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ahvp
µ = (6949 ± 43) · 10�11

2

Anomalous	magne=c	moment	of	the	muon

Current	status:

Dispersion	theory: Model	es6mates:

Hadronic	vacuum	polarisa6on: Hadronic	light-by-light	scaGering:

aµ ⌘ 1
2 (g � 2)µ =

8>><
>>:

116 592 089(54)(33) · 10�11

116 591 828(43)(26)(2) · 10�11

Experiment

SM	predic6on

ahlbl
µ = (105 ± 26) · 10�11

(combined	e+e–	data) “Glasgow	consensus”
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Anomalous	magne=c	moment	of	the	muon

Hadronic	Vacuum	Polarisa=on	and	Dispersion	Theory

SM	es6mate	subject	to	experimental	uncertain6es	in	 R
had

(e+e� ! hadrons)

Hadronic	Light-by-Light	ScaNering

Dispersive	formalism	much	more	complicated	than	HVP

[Pauk	&	Vanderhaeghen,	PRD	90	(2014)	113012]
[Colangelo	et	al.,	JHEP	1409	(2014)	091,	PLB	738	(2014)	6,	JHEP	1509	(2015)	074]

Model	uncertain6es	difficult	to	quan6fy

Iden6fy	dominant	sub-processes,	e.g.		γ∗γ∗	⟶		π0,	η,	η’
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Anomalous	magne=c	moment	of	the	muon

Mo=va=on	for	first-principles	approach:

No	reliance	on	experimental	data		
	—	except	for	simple	hadronic	quan66es	to	fix	bare	parameters

No	model	dependence	
	—	except	for	chiral	extrapola6on	and	constraining	the	IR	regime
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	—	except	for	simple	hadronic	quan66es	to	fix	bare	parameters

No	model	dependence	
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New	experiments:			E989	@	FNAL,			E34	@	J-PARC	

	—	improve	direct	determina6on	of	aμ	by	a	factor	four
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Anomalous	magne=c	moment	of	the	muon

Mo=va=on	for	first-principles	approach:

No	reliance	on	experimental	data		
	—	except	for	simple	hadronic	quan66es	to	fix	bare	parameters

No	model	dependence	
	—	except	for	chiral	extrapola6on	and	constraining	the	IR	regime

Crucial	for	exploring	the	limits	of	the	Standard	Model

Can	laUce	QCD	deliver	es6mates	with	sufficient	accuracy	in	the	
coming	years?

�ahvp
µ /a

hvp
µ < 0.5%, �ahlbl

µ /a
hlbl
µ . 10%

New	experiments:			E989	@	FNAL,			E34	@	J-PARC	

	—	improve	direct	determina6on	of	aμ	by	a	factor	four
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II.	Hadronic	Light-by-Light	ScaNering

I.	Hadronic	Vacuum	Polarisa=on

Outline

5

III.	Summary	

Constraining	the	infrared	regime	
Quark-disconnected	diagrams	
Finite-volume	effects	
Results	overview

LaUce	QCD	approaches	to	HLbL	
Recent	calcula6ons
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Hadronic	Vacuum	Polarisa=on
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⇧µ⌫(Q) =
Z

eiQ·(x�y)
D
Jµ(x)J⌫(y)

E
⌘
⇣
QµQ⌫ � �µ⌫Q2

⌘
⇧(Q2)

7

La*ce	QCD	approach	to	HVP

Convolu6on	integral	over	Euclidean	momenta: [Lautrup	&	de	Rafael;	Blum]

ahvp
µ = 4↵2

Z 1

0
dQ2 f (Q2)

n

⇧(Q2) � ⇧(0)
o

Jµ = 2
3 u�µu � 1

3 d�µd � 1
3 s�µs + . . .
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La*ce	QCD	approach	to	HVP

Convolu6on	integral	over	Euclidean	momenta: [Lautrup	&	de	Rafael;	Blum]

ahvp
µ = 4↵2

Z 1

0
dQ2 f (Q2)

n

⇧(Q2) � ⇧(0)
o

Determine	VPF	Π(Q2)	and	addi6ve	renormalisa6on	Π(0)	

Jµ = 2
3 u�µu � 1

3 d�µd � 1
3 s�µs + . . .

Integrand	peaked	near	 Q2 ⇡ (
p

5 � 2)m2
µ
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La*ce	QCD	approach	to	HVP

Convolu6on	integral	over	Euclidean	momenta: [Lautrup	&	de	Rafael;	Blum]

ahvp
µ = 4↵2

Z 1

0
dQ2 f (Q2)

n

⇧(Q2) � ⇧(0)
o

Determine	VPF	Π(Q2)	and	addi6ve	renormalisa6on	Π(0)	

Sta6s6cal	accuracy	of	Π(Q2)	deteriorates	as	Q	⟶	0

Jµ = 2
3 u�µu � 1

3 d�µd � 1
3 s�µs + . . .

LaUce	momenta	are	quan6sed:		 Qµ =
2⇡
Lµ

Integrand	peaked	near	 Q2 ⇡ (
p

5 � 2)m2
µ
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La*ce	QCD	approach	to	HVP

8

Main	issues:

Sta6s6cal	accuracy	at	the	sub-percent	level	required

Reduce	systema6c	uncertainty	associated	with	region	of	small	Q2		
⇔			accurate	determina6on	of	Π(0)

Include	quark-disconnected	diagrams

Include	isospin	breaking:			mu	≠	md,		QED	correc6ons

Perform	comprehensive	study	of	finite-volume	effects
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Low-momentum	region:	Twisted	BCs

9

m⇡ = 190MeV

Model-independent	fits	compromised	when	applied	to	Q2	≫	mμ2

Determina6on	of	Π(0)	may	be	biased	by	more	accurate	data	at	large	Q2	



Hartmut	Wittig Hadronic	contributions	to	(g–2) 10

Minimise	model	dependence: [Golterman,	Maltman	&	Peris,	Phys	Rev	D90	(2014)	074508]

Low-momentum	region:	“Hybrid	method”

–	Π(Q2)

Q2

numerical	
interpola6ons

Padé	
approx.

P.T.

≈0.1	GeV2

Determine	Π(0)	and	Π(Q2)	from	models	in	small-momentum	region:
Padé	approximants,	conformal	polynomials,	6me	moments	
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Low-momentum	region:	Time	moments
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Expansion	of	VPF	at	low-Q2:

Vacuum	polarisa6on	for	Q = (!,~0) :

⇧
kk

(!) = a

4
X

x0

ei!x0
X

~x

hJ
k

(x)J

k

(0)i

Spa6ally	summed	vector	correlator:
G(x0) = �a

3
X

~x

hJ
k

(x)J

k

(0)i

⇧(Q2) = ⇧0 +

1X

j=1

Q2 j⇧ j
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Low-momentum	region:	Time	moments
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Expansion	of	VPF	at	low-Q2:

Vacuum	polarisa6on	for	Q = (!,~0) :

Time	moments:

G2n

⌘ a

X

x0

x

2n

0 G(x0) = (�1)n

@2n

@!2n

n

!2⇧̂(!2)
o

!2=0

[Chakraborty	et	al.,	Phys	Rev	D89	(2014)	114501]
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Low-momentum	region:	Time	moments
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Expansion	of	VPF	at	low-Q2:

Vacuum	polarisa6on	for	Q = (!,~0) :

Time	moments:

G2n

⌘ a

X

x0

x

2n

0 G(x0) = (�1)n

@2n

@!2n

n

!2⇧̂(!2)
o

!2=0

[Chakraborty	et	al.,	Phys	Rev	D89	(2014)	114501]
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k

(0)i

Spa6ally	summed	vector	correlator:
G(x0) = �a

3
X

~x

hJ
k

(x)J

k

(0)i

Expansion	coefficients: ⇧(0) ⌘ ⇧0 =
1
2

G2, ⇧ j = (�1) j+1 G2 j+2

(2 j + 2)!

⇧(Q2) = ⇧0 +

1X

j=1

Q2 j⇧ j
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Hybrid	Method	versus	Time	Moments

12

Construct	Padé	approximants	either	from	fits	or	6me	moments
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[Hanno	HORCH,	TUE	14:40]
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Construct	Padé	approximants	either	from	fits	or	6me	moments
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Time-Momentum	Representa=on

13

[Bernecker	&	Meyer,	Eur	Phys	J	A47	(2011)	148,	
	Francis	et	al.	Phys	Rev	D88	(2013)	054502,	
	Feng	et	al.,	Phys	Rev	D88	(2013)	034505	]

Q2	is	a	tuneable	parameter

No	extrapola6on	to	Q2	=	0	required

Must	determine	I	=	1	vector	correlator	G(x0)	at	all	distances
⟶		G(x0)	dominated	by	two-pion	state	for	x0	→ ∞

⇧(Q2) � ⇧(0) =
1

Q

2

Z 1

0
dx0 G(x0)

h
Q

2
x

2
0 � 4 sin2
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1
2 Qx0

⌘i

G(x0) = �a

3
X

~x

hJ
k

(x)J

k

(0)i

Integral	representa6on	of	subtracted	VPF ⇧̂(Q2) ⌘ ⇧(Q2) � ⇧(0)

⟶		Include	mul6-par6cle	states	to	capture	long-distance	behaviour
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Equivalence	of	=me	moments	and	TMR
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Subtracted	VPF: ⇧̂(Q2) ⌘ ⇧(Q2) � ⇧(0)
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k

