Impact of lattice QCD on CKM phenomenology

Monika Blanke

Lattice 2016 Southampton – July 28, 2016

Lattice meets flavour

Flavour in the Standard Model (SM)

Flavour and CP violation in SM described by CKM matrix

$$\begin{pmatrix} d'\\s'\\b' \end{pmatrix} = V_{\mathsf{CKM}} \begin{pmatrix} d\\s\\b \end{pmatrix} = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub}\\V_{cd} \ V_{cs} \ V_{cb}\\V_{td} \ V_{ts} \ V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

Unitarity implies
$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

> Unitarity triangle

$$R_b = \left| \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right|$$
$$R_t = \left| \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} \right|$$

Precision determination of CKM elements

Tree level decays: flavour changing charged current interactions

- direct sensitivity to relevant CKM element
- small impact of new physics contributions

model-independent determination of CKM matrix as a **standard candle** of the SM

$|V_{cb}|$ from $B o D^* \ell u$

- $|V_{cb}|$ is crucial input for SM prediction of precision observables like ε_K , $K \to \pi \nu \bar{\nu}$, $B_s \to \mu^+ \mu^-$ etc.
- $N_f = 2 + 1$ calculation of $B \rightarrow D^*$ form factor at zero recoil gives current most precise determination of $|V_{cb}|$: FNAL/MILC (2014)

$$|V_{cb}| = 39.04(75) \cdot 10^{-3}$$

- $\bullet \ B \to D^*$ form factor only from one unquenched lattice calculation
- $\bullet\,$ compare with determination from inclusive $B\to X_c\ell\nu$

GAMBINO, HEALEY, TURCZYK (2016)

$$|V_{cb}| = 42.00(65) \cdot 10^{-3}$$

cross-check needed!

$|V_{cb}|$ from $B o D\ell u$

- lattice QCD calculation of $B \rightarrow D$ form factor at small recoil
- large recoil (more precise experimental data) using dispersion relations, unitarity, HQET
- fit to experimental and lattice results for $B \rightarrow D\ell\nu$:

$$|V_{cb}| = 40.49(97) \cdot 10^{-3}$$

BIGI, GAMBINO (2016) see also DE TAR (2015)

$|V_{ub}|$ from $B o \pi \ell u$

• recent N = 2 + 1 lattice QCD calculation of the $B \rightarrow \pi$ form factors + model-independent z-expansion to full q^2 range: FNAL/MILC (2015) see also HPQCD (2006)

$$|V_{ub}| = 3.72(16) \cdot 10^{-3}$$

- note the lower PDG value $|V_{ub}| = 3.28(29) \cdot 10^{-3}$
- compare to inclusive determination

PDG (2016)

$$|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.19}) \cdot 10^{-3}$$

$\left|V_{ub}/V_{cb} ight|$ from baryon decays

• $\Lambda_b \to p\ell\nu$ and $\Lambda_b \to \Lambda_c\ell\nu$ form factors calculated with N = 2 + 1 dynamical domain-wall fermion flavours

Detmold, Lehner, Meinel (2015)

• measurement of $|V_{ub}/V_{cb}|$ from ratio of $\Lambda_b \rightarrow p\mu\nu$ and $\Lambda_b \rightarrow \Lambda_c\mu\nu$ decay rates reduces systematic uncertainties LHCB (2015)

 $|V_{ub}/V_{cb}| = 0.083 \pm 0.04 \pm 0.04$

The status of $\left|V_{cb} ight|$ and $\left|V_{ub} ight|$

New physics in tree level decays?

Chen, Nam (2008) Crivellin (2009) Buras, Gemmler, Isidori (2010) MB, Buras, Gemmler, Heidsieck (2011)

Can discrepancies be explained by new physics?

• effect of right-handed currents

$$\begin{split} |V_{cb}|^{D\ell\nu} &= |V_{cb}|(1+\delta) & |V_{ub}|^{\pi\ell\nu} &= |V_{ub}|(1-\varepsilon) \\ |V_{cb}|^{D^*\ell\nu} &= |V_{cb}|(1-\delta) & |V_{ub}|^{B\to\tau\nu} &= |V_{ub}|(1+\varepsilon) \\ |V_{cb}|^{\text{incl}} &= |V_{cb}| + \mathcal{O}(\delta^2) & |V_{ub}|^{\text{incl}} &= |V_{ub}| + \mathcal{O}(\varepsilon^2) \end{split}$$

excluded as origin of the tension

• general SU(2)-invariant dimension 6 operators can resolve tension, but incompatible with $Z \rightarrow b\bar{b}$ CRIVELLIN, POKORSKI (2014

under-estimated theory uncertainties? experimental issue?

