} / 2}$

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

$$
A_{\mu}=\left(-\frac{E_{0}}{2}\left(\mathbf{x}_{3}-\left[\frac{\mathbf{x}_{3}}{L}\right] L\right)^{2}, \mathbf{0}\right) \quad \rightarrow \quad \mathbf{E}=E_{0} \mathbf{x}_{3} \hat{\mathbf{x}}_{3}
$$

PERIODIC BC

$\square=e^{i e \hat{Q} E_{0} a_{t} a_{s} / 2}$

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

$$
A_{\mu}=\left(-\frac{E_{0}}{2}\left(\mathbf{x}_{3}-\left[\frac{\mathbf{x}_{3}}{L}\right] L\right)^{2}, \mathbf{0}\right) \quad \rightarrow \quad \mathbf{E}=E_{0} \mathbf{x}_{3} \hat{\mathbf{x}_{3}}
$$

> PERIODIC BC $e^{i e \hat{Q} E_{0} L^{2} T / 2}=1$

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

$$
A_{\mu}=\left(-\frac{E_{0}}{2}\left(\mathbf{x}_{3}-\left[\frac{\mathbf{x}_{3}}{L}\right] L\right)^{2}, \mathbf{0}\right) \quad \rightarrow \quad \mathbf{E}=E_{0} \mathbf{x}_{3} \hat{\mathbf{x}_{3}}
$$

PERIODIC BC

 $e^{i e \hat{Q} E_{0} L^{2} T / 2}=1$$$
E_{0}=\frac{4 \pi n}{e \hat{Q} L^{2} T}
$$

QUANTIZATION CONDITION FOR THE SLOPE OF THE FIELD
$\square=e^{i e \hat{Q} E_{0} a_{t} a_{s} / 2}$

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

NEUTRAL PION CORRELATION FUNCTION

$$
\mathbf{E}=E_{0} \mathbf{x}_{3} \hat{\mathbf{x}}_{3}
$$

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

NEUTRAL PION CORRELATION FUNCTION

$$
\mathbf{E}=E_{0} \mathbf{x}_{3} \hat{\mathbf{x}}_{3}
$$

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

MODIFIED LINKS

$$
U_{\mu}^{(\mathrm{QCD})}(x) \rightarrow U_{\mu}^{(\mathrm{QCD})}(x) \times e^{i e \hat{Q} A_{\mu}(x) a_{\mu}} \times \prod_{\nu \neq \mu} e^{i e \hat{Q}\left[A_{\nu}\left(x_{\mu}=0, x_{\nu}\right)-\widetilde{A}_{\nu}\left(x_{\mu}=L_{\mu}, x_{\nu}\right)\right] f_{\mu, \nu}\left(x_{\nu}\right) \times \delta_{x_{\mu}, L_{\mu}-a_{\mu}}}
$$

WITH LINK FUNCTIONS SATISFYING
$\left[A_{\nu}\left(x_{\mu}=0, x_{\nu}+a_{\nu}\right)-\widetilde{A}_{\nu}\left(x_{\mu}=L_{\mu}, x_{\nu}+a_{\nu}\right)\right] f_{\mu, \nu}\left(x_{\nu}+a_{\nu}\right)=\left[A_{\nu}\left(x_{\mu}=0, x_{\nu}\right)-\widetilde{A}_{\nu}\left(x_{\mu}=L_{\mu}, x_{\nu}\right)\right]\left(f_{\mu, \nu}\left(x_{\nu}\right)+a_{\nu}\right)$
QUANTIZATION CONDITIONS

$$
\left[\prod_{x_{\mu}=0}^{L_{\mu}-a_{\mu}} e^{-i e \hat{Q}\left[A_{\mu}\left(x_{\mu}, x_{\nu}=0\right)-\widetilde{A}_{\mu}\left(x_{\mu}, x_{\nu}=L_{\nu}\right)\right] a_{\mu}}\right]\left[\prod_{x_{\nu}=0}^{L_{\nu}-a_{\nu}} e^{i e \hat{Q}\left[A_{\nu}\left(x_{\mu}=0, x_{\nu}\right)-\tilde{A}_{\nu}\left(x_{\mu}=L_{\mu}, x_{\nu}\right)\right] a_{\nu}}\right]=1
$$

LINEARLY VARYING FIELDS \rightarrow CHARGE RADIUS-QUADRUPOLE MOMENT OSCILLATORY FIELDS \longrightarrow FORM FACTORS

VARIOUS SPACE/TIME DEPENDENCE

SPIN POLARIZABILITIES OF NUCLEONS

PERIODIC IMPLEMENTATION OF NONUNIFORM BACKGROUND FIELDS

OSCILLATORY FIELDS $\quad A_{\mu}=\left(A_{0},-\mathbf{A}\right)=\left(\frac{i a}{q_{3}} e^{i q_{3} \times_{3}}, 0,0,0\right) \rightarrow \mathbf{E}=a e^{i q_{3} \mathbf{x}_{3}} \hat{\mathbf{x}}_{3}$