(0)iSpa6ally	summed	vector	correlator:
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Subtracted	VPF: ⇧̂(Q2) ⌘ ⇧(Q2) � ⇧(0)
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TMR	and	=me	moments:	model	dependence

Determine	long-distance	contribu6on	to	vector	correlator:

16

G(x0)	dominated	by	two-pion	
state	at	long	distances

G(x0) =

8>><
>>:

G(x0)data, x0  x0,cut

G(x0)fit, x0 > x0,cut

x0,cut

G(x0) = Ae↵ e�m⇢x0

Single-exponen6al	fit	for	x	>	x0,cut

Include	mul6-par6cle	states	to	
eliminate	model	dependence	when	
x0	⟶	∞
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Determine	long-distance	contribu6on	to	vector	correlator:
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G(x0) =
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Determine	long-distance	contribu6on	to	vector	correlator:
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G(x0) =
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>>:
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x0	⟶	∞
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HVP	from	magne=c	suscep=bili=es

19

Π(p2)	can	be	interpreted	as	a	magne6c	suscep6bility

Π(0)	obtained	from	homogeneous	background	field: �0 = ⇧(0)

[Bali	&	Endrődi,	Phys	Rev	D92	(2015)	054506]

(rooted	staggered	quarks;	
physical	pion	mass;	a	=	0.29	fm)

These are determined via the noisy estimator technique
described in Appendix B. A typical set of low-momentum
results is shown in Fig. 2. The data include both the
connected and the disconnected contributions to Πðp2Þ.
The figure also includes results obtained via the conven-
tional method, however, employing stochastic wall sources
(for our numerical implementation, see Appendix C).
The comparison reveals full agreement between the two
approaches. The statistical error of the random wall data
increases towards small momenta, whereas it remains tiny
even for the lowest nonvanishing p2-value shown for
the oscillatory susceptibilities. Note that the number of
inversions employed to obtain the data point at the lowest
momentum was the same, Ninv ¼ 3000, for both
approaches.
In most previous lattice studies, Πð0Þ was obtained by

extrapolating Πðp2Þ to zero. Some possible extrapolations,
employing polynomials or Padé approximants, fitted over
various ranges in p2, are included in the figure. These fits
are also compared to the direct determinations via the
homogeneous susceptibility χ0 (see Sec. IV B below) and
via the zero-momentum projected current-current correla-
tion function GðtÞ according to Eq. (8), again obtained
using random wall sources. Within their scatter, at p2 ¼ 0
the extrapolations agree with the direct determinations. We
remark that increasing the precision for the lowest few
momenta stabilizes such extrapolations tremendously.

B. Homogeneous susceptibility and renormalized
vacuum polarization

The susceptibility χ0 with respect to a homogeneous
background is of interest for QCD thermodynamics in
magnetic fields and has been the subject of detailed studies

in the past few years. The determination of χ0 is consid-
erably more complicated than that of χp due to the
quantization of the magnetic flux Φ. On the one hand,
oscillatory magnetic fields have zero flux and can be varied
continuously, allowing for a direct differentiation with
respect to B. On the other hand, homogeneous fields have
nonzero flux. Therefore, such a differentiation cannot be
carried out to determine χ0; see Appendix B. Several
approaches, summarized in Refs. [48,54], have been
developed recently to overcome this problem. Here we
compare results obtained using the finite difference method
[55], the generalized integral method [48] and the half-half
method [56]. The former two approaches are based on
simulations at nonzero magnetic flux values, numerically
differentiating the results with respect to Φ. The half-half
method involves calculating expectation values directly at
B ¼ 0, employing a setup where the magnetic field is
positive in one half and negative in the other half of the
lattice. In this case, since the total flux is zero, a direct
differentiation with respect to the amplitude is possible.
However, the discontinuity of the magnetic field turns out
to dramatically enhance finite-volume effects in χ0; see
below.1

In Fig. 3, we compare all three approaches. The results
from the generalized integral method and from the finite
difference approach are taken from Refs. [58,59] while the
half-half results are new. Not all lattice spacings are covered
by all the methods. While the results of the generalized
integral method2 and of the finite difference approach are
consistent with each other, the half-half approach consis-
tently underestimates the magnitude of the susceptibility.
The difference between that approach on the one hand and
the other two methods on the other hand is found to be as
large as 10% and reduces only very slowly with increasing
lattice volumes.3 Altogether, we conclude that the half-half
method is insufficient for our purposes and discard it in the
following.
Perturbation theory predicts the dependence of χ0 on the

lattice spacing; see Eqs. (19)–(20). In Fig. 3 the data are
plotted against logða=a0Þ to verify the expected logarithmic
divergence. We include the leading Oðg2Þ QCD correction
to the lowest-order QED β-function coefficient b1. The
renormalization scale μ is fitted to match the lattice results
(dashed green line). In addition, we multiply the resulting

FIG. 2 (color online). The low-momentum region of the
oscillatory susceptibilities as measured on the 243 × 32 configu-
rations at β ¼ 3.45. The curves correspond to polynomial- and
Padé-type extrapolations of 2χp to p ¼ 0. The direct determi-
nation χ0 is shifted horizontally to the left for better visibility.
Also included are results obtained using random wall sources,
displaced horizontally to the right.

1These finite-volume effects cancel to a large extent in the
difference χ0ðTÞ − χ0ðT ¼ 0Þ [57], which is relevant for QCD
thermodynamics in background magnetic fields.

2Here we compare data obtained on Nt > Ns zero-temperature
lattices. On the configurations of Fef. [48] at finite (but low)
temperatures, χ0 was found to have slightly smaller absolute
values for fine lattices of Table I (β ≥ 3.67Þ.

3The comparison between the half-half method and the
generalized integral method on our coarsest lattice, already
presented in Ref. [48], has been updated by increasing the
statistics and the number of noisy estimators to reveal the
significant difference visible in Fig. 3.
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quark-disconnected	contribu6ons

Apply	noise-reduc6on	techniques

• Stochas6c	noise	cancella6on [Gülpers	et	al.,	arXiv:1411.7592;	V.	Gülpers,	PhD	Thesis	2015]

• Low-mode	averaging [Blum	et	al.,	PRL	116	(2016)	232002]

• Momentum	sources [Bali	&	Endrődi,	PRD	92	(2015)	054506]

• All-mode-averaging,	hopping	parameter	expansion,	
sparsening	schemes,… [Blum,	Izubuchi	&	Shintani,	PRD	88	(2013)	094503,	

Bali,	Collins	&	Schäfer,	CPC	181	(2010)	1570,…]
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Electromagne6c	current	correlator	with	u,	d,	s	quarks:

G(x0)	splits	into	connected	and	disconnected	parts:

Preserve	correla6on	in	stochas6c	evalua6on	of	 �`(x0) � �s(x0)
to	achieve	noise	cancella6on	 [Gülpers	et	al.,	arXiv:1411.7592;	V.	Gülpers,	PhD	Thesis	2015]
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Electromagne6c	current	correlator	with	u,	d,	s	quarks:

G(x0)	splits	into	connected	and	disconnected	parts:

�k� f (x0) ⇠,

�s(t)�`(t), �`(t) � �s(t)
[Gülpers	et	al.,	arXiv:1411.7592]
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Electromagne6c	current	correlator	with	u,	d,	s	quarks:

G(x0)	splits	into	connected	and	disconnected	parts:

AMA,	6me	transla6ons,	sparsening	schemes
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• Domain	wall	fermions;	physical	pion	mass	
• a	≈	0.11	fm,	mπL	≈	3.9	
• Low-mode	averaging,	AMA

RBC/UKQCD	Collabora=on:

Oða2Λ2
QCDÞ with ΛQCD chosen to be a few hundred MeV.

The combined effect of the finite spatial volume and
potentially missing two-pion tail is estimated using a
one-loop finite-volume (FV) lattice-regulated chiral per-
turbation theory (ChPT) version of Eq. (5.1) of Ref. [32].
Our ChPT computation also agrees with Eq. (2.12) of
Ref. [35] after correcting for a missing factor of 2 in the first
version of Ref. [35]. The ChPT result is then transformed to
position space to obtain CðtÞ. Figure 6 shows a corre-
sponding study of LT for different volumes. We take the
difference of LT¼20 on the 483 × 96 lattice used here and

LT¼48 on the 963 × 192 lattice and obtain
δaFV;ππμ ¼ 1.4 × 10−10. The remaining long-time effects
are estimated by FT¼20. We compare the result for two
fit ranges FT¼20ð½11;…; 17%Þ ¼ −1.1ð6Þ × 10−10 and
FT¼20ð½12;…; 17%Þ ¼ −0.6ð0.9Þ × 10−10. We conserva-
tively take the 1 σ bound δaFT ¼ 1.7 × 10−10 as additional
uncertainty. The fit ranges correspond to the largest mini-
mum times before losing a statistical signal, thereby
minimizing a potential excited-state contribution in our
estimate.
Combining the systematic uncertainties in quadrature,

we report our final result,

aHVP ðLOÞ disc
μ ¼ −9.6ð3.3Þð2.3Þ × 10−10; ð12Þ

where the first error is statistical and the second systematic.
Before concluding, we note that our result appears to be

dominated by very low energy scales. This is not surprising
since the signal is expressed explicitly as the difference of
light-quark and strange-quark Dirac propagators. We there-
fore expect energy scales significantly above the strange
mass to be suppressed. We already observed this above in
the dominance of low modes of the Dirac operator for our
signal. Furthermore, our result, which includes the two-
pion contributions from first principles, is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.
Conclusion.—We have presented the first ab initio

calculation of the hadronic vacuum polarization discon-
nected contribution to the muon anomalous magnetic
moment at physical pion mass. We were able to obtain
our result with modest computational effort utilizing a
refined noise-reduction technique explained above. This
computation addresses one of the major challenges for a
first-principles lattice QCD computation of aHVPμ at percent
or subpercent precision, necessary to match the anticipated
reduction in experimental uncertainty. The uncertainty of
the result presented here is already slightly below the
current experimental precision and can be reduced further
by a straightforward numerical effort.