A vast variety of new physics models

Many new physics models on the market...

... but which is the correct one?

A vast variety of new physics models

LHC will (hopefully) give us some idea!

But is it a grapefruit or an orange?

Check its flavour!

What if...

But maybe LHC will leave us with...

Is there still something hiding?

What if...

But maybe LHC will leave us with...

Is there still something hiding? > Could we detect it in flavour violating decays?

Flavour changing neutral currents in the SM

Loop suppressed transitions: flavour changing neutral currents (FCNCs)

- strong suppression in the SM
- high sensitivity to new physics contributions

plethora of interesting observables \succ here: few highlights only!

$B_{d,s}-ar{B}_{d,s}$ mixing

Recent news from the lattice

• recent lattice determination of hadronic $B_{d,s} - \bar{B}_{d,s}$ mixing parameters with unprecedented precision FNAL/MILC (2016) compare to FLAG (2016) values

$$\begin{split} & \hat{s}_{B_d}^2 \hat{B}_{B_d} = 0.0518(43)(10) \, \text{GeV} \\ & \hat{f}_{B_s}^2 \hat{B}_{B_s} = 0.0754(46)(15) \, \text{MeV} \\ & \xi = \frac{f_{B_s} \sqrt{\hat{B}_{B_s}}}{f_{B_d} \sqrt{\hat{B}_{B_d}}} = 1.206(18)(6) \end{split}$$

• discrepancies between exp. values of ΔM_d , ΔM_s , and $\Delta M_d/\Delta M_s$ and SM predictions at 1.8σ , 1.1σ , and 2.0σ

> If confirmed, what could be the origin of this tension?

Constrained Minimal Flavour Violation

BURAS ET AL. (2000) see also D'Ambrosio et al. (2002); MB, BURAS, GUADAGNOLI, TARANTINO (2006)

Comstrained Minimal Flavour Violation (CMFV)

- flavour symmetry $U(3)_q \times U(3)_u \times U(3)_d$ only broken by Yukawa couplings Y_u , Y_d
- no new sources of CP-violation
- only SM effective operators

Consequences:

- BSM contributions suppressed by smallness of CKM elements
- CMFV contributions to $\Delta F = 2$ observables can be parameterised by a single real and flavour-universal function S(v) with the lower bound

$$S(v) \ge S_0(x_t) = 2.322$$

MB, BURAS (2006)

The universal unitarity triangle

Universal unitarity triangle holding within all CMFV models

- $\bullet~\left|V_{us}\right|$ from tree-level decays
- angle β determined from time-dependent CP-asymmetry $S_{\psi K_S}$
- side R_t determined from $\Delta M_d/\Delta M_s$

> few % precision, main uncertainties in $S_{\psi K_S}^{\exp}$ and ξ

 $\bar{\rho}_{\text{UUT}} = 0.170 \pm 0.013$ $\bar{\eta}_{\text{UUT}} = 0.333 \pm 0.011$

MB, BURAS (2016)

Implications from the UUT: the angle γ

MB, BURAS (2016)

construction of UUT yields

$$\gamma_{\rm UUT}=(63.0{\pm}2.1)^\circ$$

compare to: LHCB (2016)

$$\gamma_{\rm tree} = (70.9^{+7.1}_{-8.5})^{\circ}$$

> Problem for CMFV?

More precise γ measurements by LHCb and Belle II will tell!

Implications from the UUT: the ratio $\left|V_{ub}/V_{cb} ight|$

MB, BURAS (2016)

 $|V_{ub}/V_{cb}|_{\rm UUT} = 0.0864 \pm 0.0025$

clearly disfavours $|V_{ub}|_{incl}$

Strategies to fully determine CKM matrix:

> S_1 : ΔM_s is used to determine $|V_{cb}|$ as function of S(v) S_2 : ε_K is used to determine $|V_{cb}|$ as function of S(v)

$|V_{cb}|$ from ΔM_s and $arepsilon_K$

MB, Buras (2016)

$$|V_{cb}|_{S_1} = (39.7 \pm 1.3) \cdot 10^{-3} \left[\frac{2.322}{S(v)}\right]^{1/2}$$
$$|V_{cb}|_{S_2} = (43.3 \pm 1.1) \cdot 10^{-3} \left[\frac{2.322}{S(v)}\right]^{1/4}$$