PERIODIC BC
$e^{-\frac{e \hat{Q} a}{q_{3}}\left(1-e^{i q_{3} L}\right) T}=1$

TOWARDS AN EXTRACTION OF ELECTRIC QUADRUPOLE MOMENT AND CHARGE RADIUS

THE GENERAL STRATEGY: AN EFFECTIVE SINGLE-PARTICLE DESCRIPTION

SPECIAL CARE MUST BE GIVEN TO EOM OPERATORS IN NR THEORY WITH BACKGROUND FIELDS
Lee and Tiburzi, Phys. Rev. D 89, 054017
(2014), Phys. Rev. D 90, 074036 (2014).

A SPIN-1 THEORY

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} W^{\dagger \mu \nu} W_{\mu \nu}+M^{2} V^{\dagger \alpha} V_{\alpha}-\frac{1}{2} W^{\dagger \mu \nu}\left(D_{\mu} V_{\nu}-D_{\nu} V_{\mu}\right)-\frac{1}{2}\left(\left(D_{\mu} V_{\nu}\right)^{\dagger}-D_{\nu} V_{\mu}^{\dagger}\right) W^{\mu \nu}+ \\
& i e C^{(0)} F_{\mu \nu} V^{\dagger \mu} V^{\nu}+\frac{i e C_{1}^{(2)}}{M^{2}} \partial_{\mu} F^{\mu \nu}\left(\left(D_{\nu} V^{\alpha}\right)^{\dagger} V_{\alpha}-V^{\dagger \alpha} D_{\nu} V_{\alpha}\right)+ \\
& \frac{i e C_{2}^{(2)}}{M^{2}} \partial^{\alpha} F^{\mu \nu}\left(\left(D_{\alpha} V_{\mu}\right)^{\dagger} V_{\nu}-V_{\nu}^{\dagger} D_{\alpha} V_{\mu}\right)+\frac{i e C_{3}^{(2)}}{M^{2}} \partial^{\nu} F^{\mu \alpha}\left(\left(D_{\mu} V_{\alpha}\right)^{\dagger} V_{\nu}-V_{\nu}^{\dagger} D_{\mu} V_{\alpha}\right)+\mathcal{O}\left(\frac{1}{M^{4}}, F^{2}\right)
\end{aligned}
$$

ONE-PHOTON MATCHING

A (semi) relativistic effective theory
$\hat{\mathcal{H}}_{\mathrm{SR}}^{(E)}=M \sigma_{3}+e Q_{0} \hat{\varphi}+\left(\sigma_{3}+i \sigma_{2}\right) \frac{\widehat{\pi}^{2}}{2 M}-\frac{i \sigma_{2}}{M}(\boldsymbol{S} \cdot \hat{\pi})^{2}+\frac{e}{2 M^{2}}\left(1+\sigma_{1}\right) \times$

$$
\begin{aligned}
& {\left[i C^{(0)}\left[\widehat{\boldsymbol{E}} \cdot \widehat{\boldsymbol{\pi}}-S_{i} S_{j} \widehat{E}_{j} \hat{\pi}_{i}\right]-2 C_{1}^{(2)}(\bar{\nabla} \cdot \widehat{\boldsymbol{E}})+2 C_{3}^{(2)}\left[\bar{\nabla} \cdot \widehat{\boldsymbol{E}}-\frac{1}{2}\left(S_{i} S_{j}+S_{j} S_{i}\right) \bar{\nabla}_{i} \widehat{\boldsymbol{E}}_{j}\right]\right] } \\
&-\frac{i e C^{(0)}}{2 M^{2}}\left(1-\sigma_{1}\right)\left[\widehat{\pi} \cdot \widehat{\boldsymbol{E}}-S_{i} S_{j} \widehat{\pi}_{j} \widehat{E}_{i}\right]+\mathcal{O}\left(\frac{1}{M^{4}}, F^{2}\right)
\end{aligned}
$$

A NR effective theory

```
\mp@subsup{\hat{\mathcal{H}}}{\textrm{NR}}{(\pm)}=M\mp@subsup{\mathbb{I}}{3\times3}{}\pme\mp@subsup{Q}{0}{}\varphi\mp@subsup{\mathbb{I}}{3\times3}{}+\frac{\mp@subsup{\hat{\boldsymbol{\pi}}}{2}{2}}{2M}}\mp@subsup{\mathbb{I}}{3\times3}{}\mp\frac{e(\mp@subsup{\overline{\mu}}{1}{}-\mp@subsup{Q}{0}{})}{2\mp@subsup{M}{}{2}}\boldsymbol{S}\cdot(\widehat{\boldsymbol{E}}\times\widehat{\boldsymbol{\pi}})\pm\frac{ie(\mp@subsup{\overline{\mu}}{1}{}-\mp@subsup{Q}{0}{})}{4\mp@subsup{M}{}{2}}\boldsymbol{S}\cdot(\boldsymbol{\nabla}\times\widehat{\boldsymbol{E}}
```