We thank our RBC and UKQCD collaborators for
helpful discussions and support. C. L. is, in particular,
indebted to Norman Christ, Masashi Hayakawa, and
Chulwoo Jung for helpful comments regarding this manu-
script. This calculation was carried out at the Fermilab
cluster pi0 as part of the USQCD Collaboration. The
eigenvectors were generated under the ALCC Program
of the U.S. DOE on the IBM Blue Gene/Q (BG/Q) Mira
machine at the Argonne Leadership Class Facility, a U.S.
DOE Office of Science facility supported under Award
No. De-AC02-06CH11357. T. B. is supported by U.S.
DOE Award No. DE-FG02-92ER40716. P. A. B. and
A. P. are supported in part by UK STFC Grants No. ST/
M006530/1, No. ST/L000458/1, No. ST/K005790/1, and
No. ST/K005804/1 and A. P. is additionally supported by
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• Nf	=	2	Clover	fermions;	mπ	=	311,	437	MeV	
• a	≈	0.063	fm,	mπL	>	4.0	
• HPE,	stochas6c	noise	cancella6on	
• Sta6s6cs:	4800	k	measurements

Mainz/CLS: [Gülpers	et	al.,	in	preparacon]

Disconnected	contribu6on	for	x0	⟶	∞:
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dominates	uncertainty	for	x0	>	1.6	fmG`sdisc

Upper	bound	on	disconnected	contribu6on:
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Non-zero	disconnected	contribu6on	can	be	resolved

HPQCD:		Anisotropic	Clover	ac6on;	mπ	=	391	MeV;	as	≈	0.12	fm;	Dis6lla6on

Bali	&	Endrődi:		Rooted	staggered	fermions;	physical	pion	mass;	a	=	0.1	–	0.29	fm;

RBC/UKQCD:		Domain	wall	fermions;	physical	pion	mass;	a	≈	0.11	fm,	mπ	L	≈	3.9;		

CLS/Mainz:		Nf	=	2	Clover	fermions;	mπ	=	311,	437	MeV;	a	=	0.063	fm;	

(ahvp
µ )disc ⇡ �0.84 · 10�10

(ahvp

µ )

disc

/(ahvp

µ )

(``)
con

= �0.14(5)%,

(ahvp
µ )disc = �(9.6 ± 3.3 ± 2.3) · 10�10

(ahvp

µ )

disc

/(ahvp

µ )

(``)
con

= �1.6(7)%,

(ahvp

µ )

disc

/(ahvp

µ )

(``)
con

< �1%

at		Q2	=	0.03	GeV2⇧disc/⇧con = �(3.6 ± 4.5) · 10

�4
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Two-loop	calcula6ons	of	connected	vs.	disconnected	and	effects	
of	twisted	boundary	condi6ons	in	Πμν(Q) [Hans	BIJNENS,	THU	14:00]

ChPT at FV
and/or
twisting

Johan Bijnens

Introduction

FV: masses
and decay

A mesonic
ChPT
program
framework

Two-point

(Dis)connected
Twisting
Results

Kℓ3 etc

Conclusions
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Two-point: Connected versus disconnected
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Two-point: Connected versus disconnected

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

-0.1 -0.08 -0.06 -0.04 -0.02  0

Π
(1

)
ud

0

q2

p4+p6

p4

p6 R
p6 L

• Disconnected
• p6 is large
• Due to the
Lri loops

• about
−1

2 connected

• − 1
10 is from

Π(1)
ee =

5
9Π

(1)
π+π+ + 1

9Π
(1)
ud

Correc6ons	are	large,	but	not	in	the	ra6o	Πdisc/Πcon

NLO	ChPT	es6mate:		Πdisc/Πcon	=	–	1/10 [Jüener	&	Della	Morte,	JHEP	1011	(2010)	154]
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[Aubin	et	al.,	PRD	93	(2016)	054508]

Finite-volume	effects:	Anisotropy	studies

30

Consider	subtracted	VP	tensor	in	a	finite	volume	of	L3∙T:

⇧µ⌫(p) =
X

,�

PT
µ

⇣
⇧�(p) � ⇧�(0)

⌘
PT
�⌫ sa6sfies	Ward	Iden66es

Study	devia6on	between	different	irreps.	for		mπ	=	220	MeV,			L	=	3.8	fm

A1, A44
1 , T1, T2, Econtains	five	irreducible	substructures:

⇧A1 � ⇧A44
1

• Finite-volume	effects	in	Πμν	well	described	
by	SChPT@LO:

• Impact	on	HVP	contribu6on:

ahvp
µ,A1
� ahvp
µ,A44

1
= 10 � 15%

• Simula6ons	with	mπ	=	220	MeV,		mπ	L	=	4.2	
not	sufficient	for	percent-level	accuracy
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Compare	vector	correlator	along	spa6al	and	temporal	direc6ons
We also study the di↵erence of the integrand w

t

C(t) between a 96⇥ 483 and a
483 ⇥ 96 geometry which is non-zero only due to the finite lattice four-volume. We
find that NLO FV ChPT describes the lattice data well if we take into account ⇢
around-the-world e↵ects:

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20

w t
 [ 

C(
t)(9

6 
x 

48
3 )  - 

C(
t)(4

83  x
 9

6)
 ] 

10
10

t

Lattice
NLO FV ChPT + ρ around the world

This observation somewhat refines the findings of Aubin et al. 2015 and gives us
confidence in using NLO FV ChPT to perform a finite-volume correction. For our data
this correction is of O(3%).
We are also preparing a dedicated finite-volume study of aµ itself.

4 / 4

[Christoph	LEHNER,	TUE	14:00]

w(x1) G

(L)(x1) � w(x0) G

(T )(x0)

(domain	wall	fermions)

Anisotropy	well	described	by	FV	ChPT	aler	removing	backward	
propaga6ng	ρ-meson

FV	correc6on	for	mπ	=	140	MeV,	L	=	5.3	fm: ahvp
µ (1) � ahvp

µ (L) ⇡ 3%
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[Chakraborty	et	al.,	arXiv:1601.03071,			Chriscne	DAVIES,	poster	session]

Finite-volume	effects:	taste	breaking

32

Finite	volume	effects	for	calcula6ons	using	staggered	(HISQ)	quarks

Consider	effec6ve	theory	of	photons,	pions	and	rho-mesons;	
compute	hadronic	contribu6ons	to	photon	propagator:

⇧(Q2) � ⇧(0) = �4Q2

3

Z
d3k

(2⇡)3 F(Ea, Eb, k) + · · ·

Taylor	expansion	for	ma,b	=	mπ	yields	coefficients	⇧(⇡⇡)
j (similarly	for								)⇧

(⇢)
j

Replace	integral	by	a	finite	sum	over	discrete	momenta	k
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Finite-volume	effects:	taste	breaking

32

Finite	volume	effects	for	calcula6ons	using	staggered	(HISQ)	quarks

Consider	effec6ve	theory	of	photons,	pions	and	rho-mesons;	
compute	hadronic	contribu6ons	to	photon	propagator:

⇧(Q2) � ⇧(0) = �4Q2

3

Z
d3k

(2⇡)3 F(Ea, Eb, k) + · · ·

Taylor	expansion	for	ma,b	=	mπ	yields	coefficients	⇧(⇡⇡)
j (similarly	for								)⇧

(⇢)
j

Replace	integral	by	a	finite	sum	over	discrete	momenta	k

�⇧1/⇧1 ⇡ 10% ) ahvp
µ (1) � ahvp

µ (L) ⇡ 7% at mphys
⇡

Average	over	taste	mul6plets	and	determine	shil	in	⇧(⇡⇡)
j

mπ	=	140	MeV,		L	=	4.5	fm:
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Star6ng	point:
a

hvp
µ (L) =

Z 1

0
dx0 G(x0, L) w(x0)

Small	x0:		Compute	G(x0,	∞)	–	G(x0,	L)	using	Poisson-resumma6on

Large	x0:		Relate	G(x0,	L)	to	low-lying	energy	eigenstates	on	a	torus

Finite	volume:
G(x0, L) =

X

n

|A
n

|2 e�!n

x0 , !
n

= 2
q

m

2
⇡ + k

2
n

�11(k) + �
⇣kL
2⇡

⌘
= n⇡, n = 1, 2, . . .

|F⇡(!)|2 =
(
�
z�0(z)

�
z=kL/2⇡ + k

@�1(k)
@k

)
3⇡!2

2k2 |A|
2 [H.B.	Meyer,	PRL	107	(2011)	072002]

[M.	Lüscher	1991]

[A.	Francis	et	al.,	PRD	88	(2013)	054502]

G(x0,1) =
Z 1

0
d!!2⇢(!2)e�!|x0 | =

1
48⇡2

Z 1

0
d!!2�1 � 4m

2
⇡/!