Comparing results of S_1 and S_2 :

- inconsistent results for $|V_{cb}|$
- \bullet tension smallest for SM case $\Delta S(v)=0$

Breaking the flavour universality

flavour-universal CMFV contribution

 $S(v) = S_0(x_t) + \Delta S(v)$ with $\Delta S(v) > 0$

cannot explain the tension in $\Delta F = 2$ data

Possible ways out:

 $\bullet\,$ relax lower bound on $\Delta S(v)$

MB, Buras (2006)

- possible but difficult to achieve in concrete models
- \succ inconsistencies with tree-level values of $|V_{cb}|$ and γ
- introduce flavour non-universal contributions

$$S_0(x_t) \to S_i = |S_i| e^{i\varphi_i} \qquad i = K, d, s$$

 \succ in general possible to fit $\Delta F = 2$ data

> correlations with rare decays needed to test given model

Models with $U(2)^3$ flavour symmetry

BARBIERI ET AL. (2012); BURAS, GIRRBACH (2012); MB, BURAS (2016)

minimally broken $U(2)^3$ flavour symmetry:

$$S_K = r_K S_0(x_t) \quad \text{with } r_K > 1 \\ S_d = S_s = r_B S_0(x_t) e^{i\varphi_{\text{new}}}$$

Consequences:

- ε_K can only be enhanced w.r.t. the SM
- $\gamma = (63.0 \pm 2.1)^{\circ}$ also holds in $U(2)^3$ models
- $S_{\psi K_S}$ affected by φ_{new} , but correlated with ϕ_s

> $U(2)^3$ models in better shape than CMFV, but might get in trouble with more precise determinations of γ , $|V_{ub}/V_{cb}|$, and ϕ_s

Direct CP violation in kaon decays

ε'/ε in the SM

simple phenomenological expression: Buras, Gorbahn, Jäger, Jamin (2015) see also Kitahara, Nierste, Tremper (2016)

$$\operatorname{Re}(\varepsilon'/\varepsilon) = \frac{\operatorname{Im}(V_{ts}^*V_{td})}{1.4 \cdot 10^{-4}} \cdot 10^{-4} \cdot \left(\underbrace{-3.6 + 21.4B_6^{(1/2)}}_{A_0: \text{ QCD penguins}} + \underbrace{1.2 - 10.4B_8^{(3/2)}}_{A_2: \text{ EW penguins}}\right)$$

- \bullet large cancellation between A_0 and A_2 amplitudes
- hadronic matrix elements from the lattice RBC-UKQCD (2015)

$$B_6^{(1/2)} = 0.57 \pm 0.19$$
 $B_8^{(3/2)} = 0.76 \pm 0.05$

consistent with large N_c bound $B_6^{(1/2)} < B_8^{(3/2)} < 1$

BURAS, GÉRARD (2015)

NLO:
$$(1.9 \pm 4.5) \cdot 10^{-4}$$
 BGJJ'15 $(0.96 \pm 4.96) \cdot 10^{-4}$ KNT'16

NNLO: coming soon! GORBAHN ET AL.

 $> 2.9\sigma$ tension with the data! (a bit less with lattice value for Re A_0)

The K-Unitarity Triangle

LEHNER, LUNGHI, SONI (2015) earlier studies: BURAS, LAUTENBACHER, OSTERMAIER (1994); BUCHALLA, BURAS (1994) Unitarity Triangle from kaon decay observables

The K-Unitarity Triangle

LEHNER, LUNGHI, SONI (2015) earlier studies: BURAS, LAUTENBACHER, OSTERMAIER (1994); BUCHALLA, BURAS (1994) Unitarity Triangle from kaon decay observables

New physics can induce large deviations from SM in ε'/ε

Recent studies:

- in the Littlest Higgs model with T-parity MB, Buras, Recksiegel (2015)
- in simplified models with tree level flavour changing Z or Z' couplings Buras, Buttazzo, Knegjens (2015)
- in 331 models

BURAS, DE FAZIO (2015), (2016)

• in supersymmetry

TANIMOTO, YAMAMOTO (2016) KITAHARA, NIERSTE, TREMPER (2016)

• . . .

