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Many approaches to attack the sign problem

m Conventional/Monte Carlo based methods

m Reweighting

Taylor expansion
Imaginary u

Strong Coupling Expansion
Mean Field analyses
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Many approaches to attack the sign problem

m Conventional/Monte Carlo based methods
m Reweighting
m Taylor expansion
m Imaginary u
m Strong Coupling Expansion
m Mean Field analyses
m Alternative methods
m Stochastic Quantization-Complex Langevin
m Lefschetz Thimble
m Canonical ensembles
m Dual variables
m Density of States
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Stochastic quantization as an alternative

m consider the trivial "QFT" given by the partition function
m Z=[e @4y
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Stochastic quantization as an alternative

consider the trivial "QFT" given by the partition function
Z=[e5@dx

in the real Langevin formulation

x(t + 0t) = x(t) — 0,5 (x(t))dt + 0&

stochastic variable §¢ with zero mean and variance given by
26t

generalization to complex actions parisi(1983), Kiauder (1983)

T—z=T+1y
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in the real Langevin formulation

x(t + 0t) = x(t) — 0,5 (x(t))dt + 0&

stochastic variable §¢ with zero mean and variance given by
26t

generalization to complex actions parisi(1983), Kiauder (1983)

BT z=x+1y
m z(t+ d0t) = 2(t) — 0.5(=(t))ot + 6
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Stochastic quantization as an alternative

consider the trivial "QFT" given by the partition function
Z=[e5@dx

in the real Langevin formulation

x(t + 0t) = x(t) — 0,5 (x(t))dt + 0&

stochastic variable §¢ with zero mean and variance given by
26t

generalization to complex actions parisi(1983), Kiauder (1983)
T—z=T+1y

z(t 4 6t) = z(t) — 0,S(=(t))ot + 6

one can study gauge theories with complex actions aarts, James,

Seiler, Sexty, Stamatescu, ...
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Is this "the” solution to the sign problem?

m proof relating Langevin dynamics to the path integral
quantization-no longer holds
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Is this "the” solution to the sign problem?

m proof relating Langevin dynamics to the path integral
quantization-no longer holds

m simulations are not guaranteed to converge to "the correct
solution”

m criteria of convergence not fulfilled in practical simulations
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RMT

m focus on a much simpler theory than QCD. Random Matrix
Theory
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RMT

m focus on a much simpler theory than QCD. Random Matrix
Theory

m same flavor symmetries with QCD which uniquely determine
(in the e-regime)
m mass dependence of the chiral condensate (7jn) = 0,, log Z

m the baryon number density (n'n) = 9, log Z
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The Stephanov Model

B .
_ nS2TeWwt 5 Ny m W+ p
m Z=[DWe det W+ m

Stephanov (1996)
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The Stephanov Model

m Z = [ DWe mPTWW! goiNy (

Stephanov (1996)

m W+
W+ m

m solve via bosonization
m Z(m,p)=[ dodo*e " (co* + m(o + 0*) + m? — p2)"

m where o is an Ny X Ny matrix
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The Stephanov Model

52 t m W+
m Z=[DWe ”ETrWWdeth<iWT+M m,u)
Stephanov (1996)
solve via bosonization
Z(m,p) = [ dodo*e ™" (co* + m(o + o*) + m2 — p2)"
where o is an Ny x Ny matrix

ZNi=Ym,p) = [ dodo*e™ " (co* +m(o + o*) +m2 — p2)"
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The Stephanov Model

52 t m W+
m Z=[DWe ”ETrWWdeth<iWT+M m,u)
Stephanov (1996)
m solve via bosonization
m Z(m,p)=[ dodo*e ™" (co* + m(o + o*) + m2 — p2)"
m where o is an Ny X Ny matrix
m ZNi=(m, p) = [dodo*e " (00* +m(o + %) + m? — p2)"

m ZN=(m, p) = memmm? Jo° du(u — p?) " Io(2mny/u)e™"™"
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The phase transition

m in the thermodynamic limit evaluate Z via a saddle point
approximation
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m there is a phase transition separating a phase with zero and
non-zero baryon density
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The phase transition

m in the thermodynamic limit evaluate Z via a saddle point
approximation

m there is a phase transition separating a phase with zero and
non-zero baryon density

m In the chiral limit . = 0.527 for p € R

mpu.=tforpel

m we can compute X(m, ) and ng(m, u) and compare it with
the Complex Langevin simulation

m first attempts in the Osborn model wmoligaard and Splittorff(2013-2014), Nagata,

Nishimura, Shimasaki (2015-2016)
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Complex Langevin for RMT

_ W+ 1
z — nS2TIWWt 5 Ny m t
n [ DWe det Wt

mW=a+1ib
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Complex Langevin for RMT

_ W+ 1
z nS2TIWWt 5 Ny m t
" [ DWe det W4 -

mW=a+1b
m compute the drift terms 05/0a;; and 95/0b;;
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Complex Langevin for RMT

_ 2T W W g Ny m W+
Z = [DWe det ( W4 -

W =a+1ib
compute the drift terms 05/0a;; and 05/0b;;
complexify the dof a,b € R — a,b € C
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Complex Langevin for RMT

_ 2T W W g Ny m W+
Z = [DWe det ( Wt -

W =a+1b

compute the drift terms 05/0a;; and 05/0b;;
complexify the dof a,b € R — a,b € C

aij(t 4 0t) = aij(t) — Oa,; S(x(t))0t + 0&;;

bij(t + 6t) = bij(t) — O, S((t))dt + 685

(&) = 0 and (& ()& (t)) = 20t5(t —t')dikdj
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m-scan for ;=0
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Numerical Validity-Matrix Size

Riin) /N
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Numerical Validity-Step Size

R{im) /N
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(i) for p =1 (nin) form =0
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m-scan for y =1
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p-scan for m =0
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np=1,m=1

{(ntn) form =1
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What is actually happening

m Do the simulations converge?
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What is actually happening

m Do the simulations converge?

m If yes to which theory?
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m-scan for y =1

afeiropoulos
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p-scan for m
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Conclusions and outlook

m studied the Complex Langevin algorithm for an RMT model
for QCD
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Conclusions and outlook

m studied the Complex Langevin algorithm for an RMT model
for QCD

m can compare with exact analytical results for all the range of
parameters(m, (1)

m compared to previous similar studies this model posseses a
phase transition to a phase with non-zero baryon density

m fails to converge to QCD and it converges to |QCD|

m standard ways to fix it — gauge cooling seiker, Sexty and Stamatescu(2012),

Nagata, Nishimura, Shimasaki (2015)
m work in progress...

m work in progress employing the Lefschetz thimbles witten (2010),

Christoforetti et al (2012), Eruzzi and Di Renzo(2015)

m Thanks a lot for your attention!
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Stay Tuned!

for upcoming results . ..
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