2�3/2|F⇡(!)|2e�!x0
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[H.B.	Meyer	et	al.,	in	preparacon]

m
2

π,phys.

light

a
µ

m
2
π

orig.
vol. corr.

300

400

500

600

0 0.05 0.1 0.15 0.2 0.25

Mainz/CLS,	Nf	=	2

Finite-volume	effects:	TMR	analysis

34

Input	quan6ty:	6melike	pion	form	factor	 F⇡(!) = |F⇡(!)| ei�11(k)

Use	Gounaris-Sakurai	parameterisa6on	and	evaluate	|Fπ(ω)|,	δ11(k)	for	
given	(mπ,	mρ)	of	a	given	gauge	ensemble

Finite-volume	effects	in	HVP	dominated	by	long-distance	contribu6on

For	mπ	=	190	MeV,		L	=	4.0	fm,		
mπL	=	4.0:

ahvp
µ (1) � ahvp

µ (L) = 5.2%
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[H.B.	Meyer	et	al.,	in	preparacon]

m
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light

a
µ
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vol. corr.

300

400

500
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Mainz/CLS,	Nf	=	2

Finite-volume	effects:	TMR	analysis

34

Input	quan6ty:	6melike	pion	form	factor	 F⇡(!) = |F⇡(!)| ei�11(k)

Use	Gounaris-Sakurai	parameterisa6on	and	evaluate	|Fπ(ω)|,	δ11(k)	for	
given	(mπ,	mρ)	of	a	given	gauge	ensemble

Finite-volume	effects	in	HVP	dominated	by	long-distance	contribu6on

For	mπ	=	190	MeV,		L	=	4.0	fm,		
mπL	=	4.0:

ahvp
µ (1) � ahvp

µ (L) = 5.2%

Procedural	varia6ons:	
assign	uncertainty	of	≈	10%	

Dynamical	theory	of	finite-volume	
effects	in	terms	of	mρ/mπ	and	mπL
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Simula6on	details:

Nf	=	2+1+1	flavours	of	staggered	quarks	(HISQ)

10	ensembles;	three	laUce	spacings:			a	=	0.09,	0.12,	0.15	fm

Physical	pion	mass:			mmin
⇡ L = 3.9

Sta6s6cs:			≈	16000	per	ensemble

4

FIG. 2: Our results for the connected u/d contribution to
aHVP,LO
µ as a function of the u/d quark mass (expressed as

its deviation from the physical value in units of the s quark
mass). The lower curve shows our uncorrected data; the up-
per curve includes correction factors discussed in the text
and is used to obtain the final result. Data come from sim-
ulations with lattice spacings of 0.15 fm (purple triangles),
0.12 fm (blue circles), and 0.09 fm (red squares). The gray
bands show the ±1� predictions of our model (Eq. (7)) after
fitting it to the data. The �2 per degree of freedom was 0.9
and 0.6 for the upper and lower fits, respectively.

our 10 ensembles to a function of the form

a

HVP,LO
µ

✓
1 + c`

�m`

⇤
+ cs

�ms

⇤
+ c̃`

�m`

m`
+ ca2

(a⇤)2

⇡

2

◆

(6)

where �mf ⌘ mf � m

phys
f , and ⇤ ⌘ 5ms is of order the

QCD scale (0.5GeV). The fit parameters have the fol-
lowing priors:

c` = 0(1) cs = 0.0(3) c̃` = 0.00(3) ca2 = 0(1) (7)

together with prior 600(200) ⇥ 10�10 for a

HVP,LO
µ . This

fit corrects for mis-tuned quark masses, higher-order cor-
rections to the ⇡

+
⇡

� contribution, and the finite lattice
spacing. More details are given in the supplementary
materials.

Our final result from the fit for the connected contri-
bution from u/d quarks is a

HVP,LO
µ = 598(6)(8) ⇥ 10�10,

where the first error comes from the lattice calculation
and fit and the second is due to missing contributions
from QED and isospin breaking (mu 6= md), each of
which we estimate to enter at the level of 1% of the u/d

piece of a

HVP,LO
µ . These estimates are supported by more

detailed studies: The key isospin breaking e↵ect of ⇢� !

mixing is estimated in [36] to make a 3.5 ⇥ 10�10 contri-
bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [37] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III.

TABLE III: Error budget for the connected contributions
to the muon anomaly aµ from vacuum polarization of u/d
quarks.

aHVP,LO
µ (u/d)

QED corrections: 1.0%
Isospin breaking corrections: 1.0%

Staggered pions, finite volume: 0.7%
Valence m` extrapolation: 0.4%

Monte Carlo statistics: 0.4%
Padé approximants: 0.4%

a2 ! 0 extrapolation: 0.3%
ZV uncertainty: 0.4%
Correlator fits: 0.2%

Tuning sea-quark masses: 0.2%
Lattice spacing uncertainty: < 0.05%

Total: 1.8%

DISCUSSION/CONCLUSIONS

Adding results from our earlier analyses [14, 26], the
connected contributions to a

HVP,LO
µ are:

a

HVP,LO
µ

��
conn.

⇥1010 =

8
>>><

>>>:

598(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(8)

We combine these results with our recent estimate [27]
of the contribution from disconnected diagrams involving
u, d and s quarks. We take this as 0(9) ⇥ 10�10 to ob-
tain an estimate for the entire contribution from hadronic
vacuum polarization:

a

HVP,LO
µ = 666(6)(12) ⇥ 10�10 (9)

This agrees well with the only earlier u/d/s/c lat-
tice QCD result, 674(28) ⇥ 10�10 [13], but has errors
from the lattice calculation reduced by a factor of four.
It also agrees with earlier non-lattice results (⇥1010):
694.9(4.3) [5], 690.8(4.7) [6], and 681.9(3.2) [7] and
687.2(3.5) [8]. These are separately more accurate than
our result but the spread between them is comparable to
our uncertainty.

It is also useful to compare our result to the ex-
pectation from experiment. Assuming there is no new
physics beyond the Standard Model, experiment requires
a

HVP,LO
µ to be 720(7) ⇥ 10�10. This value is obtained

by subtracting from experiment the accepted values of
QED [38], electroweak [39], higher order HVP [5, 40] and
hadronic light-by-light contributions [41]. It is roughly
3.5� away from our result (Eq. (9)), but we need signif-
icantly smaller theoretical errors before we can make a
case for new physics.

From Table III we see that uncertainties can be re-
duced by improving the calculation of the quark-line dis-
connected contribution [28, 42] and from new simulations

																									determined	from	
6me	moments
⇧(Q2) � ⇧(0)

Combined	chiral	and	con6nuum	extrapola6on	using	Bayesian	priors

[Chakraborty	et	al.,	arXiv:1601.03071,			Chriscne	DAVIES,	poster	session]

Reduce	mu,d-dependence	of	a
hvp
µ :

• Rescale	π+π–	contribu6on	in	con6nuum	EFT

(mlat
⇢ /m

phys
⇢ )2 j• Rescale	6me	moment	Πj	by
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Simula6on	details:

Nf	=	2+1+1	flavours	of	staggered	quarks	(HISQ)

10	ensembles;	three	laUce	spacings:			a	=	0.09,	0.12,	0.15	fm

Physical	pion	mass:			mmin
⇡ L = 3.9

Sta6s6cs:			≈	16000	per	ensemble

(ahvp

µ )

con

· 10

10 =

8>>><
>>>:

598 ± 11 (u, d)

53.4 ± 0.6 (s)

14.4 ± 0.4 (c)

Results:

[Chakraborty	et	al.,	arXiv:1601.03071,			Chriscne	DAVIES,	poster	session]
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Simula6on	details:

Nf	=	2+1+1	flavours	of	staggered	quarks	(HISQ)

10	ensembles;	three	laUce	spacings:			a	=	0.09,	0.12,	0.15	fm

Physical	pion	mass:			mmin
⇡ L = 3.9

Sta6s6cs:			≈	16000	per	ensemble

(ahvp

µ )

con

· 10

10 =

8>>><
>>>:

598 ± 11 (u, d)

53.4 ± 0.6 (s)

14.4 ± 0.4 (c)

contains	finite-volume	and	
isospin	correc6ons

Results:

[Chakraborty	et	al.,	arXiv:1601.03071,			Chriscne	DAVIES,	poster	session]
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Simula6on	details:

Nf	=	2+1+1	flavours	of	staggered	quarks	(HISQ)

10	ensembles;	three	laUce	spacings:			a	=	0.09,	0.12,	0.15	fm

Physical	pion	mass:			mmin
⇡ L = 3.9

Sta6s6cs:			≈	16000	per	ensemble

(ahvp

µ )

con

· 10

10 =

8>>><
>>>:

598 ± 11 (u, d)

53.4 ± 0.6 (s)

14.4 ± 0.4 (c)

contains	finite-volume	and	
isospin	correc6ons

Results:

Disconnected	contribu6on: (ahvp
µ )disc = (0 ± 9) · 10�10

Final	es6mate: ahvp
µ = (666 ± 6 ± 12) · 10�10

[Chakraborty	et	al.,	arXiv:1601.03071,			Chriscne	DAVIES,	poster	session]
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Simula6on	details: [Blum	et	al.,	JHEP	04	(2016)	063]