ε'/ε in simplified FCNC models

example: two simplified models (flavour changing Z or Z' couplings)

Simplified Z', $\Delta_R^{qq} = 1$, $\Delta_I^{\gamma\gamma} = 0.5$ Modified Z, LH scenario $B_6^{(1/2)} = 0.57, B_8^{(3/2)} = 0.76$ $B_6^{(1/2)} = 0.76, B_8^{(3/2)} = 0.76$ 14 $B_6^{(1/2)} = 1, B_8^{(3/2)} = 1$ 12 $3 {\mathbb R}(K_L \to \pi^0 \nu \nu) ~[10^{-11}]$ $\mathrm{BR}(K_L \to \pi^0 \nu \nu) ~[10^{-11}]$ 10 10 8 6 6 $B_6^{(1/2)} = 0.57, B_8^{(3/2)} = 0.76$ 2 $B_6^{(1/2)} = 0.76, B_8^{(3/2)} = 0.76$ $B_6^{(1/2)} = 1, B_8^{(3/2)} = 1$ 0 0 5 10 15 20 25 5 10 15 20 25 ϵ'/ϵ [10⁻⁴] ϵ'/ϵ [10⁻⁴]

BURAS, BUTTAZZO, KNEGJENS (2015)

- tension in $|\varepsilon'/\varepsilon|$ can be removed
- simultaneous large effects in $K_L \rightarrow \pi^0 \nu \bar{\nu}$

arepsilon'/arepsilon in the Littlest Higgs model with T-parity

 $(B_6^{(1/2)}, B_8^{(3/2)}) = (1.0, 1.0), (0.76, 0.76), (0.57, 0.76), (1.0, 0.76)$

 \succ also in LHT strong correlation with $K \rightarrow \pi \nu \bar{\nu}$

ε'/ε in the MSSM

KITAHARA, NIERSTE, TREMPER (2016)

contribution to ε_K suppressed by

small LR mixing

•
$$m_{\tilde{g}} = 1.5 M_S$$

 $(M_S = m_{\tilde{Q}} = m_{\tilde{D}})$

 $\succ \varepsilon'/\varepsilon$ can be explained with multi-TeV squarks

$b \rightarrow s$ penguins

Tensions in $b \rightarrow s$ transitions

Recent LHCb (and Belle, CMS etc.) data show an intriguing discrepancy in semileptonic $b \rightarrow s$ transitions

Radiative and semileptonic $b \rightarrow s$ transitions

 $b\to s\ell^+\ell^-$ and $b\to s\gamma$ transitions described by effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{e^2}{16\pi^2} \sum_i (C_i \mathcal{O}_i + C_i' \mathcal{O}_i') + h.c.$$

where the operators most sensitive to new physics are

Global fit to Wilson coefficients

 $\succ \sim 4\sigma$ evidence for a new contribution to C_9

What could it be?

New physics! ... or some underestimated theory contribution?

 $B
ightarrow K^*$ form factor

- from lattice QCD (high q^2) and light-cone sum rules (low q^2)
- systematic improvements possible

non-factorisable corrections

- "charm loops" at low q^2 and broad $c\bar{c}$ resonances
- dominant uncertainty, no systematic theory description

> Can lattice QCD help resolve this tension?

$B_{s,d} ightarrow \mu^+ \mu^-$ – a precision test of the SM

combined LHCb & CMS result

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (2.8^{+0.7}_{-0.6}) \cdot 10^{-9}$$

$$\mathcal{B}(B_d \to \mu^+ \mu^-) = (3.9^{+1.6}_{-1.4}) \cdot 10^{-10}$$

consistent with SM at 2σ level

- major improvement in experimental precision expected soon
- very clean in the SM ➤ high NP sensitivity
- main theory uncertainties in $|V_{cb}|$ and $f_{B_{s,d}}$ decay constants

yet another quest for the lattice

Concluding remarks

Lattice QCD

- has made substantial contributions to the understanding of flavour violating processes
- plays a crucial role in many more observables than highlighted here*
 * see also talk by Ran Zhou and parallel sessions

My top 5 wishes to the lattice community

- () improved form factors for $|V_{ub}|$ and $|V_{cb}|$ determinations
- 2 precise results for $B_{d,s}$ mixing parameters and decay constants
- $\textbf{③ confirmation of results for } K \to \pi\pi \text{ amplitudes entering } \varepsilon'/\varepsilon$
- ${f 0}$ input on non-perturbative contributions entering the b
 ightarrow s anomalies
- ${f 0}$ long-distance contributions to neutral kaon and D meson mixing