$\mp \frac{\left\langle r^{2}\right\rangle_{E}}{6} \overline{\boldsymbol{\nabla}} \cdot \widehat{\boldsymbol{E}} \mathbb{I}_{3 \times 3} \mp \frac{Q_{2}}{4}\left[S_{i} S_{j}+S_{j} S_{i}-\frac{2}{3} S^{2} \delta_{i j}\right] \bar{\nabla}_{i} \widehat{\boldsymbol{E}}_{j}+\mathcal{O}\left(\frac{1}{M^{3}}, F^{2}\right)$

Relativistic Green's functions

NR Green's functions

Lattice QCD correlation functions

$$
C_{\alpha \beta}\left(\boldsymbol{x}, \tau ; \boldsymbol{x}^{\prime}, \tau^{\prime}\right)=\langle 0|\left[\mathcal{O}_{\psi}(\boldsymbol{x}, \tau)\right]_{\alpha}\left[\mathcal{O}_{\psi^{\dagger}}\left(\boldsymbol{x}^{\prime}, \tau^{\prime}\right)\right]_{\beta}|0\rangle_{A_{\mu}}
$$

Transformed correlation functions

$C_{M_{S}, M_{S}^{\prime}}^{(\pm)}\left(\boldsymbol{x}, \tau ; \boldsymbol{x}^{\prime}, \tau^{\prime}\right)=\mathcal{P}^{(\pm)} \otimes \mathcal{T}_{\left(M_{S}\right)} \mathcal{U}(\boldsymbol{x} ; \widehat{\boldsymbol{p}}) C\left(\boldsymbol{x}, \tau ; \boldsymbol{x}^{\prime}, \tau^{\prime}\right) \mathcal{U}^{-1}\left(\boldsymbol{x}^{\prime} ; \widehat{\boldsymbol{p}}^{\prime}\right) \mathcal{P}^{(\pm)} \otimes \mathcal{T}_{\left(M_{S}\right)}^{T}$

2) MATCHING TO ENERGIES

Lattice QCD correlation functions

$$
C_{\alpha \beta}\left(\boldsymbol{x}, \tau ; \boldsymbol{x}^{\prime}, \tau^{\prime}\right)=\langle 0|\left[\mathcal{O}_{\psi}(\boldsymbol{x}, \tau)\right]_{\alpha}\left[\mathcal{O}_{\psi^{\dagger}}\left(\boldsymbol{x}^{\prime}, \tau^{\prime}\right)\right]_{\beta}|0\rangle_{A_{\mu}}
$$

Spatially projected Correlation

 functions at large Euclidean times$$
C_{M_{S}, M_{S}^{\prime}}\left(\tau, \tau^{\prime}\right) \rightarrow \mathcal{Z}_{M_{S}} e^{-\mathcal{E}_{n}^{\left(M_{S}\right)}\left(\tau-\tau^{\prime}\right)}
$$

A POSITIVELY CHARGED PARTICLE IN A LINEARLY DECREASING ELECTRIC FIELD IN THE X3 DIRECTION

ISOLATING CHARGE
RADIUS CONTRIBUTION
$\frac{1}{3}\left(\mathcal{E}_{n}^{\left(M_{S}=-1\right)}+\mathcal{E}_{n}^{\left(M_{S}=0\right)}+\mathcal{E}_{n}^{\left(M_{S}=1\right)}\right)=\left(n+\frac{1}{2}\right)\left|\omega_{E}\right|-\frac{E_{0}\left\langle r^{2}\right\rangle_{E}}{6}$
E_{0} : slope of the field

ISOLATING QUADRUPOLE

$$
\omega_{E}^{2}=\frac{e Q E_{0}}{M}
$$ MOMENT CONTRIBUTION

$$
\mathcal{E}_{n}^{\left(M_{S}=1\right)}+\mathcal{E}_{n}^{\left(M_{S}=-1\right)}-2 \mathcal{E}_{n}^{\left(M_{S}=0\right)}=-E_{0} Q_{2}
$$

MORE PHYSICS WITH BACKGROUND FIELDS?
SOME IMPLEMENTATIONS UNDERWAY

1) EM CHARGE RADIUS

2) ELECTRIC QUADRUPOLE MOMENT

3) FORM FACTORS

4) AXIAL BACKGROUND FIELDS

THANK YOU