Nf	=	2+1	flavours;	Möbius	domain	wall	fermions

Two	laUce	spacings:			a	=	0.11,	0.084	fm

Physical	pion	mass:			mmin
⇡ L = 3.9

Noise	reduc6on:		AMA,	defla6on
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Simula6on	details: [Blum	et	al.,	JHEP	04	(2016)	063]

Nf	=	2+1	flavours;	Möbius	domain	wall	fermions

Two	laUce	spacings:			a	=	0.11,	0.084	fm

Physical	pion	mass:			mmin
⇡ L = 3.9

[Maehew	SPRAGGS,	TUE	17:10]Employ	“Hybrid	Method”:
Padé	fits,	conformal	polynomials	in	low-Q2	regime,	6me	moments	

Numerical	integra6on	techniques

Noise	reduc6on:		AMA,	defla6on

LaUce	and	experimental	data;	Finite-volume	study [Christoph	LEHNER,	TUE	14:00]

Isospin	breaking [James	HARRISON,	TUE	15:00,	Vera	GÜLPERS,	TUE	15:20,]
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Simula6on	details:

[Blum	et	al.,	JHEP	04	(2016)	063]

Nf	=	2+1	flavours;	Möbius	domain	wall	fermions

Two	laUce	spacings:			a	=	0.11,	0.084	fm

[Maehew	SPRAGGS,	TUE	17:10]

Strange	quark	contribu6on:

16/22

Strange Result: Parametrisations

a(s) hvp
µ = 53.1(9)(+1

�3) · 10�10

Compute	individual	flavour	contribu6ons	(connected)	to ahvp
µ
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Simula6on	details:

[Blum	et	al.,	JHEP	04	(2016)	063]

Nf	=	2+1	flavours;	Möbius	domain	wall	fermions

Two	laUce	spacings:			a	=	0.11,	0.084	fm

[Maehew	SPRAGGS,	TUE	17:10]

Strange	quark	contribu6on:

16/22

Strange Result: Parametrisations

a(s) hvp
µ = 53.1(9)(+1

�3) · 10�10

dominated	by	sta6s6cal	error

Compute	individual	flavour	contribu6ons	(connected)	to ahvp
µ
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Simula6on	details:

[Blum	et	al.,	JHEP	04	(2016)	063]

Nf	=	2+1	flavours;	Möbius	domain	wall	fermions

Two	laUce	spacings:			a	=	0.11,	0.084	fm

[Maehew	SPRAGGS,	TUE	17:10]

Strange	quark	contribu6on:

a(s) hvp
µ = 53.1(9)(+1

�3) · 10�10

20/22

Light Results: Parametrisations

Light	quark	contribu6on:

Compute	individual	flavour	contribu6ons	(connected)	to ahvp
µ
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Simula6on	details:

[Blum	et	al.,	JHEP	04	(2016)	063]

Nf	=	2+1	flavours;	Möbius	domain	wall	fermions

Two	laUce	spacings:			a	=	0.11,	0.084	fm

[Maehew	SPRAGGS,	TUE	17:10]

Strange	quark	contribu6on:

a(s) hvp
µ = 53.1(9)(+1

�3) · 10�10

Light	quark	contribu6on:

21/22

Light Results: Low Cuts

Compute	individual	flavour	contribu6ons	(connected)	to ahvp
µ
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RBC/UKQCD HVP light connected results
Further details of the following slides will be provided in the talk by C. Lehner.

Results in these slides are for a�1 = 1.73 GeV and m⇡ = 140 MeV connected up,
down, and strange data. Continuum limit, charm, and isospin-breaking analyses are in
progress.

We write aµ =
P1

t=0 wt

C(t) with C(t) = 1
3

P
~
x

P
j=0,1,2hJj (~x , t)Jj (0)i. We then

compare the integrand directly with the experimental result. Below the experimental
result is taken from Jegerlehner 2016:
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The lattice data here includes finite-volume corrections based on NLO FV ChPT.
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Combining	laUce	and	experimental	data: [Christoph	LEHNER,	TUE	14:00]

a

hvp
µ =

1X

x0=0

w(x0) G(x0),

• Experimental	data	more	precise	in	
long-distance	regime

a

hvp

µ =

x

lat/exp

0X

x

0

=0

w(x

0

) G

lat

(x

0

)

���
con

+

1X

x

lat/exp

0

w(x

0

) G

exp

(x

0

)Compute:

) �ahvp
µ /a

hvp
µ = 0.7% at	 x

lat/exp

0

= 1.7 fm
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Recent	results:	BMW
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Simula6on	details:

Nf	=	2+1+1	flavours	of	stout-smeared	staggered	quarks;	tree-level	Symanzik

17	ensembles;	six	laUce	spacings:			a	=	0.063	–	0.133	fm

Physical	pion	mass:			 mmin
⇡ L ⇡ 4.2, L ⇡ 6 fm

Sta6s6cs:			≈	1.15	M	for	(u,d),			≈	96	k	for	s,	c

[Taichi	KAWANAI,	TUE	16:30,	Kohtaroh	MIURA,	TUE	16:50]
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Recent	results:	Mainz/CLS
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Simula6on	details: [Hanno	HORCH,	TUE	14:40]

Nf	=	2	flavours;	O(a)	improved	Wilson	fermions

11	ensembles;	three	laUce	spacings:			a	=	0.049,	0.066,	0.076	fm

Minimum	pion	mass:			 mmin
⇡ = 190 MeV, mmin

⇡ L = 4.0

Sta6s6cs:			2000	–	4000	per	ensemble

Determine	Π(Q2)	–	Π(0)	using	
Padé	fits,	6me	moments	and	TMR



Hartmut	Wittig Hadronic	contributions	to	(g–2)

Recent	results:	Mainz/CLS

41

Simula6on	details: [Hanno	HORCH,	TUE	14:40]

Nf	=	2	flavours;	O(a)	improved	Wilson	fermions

11	ensembles;	three	laUce	spacings:			a	=	0.049,	0.066,	0.076	fm

Minimum	pion	mass:			 mmin
⇡ = 190 MeV, mmin

⇡ L = 4.0

Sta6s6cs:			2000	–	4000	per	ensemble

Combined	chiral	and	con6nuum	
extrapola6on

Determine	Π(Q2)	–	Π(0)	using	
Padé	fits,	6me	moments	and	TMR

Error	es6mates:
“Extended	Frequen6st	Method”

300

400

500

600

700

0 0.05 0.1 0.15 0.2 0.25

a(
u
d
)
h
v
p

µ
(m

2 ⇡
)
⇥
10

10

m2
⇡ [GeV2]

a = 0.0755 fm
a = 0.0658 fm
a = 0.0486 fm

C.L.



Hartmut	Wittig Hadronic	contributions	to	(g–2)

Recent	results:	Mainz/CLS

41

Simula6on	details: [Hanno	HORCH,	TUE	14:40]

Nf	=	2	flavours;	O(a)	improved	Wilson	fermions

11	ensembles;	three	laUce	spacings:			a	=	0.049,	0.066,	0.076	fm

Minimum	pion	mass:			 mmin
⇡ = 190 MeV, mmin

⇡ L = 4.0

Sta6s6cs:			2000	–	4000	per	ensemble

Combined	chiral	and	con6nuum	
extrapola6on

Determine	Π(Q2)	–	Π(0)	using	
Padé	fits,	6me	moments	and	TMR

Error	es6mates:
“Extended	Frequen6st	Method” 40

42

44

46

48

50

52

54

56

58

60

0 0.05 0.1 0.15 0.2 0.25

a(
s)

h
v
p

µ
(m

2 ⇡
)
⇥
10

10

m2
⇡ [GeV2]

a = 0.0755 fm
a = 0.0658 fm
a = 0.0486 fm

C.L.



Hartmut	Wittig Hadronic	contributions	to	(g–2)

Recent	results:	Mainz/CLS

41

Simula6on	details: [Hanno	HORCH,	TUE	14:40]

Nf	=	2	flavours;	O(a)	improved	Wilson	fermions

11	ensembles;	three	laUce	spacings:			a	=	0.049,	0.066,	0.076	fm

Minimum	pion	mass:			 mmin
⇡ = 190 MeV, mmin

⇡ L = 4.0

Sta6s6cs:			2000	–	4000	per	ensemble

Combined	chiral	and	con6nuum	
extrapola6on

Determine	Π(Q2)	–	Π(0)	using	
Padé	fits,	6me	moments	and	TMR

Error	es6mates:
“Extended	Frequen6st	Method” 6

8

10

12

14

16

18

0 0.05 0.1 0.15 0.2 0.25

a(
c)

h
v
p

µ
(m

2 ⇡
)
⇥

10
10

m2
⇡ [GeV2]

a = 0.0755 fm
a = 0.0658 fm
a = 0.0486 fm

C.L.



Hartmut	Wittig Hadronic	contributions	to	(g–2)

Determine	contribu6ons	from	individual	quark	flavours:	(u,d),	s,	c

Recent	results:	Mainz/CLS
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[Hanno	HORCH,	TUE	14:40;	Della	Morte	et	al.,	in	preparacon]
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the	level	of	1σ

Overall	accuracy	dominated	by	
u,	d	contribu6on

Significant	shil	due	to	finite-
volume	effects

Contribu6ons	from	disconnected	
diagrams	below	1%



Hartmut	Wittig Hadronic	contributions	to	(g–2) 43

Summary	on aµ
hvp

a(s) hvp
µ · 1010

a(c) hvp
µ · 1010

light	(u,d) ≈	90%
strange	(s) 	≈		8%
charm	(c) 	≈		2%

Individual	flavour	contribu6ons:

ahvp
µ · 1010
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Hadronic	Light-by-Light	ScaNering



Hartmut	Wittig Hadronic	contributions	to	(g–2)

La*ce	QCD	approaches	to	HLbL	scaNering

45

Numerically	very	demanding:

• Compute	4pt	correla6on	func6on	for	two	
independent	momenta,	k1,	k2

		Cost	scales	propor6onal	to	(volume)2	

• Must	take	external	momentum	to	zero:			q2	⟶	0
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LaUce	calcula6ons	of	dominant	sub-processes
[Feng	et	al.,	Phys	Rev	Lee	109	(2012)	182001,	Antoine	GÉRARDIN,	FRI	18:10]

QCD	+	stochas6c	QED
[Blum	et	al.,	Phys	Rev	D93	(2016)	014503,	Luchang	JIN,	TUE	13:20]
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QCD	+	QED	Simula=ons

46

Compute	matrix	element	of	e.m.	current	between	muon	ini6al	and	final	
states:

[Blum	et	al.,	Phys	Rev	Lee	114	(2015)	012001]

ahlbl
µ = F2(0)

D
µ(p0, s0)

���Jµ(0)
��� µ(p, s)

E
= �e u(p0, s0)

 
F1(Q2)�µ +

F2(Q2)
2m

�µ⌫Q⌫
!

u(p, s)

Large	sta6s6cal	errors;	subtract	contribu6ons	of	O(α4)
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QCD	+	Stochas=c	QED

47

Abandon	non-perturba6ve	treatment	of	QED	contribu6on:

[Blum	et	al.,	Phys	Rev	D93	(2016)	014503]

inser6on	of	three	exact	Feynman	gauge	photon	propagators

Gµ⌫(x, y) =
1

VT

�µ⌫
X

k, |~k|,0

eik·(x�y)

k̂

2
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Abandon	non-perturba6ve	treatment	of	QED	contribu6on:

[Blum	et	al.,	Phys	Rev	D93	(2016)	014503]

inser6on	of	three	exact	Feynman	gauge	photon	propagators

xop

z xy

1. Stochas6c	selec6on	of	two	internal	photon	
ver6ces	at		x,	y

2. Compute	quark	propagators	from	point	
sources	at	x	and	y

3. Current	inser6on	xop	and	third	photon	
vertex	z	explicitly	summed	over

4. Avoid	extrapola6on	to	q2	=	0	by	
compu6ng	first	moment	w.r.t.	xop

Efficiency	gain:	two	orders	of	magnitude
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[Blum	et	al.,	Phys	Rev	D93	(2016)	014503]

Nf	=	2+1	flavours;	DWFs

QCD	+	Stochas=c	QED

48

Final	result:	sum	over	rela6ve	coordinates		|r|	≡	|(x	–	y)μ	|
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Physical	pion	mass;		a	=	0.11	fm

[Luchang	JIN,	TUE	13:20]
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Final	result:	sum	over	rela6ve	coordinates		|r|	≡	|(x	–	y)μ	|

Nf	=	2+1	flavours;	DWFs

QCD	+	Stochas=c	QED

49

(Connected	contribu6on;	sta6s6cal	error	only)
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Numerical	cost:		175	Mcore-hrs	for	48I	ensemble
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Disconnected	Contribu=ons	to	HLbL

50

Use	same	setup	to	determine	leading	disconnected	contribu6on

[Luchang	JIN,	TUE	13:20]
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Figure 5.1: Leading order diagram, survives in SU(3) limit.
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Figure 5.2: Next to leading order diagrams. O(ms �ml), vanishes in SU(3) limit.

a result, not much e↵ort is needed in order to control the error from the long distance region.

For disconnected diagrams, the signal has to come from a subtle gluon interaction between

the two quark loops, which only emerges after gauge averaging. As a result, although the

signal is still exponentially suppressed when |r| = |x � z| becomes large, the noise remains

constant for arbitrary |r|. Since the formula involves summation over r, one can expect that a

lot of noise will come from the large |r| region, and this noise will become larger if we increase

the volume. However, in terms of evaluating the diagram on the lattice, the independence of

these two loops also provide some benefit. The contraction at y position does not depend on

the position of z, allowing the M2 trick to be applied without recomputing the muon part.

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0 5 10 15 20

F
2
(0
)/
(α

/π
)3

|r|

48I
Preliminary



Hartmut	Wittig Hadronic	contributions	to	(g–2)

Disconnected	Contribu=ons	to	HLbL

50

Use	same	setup	to	determine	leading	disconnected	contribu6on

[Luchang	JIN,	TUE	13:20]

(Physical	pion	mass;		a	=	0.11	fm)(ahlbl
µ )disc = (�56.0 ± 12.6) · 10�11

68

Figure 5.1: Leading order diagram, survives in SU(3) limit.

x

src

x

snk

z

0
,

0
y

0
,�

0
x

0
, ⇢

0

x

op

, ⌫

z,

y,�

x, ⇢

Figure 5.2: Next to leading order diagrams. O(ms �ml), vanishes in SU(3) limit.

a result, not much e↵ort is needed in order to control the error from the long distance region.

For disconnected diagrams, the signal has to come from a subtle gluon interaction between

the two quark loops, which only emerges after gauge averaging. As a result, although the

signal is still exponentially suppressed when |r| = |x � z| becomes large, the noise remains

constant for arbitrary |r|. Since the formula involves summation over r, one can expect that a

lot of noise will come from the large |r| region, and this noise will become larger if we increase

the volume. However, in terms of evaluating the diagram on the lattice, the independence of

these two loops also provide some benefit. The contraction at y position does not depend on

the position of z, allowing the M2 trick to be applied without recomputing the muon part.
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a result, not much e↵ort is needed in order to control the error from the long distance region.

For disconnected diagrams, the signal has to come from a subtle gluon interaction between

the two quark loops, which only emerges after gauge averaging. As a result, although the

signal is still exponentially suppressed when |r| = |x � z| becomes large, the noise remains

constant for arbitrary |r|. Since the formula involves summation over r, one can expect that a

lot of noise will come from the large |r| region, and this noise will become larger if we increase

the volume. However, in terms of evaluating the diagram on the lattice, the independence of

these two loops also provide some benefit. The contraction at y position does not depend on

the position of z, allowing the M2 trick to be applied without recomputing the muon part.
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To	do:	compute	addi6onal	disconnected	diagrams;		
study	finite-volume	effects,	laUce	artefacts
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Exact	QED	kernel

51

Determine	QED	part	perturba6vely	in	the	con6nuum	in	infinite	volume	
	no	power-law	volume	effects

a

hlbl
µ = F2(0) =

me

6
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Z
d

4
y

Z
d

4
xL[⇢,�];µ⌫�(x, y) i⇧⇢;µ⌫��(x, y)

QCD	four-point	func6on:
i⇧⇢;µ⌫��(x, y) = �

Z
d

4
z z⇢

D
Jµ(x)J⌫(y)J�(z)J�(0)

E

[Nils	ASMUSSEN,	TUE	15:40]

[Asmussen,	Green,	Meyer,	Nyffeler,	in	prep.]
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QED	kernel	func6on: L[⇢,�];µ⌫�(x, y)
• Infra-red	finite;	can	be	computed	analy6cally	

• Admits	a	tensor	decomposi6on	in	terms	of	six	form	factors	
which	depend	on

x

2, y

2, x · y
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[Nils	ASMUSSEN,	TUE	15:40]

[Asmussen,	Green,	Meyer,	Nyffeler,	in	prep.]
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Form	factors	computed	and	stored	on	disk

[Nils	ASMUSSEN,	TUE	15:40]

[Asmussen,	Green,	Meyer,	Nyffeler,	in	prep.]
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Euclidean	four-point	func6on	in	momentum	space:
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HLbL	four-point	correlator

52

Four-point	correlator	of	one	local	and	three	conserved	vector	currents

[Green	et	al.,	Phys	Rev	Lee	115	(2015)	222003]

(computable	in	terms	of	sequen6al	and	double-sequen6al	propagators)

Fully	connected	contribu6on	with	summed	fixed	kernels:
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Hartmut	Wittig Hadronic	contributions	to	(g–2)

Forward	light-by-light	amplitude

53

Forward	kinema6cs: Q1 ⌘ p2 = �p1, Q2 ⌘ p4, ⌫ = �Q1·Q2

[Green	et	al.,	Phys	Rev	Lee	115	(2015)	222003]
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Forward	kinema6cs: Q1 ⌘ p2 = �p1, Q2 ⌘ p4, ⌫ = �Q1·Q2

photon	virtuali6es

[Green	et	al.,	Phys	Rev	Lee	115	(2015)	222003]
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Forward	light-by-light	amplitude
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Forward	kinema6cs: Q1 ⌘ p2 = �p1, Q2 ⌘ p4, ⌫ = �Q1·Q2

Forward	scaGering	of	transversely	polarised	virtual	photons:

MTT (�Q2
1,�Q2

2, ⌫) =
e4
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E
µ1µ2µ3µ4
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Related	to		σ0,2(γ✻	γ✻	⟶	hadrons)		via	subtracted	dispersion	rela6on:
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Compare	laUce	data	to	phenomenological	expecta6ons,	e.g.
leading	contribu6on	to from	π0	exchange	diagramsahlbl

µ

Related	to		σ0,2(γ✻	γ✻	⟶	hadrons)		via	subtracted	dispersion	rela6on:
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Forward	light-by-light	amplitude

54

Test	in	two-flavour	QCD	(CLS	ensembles):

[Green	et	al.,	Phys	Rev	Lee	115	(2015)	222003,	and	in	prep.]
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Compare	laUce	data	to	dispersion	rela6on	and	model	for	cross	sec6ons:
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full	model	+	HE	
cross	sec6on

�0 + �2 =
X

⇡0,⌘0,a0, f0,...

�(�⇤�⇤ ! M) + �(�⇤�⇤ ! ⇡+⇡�)Cross	sec6ons:
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Forward-scaNering	amplitudes

Full	set	of	eight	forward-scaGering	amplitudes:
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Results	for	subtracted	forward	amplitude:

[Green	et	al.,	in	preparacon]
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Pseudoscalar	meson	exchange	expected	
to	dominate	LbL	scaGering: ⇡

⇡0 , ⌘ , ⌘0

+ . . .

Compute	transi6on	form	factor	between	π0	and	two	off-shell	photons:
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Hartmut	Wittig Hadronic	contributions	to	(g–2)

HLbL	from	transi=on	π0	⟶	γ✻γ✻

57

Pseudoscalar	meson	exchange	expected	
to	dominate	LbL	scaGering: ⇡

⇡0 , ⌘ , ⌘0

+ . . .

Compute	transi6on	form	factor	between	π0	and	two	off-shell	photons:

✏µ⌫↵� q↵1 q�2 F⇡0�⇤�⇤ (m2
⇡; q2

1, q
2
2) ⌘ Mµ⌫

Introduction Form factor Lattice computation Conclusion

Lattice computation

M

µ⌫

(p, q1) = lim

t⇡!1

2E

⇡

Z

⇡

✓

Z 0

�1
d⌧ e

!1⌧
e

�E⇡(⌧�t⇡)
C

µ⌫

(⌧, t

⇡

; ~p, ~q1) +

Z 1

0

d⌧ e

!1⌧
e

E⇡t⇡
C

µ⌫

(⌧, t

⇡

; ~p, ~q1)

◆

E

⇡

and Z

⇡

(overlap with our interpolating field) are extracted from the two-point correlation function :

C

(2)
(t) =

X

~x

⌦

P (~x, t)P

†
(

~

0, 0)

↵

e

�i~p~x ���!
t!1

|Z
⇡

|2
2E

⇡

�

e

�E⇡t
+ e

�E⇡(T�t)
�

,

Momenta are discrete on the lattice (finite volume) : |~q1|2 =

�

2⇡
L

�2 |~n|2 , |~n|2 = 1, 2, 3, 4, 5, 6, 8, . . .

!1 is a free parameter (where q1 = (!1, ~q1))

We choose ~p =

~

0

(

q

2
1 = !

2
1 � |~q1|2

q

2
2 = (m⇡ � !1)

2 � |~q1|2

! By varying continuously !1 we have access to different values of (q

2
1, q

2
2)

! But !1 such that q

2
1, q

2
2 < M

V

(bellow hadronic threshold)

Antoine Gérardin 10 Lattice calculation of the pion transition form factor ⇡0 ! �⇤�⇤

Mµ⌫ ⇠ C(3)
µ⌫ (⌧, t⇡; ~p, ~q1, ~q2) =

X

~x,~z

D

T

n

J⌫(~0, ⌧ + t⇡)Jµ(~z, t⇡)P(~x, 0)
oE

ei~p·~xe�i~q1·~z
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Kinema6cal	range: [Antoine	GÉRARDIN,	FRI	18:10]
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Lowest	meson	dominance	(LMD)	model:

(refinement:	LMD-V	model)

Fit	ansatz:
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Fit	ansatz:
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Results	for	Nf	=	2	flavours	of	O(a)	improved	Wilson	fermions:

[Antoine	GÉRARDIN,	FRI	18:10]

agrees	well	with	theore6cal	expecta6on		 ↵ = 1/(4⇡2F⇡) = 0.274 GeV�1

↵ =

8>><
>>:

0.275(18) GeV�1 (LMD)

0.273(24) GeV�1 (LMD+V)

(combined	chiral	and	con6nuum	extrapola6on)

Preliminary
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8>><
>>:

0.275(18) GeV�1 (LMD)

0.273(24) GeV�1 (LMD+V)

(combined	chiral	and	con6nuum	extrapola6on)

Preliminary

Results	for	π0	contribu6on	to	hadronic	light-by-light	scaGering:

Preliminary(ahlbl
µ )⇡0 =

8>><
>>:

(68.2 ± 7.4) · 10�11 (LMD)

(65.0 ± 8.3) · 10�11 (LMD+V)

agrees	well	with	phenomenological	studies		
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Hadronic	Vacuum	Polarisa=on:	
• Sta6s6cal	accuracy	limited	by	disconnected	diagrams	

• Disconnected	contribu6ons:					≲	1%	

• Finite-volume	effects:															3	–	7%		for		mπ	≃	140	MeV,		mπL	∼	4	
• Charm	quark	contribu6on:									2%			(laUce	artefacts)
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Hadronic	Vacuum	Polarisa=on:	
• Sta6s6cal	accuracy	limited	by	disconnected	diagrams	

• Disconnected	contribu6ons:					≲	1%	

• Finite-volume	effects:															3	–	7%		for		mπ	≃	140	MeV,		mπL	∼	4	
• Charm	quark	contribu6on:									2%			(laUce	artefacts)

 

Hadronic	Light-by-Light	ScaNering:	
• Sta6s6cal	accuracy:									≈	10%						(connected)	
• Disconnected	contribu6ons	can	be	resolved	

• Phenomenological	models	can	be	verified
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Spares
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Table 4
Results of the BESIII measurement of the cross section σ bare

π+π−(γFSR)
≡ σ bare(e+e− → π+π−(γFSR)) and the squared pion form factor |Fπ |2. The errors are statistical only. The 

value of √s′ represents the bin center. The 0.9% systematic uncertainty is fully correlated between any two bins.
√

s′ [MeV] σ bare
π+π−(γFSR)

[nb] |Fπ |2
√

s′ [MeV] σ bare
π+π−(γFSR)

[nb] |Fπ |2

602.5 288.3 ± 15.2 6.9 ± 0.4 752.5 1276.1 ± 29.8 41.8 ± 1.0
607.5 306.6 ± 15.5 7.4 ± 0.4 757.5 1315.9 ± 31.3 43.6 ± 1.0
612.5 332.8 ± 16.3 8.2 ± 0.4 762.5 1339.3 ± 30.9 44.8 ± 1.0
617.5 352.5 ± 16.3 8.7 ± 0.4 767.5 1331.9 ± 30.8 45.0 ± 1.0
622.5 367.7 ± 16.6 9.2 ± 0.4 772.5 1327.0 ± 30.6 45.2 ± 1.0
627.5 390.1 ± 17.7 9.8 ± 0.4 777.5 1272.7 ± 29.2 43.7 ± 1.0
632.5 408.0 ± 18.0 10.4 ± 0.5 782.5 1031.5 ± 26.7 37.1 ± 0.9
637.5 426.6 ± 18.1 11.0 ± 0.5 787.5 810.7 ± 24.2 30.3 ± 0.8
642.5 453.5 ± 19.0 11.8 ± 0.5 792.5 819.7 ± 23.8 30.6 ± 0.8
647.5 477.7 ± 18.5 12.5 ± 0.5 797.5 803.1 ± 23.3 30.1 ± 0.8
652.5 497.4 ± 19.5 13.2 ± 0.5 802.5 732.4 ± 22.1 27.7 ± 0.8
657.5 509.2 ± 19.4 13.6 ± 0.5 807.5 679.9 ± 20.6 25.9 ± 0.7
662.5 543.4 ± 19.9 14.7 ± 0.5 812.5 663.6 ± 21.0 25.5 ± 0.8
667.5 585.0 ± 20.5 16.0 ± 0.6 817.5 622.2 ± 19.9 24.1 ± 0.7
672.5 642.7 ± 22.2 17.7 ± 0.6 822.5 585.0 ± 19.5 22.9 ± 0.7
677.5 640.5 ± 21.0 17.8 ± 0.6 827.5 540.8 ± 18.1 21.4 ± 0.7
682.5 668.0 ± 21.9 18.8 ± 0.6 832.5 496.4 ± 17.7 19.8 ± 0.7
687.5 724.4 ± 22.9 20.6 ± 0.6 837.5 450.4 ± 16.8 18.1 ± 0.6
692.5 783.5 ± 23.2 22.5 ± 0.7 842.5 404.7 ± 15.2 16.4 ± 0.6
697.5 858.6 ± 25.3 24.9 ± 0.7 847.5 391.3 ± 15.4 16.0 ± 0.6
702.5 893.8 ± 25.4 26.2 ± 0.7 852.5 364.0 ± 15.0 15.0 ± 0.6
707.5 897.8 ± 25.0 26.6 ± 0.7 857.5 339.6 ± 14.0 14.2 ± 0.6
712.5 978.6 ± 26.6 29.3 ± 0.8 862.5 310.0 ± 13.7 13.0 ± 0.6
717.5 1059.1 ± 27.9 32.0 ± 0.8 867.5 283.8 ± 13.0 12.1 ± 0.5
722.5 1086.0 ± 28.3 33.2 ± 0.9 872.5 256.5 ± 12.4 11.0 ± 0.5
727.5 1088.4 ± 27.7 33.6 ± 0.9 877.5 237.3 ± 11.4 10.3 ± 0.5
732.5 1158.8 ± 29.2 36.2 ± 0.9 882.5 229.7 ± 11.6 10.0 ± 0.5
737.5 1206.5 ± 29.6 38.2 ± 0.9 887.5 224.0 ± 11.6 9.9 ± 0.5
742.5 1229.9 ± 29.0 39.3 ± 0.9 892.5 196.1 ± 10.5 8.7 ± 0.4
747.5 1263.3 ± 30.3 40.9 ± 1.0 897.5 175.9 ± 9.7 7.9 ± 0.4

Fig. 7. Our calculation of the leading-order (LO) hadronic vacuum polarization 2π contributions to (g − 2)µ in the energy range 600–900 MeV from BESIII and based on the 
data from KLOE 08 [6], 10 [7], 12 [8], and BaBar [10], with the statistical and systematic errors. The statistical and systematic errors are added quadratically. The band shows 
the 1σ range of the BESIII result.

8. Conclusion

A new measurement of the cross section σ bare(e+e− →
π+π−(γFSR)) has been performed with an accuracy of 0.9% in the 
dominant ρ(770) mass region between 600 and 900 MeV/c2, using 
the ISR method at BESIII. The energy dependence of the cross sec-
tion appears compatible with corresponding measurements from 
KLOE and BaBar within approximately one standard deviation. The 
two-pion contribution to the hadronic vacuum polarization contri-
bution to (g − 2)µ has been determined from the BESIII data to be 
aππ ,LO
µ (600–900 MeV) = (368.2 ± 2.5stat ± 3.3sys) · 10−10. By aver-

aging the KLOE, BaBar, and BESIII values of aππ ,LO
µ and assuming 

that the five data sets are independent, a deviation of more than 
3σ between the SM prediction of (g − 2)µ and its direct measure-

ment is confirmed. For the low mass region < 600 MeV/c2 and 
the high mass region > 900 MeV/c2, the BaBar data was used in 
this calculation.
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Fig. 4. The measured squared pion form factor |Fπ |2. Only statistical errors are 
shown. The solid line represents the fit using the Gounaris–Sakurai parametriza-
tion.

Table 3
Fit parameters and statistical errors of the Gounaris–Sakurai fit of the pion form 
factor. Also shown are the PDG 2014 values [33].

Parameter BESIII value PDG 2014

mρ [MeV/c2] 776.0 ± 0.4 775.26 ± 0.25
#ρ [MeV] 151.7 ± 0.7 147.8± 0.9
mω [MeV/c2] 782.2 ± 0.6 782.65 ± 0.12
#ω [MeV] fixed to PDG 8.49 ± 0.08
|cω | [10−3] 1.7± 0.2 –
|φω | [rad] 0.04 ± 0.13 –

Fig. 5. Relative difference of the form factor squared from BaBar [10] and the BESIII
fit. Statistical and systematic uncertainties are included in the data points. The 
width of the BESIII band shows the systematic uncertainty only.

Wigner function cω = |cω|eiφω . The width of the ω meson is fixed 
to the PDG value [33]. The resulting values are shown in Table 3. 
As can be seen, the resonance parameters are in agreement with 
the PDG values [33] within uncertainties, except for #ρ , which 
shows a 3.4σ deviation. Corresponding amplitudes for the higher 
ρ states, ρ(1450), ρ(1700), and ρ(2150), as well as the masses 
and widths of those states were taken from Ref. [10], and the sys-
tematic uncertainty in #ρ due to these assumptions has not been 
quantitatively evaluated.

The Gounaris–Sakurai fit provides an excellent description of 
the BESIII data in the full mass range from 600 to 900 MeV/c2, re-
sulting in χ2/ndf = 49.1/56. Fig. 5 shows the difference between 
fit and data. Here the data points show the statistical uncertainties 
only, while the shaded error band of the fit shows the systematic 
uncertainty only.

Fig. 6. Relative difference of the form factor squared from KLOE [6–8] and the 
BESIII fit. Statistical and systematic uncertainties are included in the data points. 
The width of the BESIII band shows the systematic uncertainty only.

In order to compare the result with previous measurements, 
the relative difference of the BESIII fit and data from BaBar [10], 
KLOE [6–8], CMD2 [1,2], and SND [3] is investigated. Such a com-
parison is complicated by the fact, that previous measurements 
used different vacuum polarization corrections. Therefore, we con-
sistently used the vacuum polarization correction from Ref. [31]
for all the comparisons discussed in this section. The KLOE 08, 10, 
12, and BaBar spectra have, hence, been modified accordingly. The 
individual comparisons are illustrated in Figs. 5 and 6. Here, the 
shaded error band of the fit includes the systematic error only, 
while the uncertainties of the data points include the sum of the 
statistical and systematic errors. We observe a very good agree-
ment with the KLOE 08 and KLOE 12 data sets up to the mass 
range of the ρ–ω interference. In the same mass range the BaBar 
and KLOE 10 data sets show a systematic shift, however, the devia-
tion is, not exceeding 1 to 2 standard deviations. At higher masses, 
the statistical error bars in the case of BESIII are relatively large, 
such that a comparison is not conclusive. There seem to be a good 
agreement with the BaBar data, while a large deviation with all 
three KLOE data sets is visible. There are indications that the BE-
SIII data and BESIII fit show some disagreement in the low mass 
and very high mass tails as well. We have also compared our re-
sults in the ρ peak region with data from Novosibirsk. At lower 
and higher masses, the statistical uncertainties of the Novosibirsk 
results are too large to draw definite conclusions. The spectra from 
SND and from the 2006 publication of CMD-2 are found to be in 
very good agreement with BESIII in the ρ peak region, while the 
2004 result of CMD-2 shows a systematic deviation of a few per-
cent.

We also compute the contribution of our BESIII cross section 
measurement σ bare(e+e− → π+π−(γFSR)) to the hadronic contri-
bution of (g − 2)µ ,

aππ ,LO
µ (0.6–0.9 GeV) = 1

4π3

(0.9GeV)2∫

(0.6GeV)2

ds′K (s′)σ bare
ππ(γ ) , (8)

where K (s′) is the kernel function [11, Eq. (5)]. As summarized in 
Fig. 7, the BESIII result, aππ ,LO

µ (600–900 MeV) = (368.2 ± 2.5stat ±
3.3sys) · 10−10, is found to be in good agreement with all three 
KLOE values. A difference of about 1.7σ with respect to the BaBar 
result is observed.

New	measurements	of	pion	form	factor	by	BESIII	confirm	3.6σ	tension
[BESIII	Collaboracon	(M.	Ablikim	et	al.),	Phys	Lee	B753	(2016)	629]
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Table 4
Results of the BESIII measurement of the cross section σ bare

π+π−(γFSR)
≡ σ bare(e+e− → π+π−(γFSR)) and the squared pion form factor |Fπ |2. The errors are statistical only. The 

value of √s′ represents the bin center. The 0.9% systematic uncertainty is fully correlated between any two bins.
√

s′ [MeV] σ bare
π+π−(γFSR)

[nb] |Fπ |2
√

s′ [MeV] σ bare
π+π−(γFSR)

[nb] |Fπ |2

602.5 288.3 ± 15.2 6.9 ± 0.4 752.5 1276.1 ± 29.8 41.8 ± 1.0
607.5 306.6 ± 15.5 7.4 ± 0.4 757.5 1315.9 ± 31.3 43.6 ± 1.0
612.5 332.8 ± 16.3 8.2 ± 0.4 762.5 1339.3 ± 30.9 44.8 ± 1.0
617.5 352.5 ± 16.3 8.7 ± 0.4 767.5 1331.9 ± 30.8 45.0 ± 1.0
622.5 367.7 ± 16.6 9.2 ± 0.4 772.5 1327.0 ± 30.6 45.2 ± 1.0
627.5 390.1 ± 17.7 9.8 ± 0.4 777.5 1272.7 ± 29.2 43.7 ± 1.0
632.5 408.0 ± 18.0 10.4 ± 0.5 782.5 1031.5 ± 26.7 37.1 ± 0.9
637.5 426.6 ± 18.1 11.0 ± 0.5 787.5 810.7 ± 24.2 30.3 ± 0.8
642.5 453.5 ± 19.0 11.8 ± 0.5 792.5 819.7 ± 23.8 30.6 ± 0.8
647.5 477.7 ± 18.5 12.5 ± 0.5 797.5 803.1 ± 23.3 30.1 ± 0.8
652.5 497.4 ± 19.5 13.2 ± 0.5 802.5 732.4 ± 22.1 27.7 ± 0.8
657.5 509.2 ± 19.4 13.6 ± 0.5 807.5 679.9 ± 20.6 25.9 ± 0.7
662.5 543.4 ± 19.9 14.7 ± 0.5 812.5 663.6 ± 21.0 25.5 ± 0.8
667.5 585.0 ± 20.5 16.0 ± 0.6 817.5 622.2 ± 19.9 24.1 ± 0.7
672.5 642.7 ± 22.2 17.7 ± 0.6 822.5 585.0 ± 19.5 22.9 ± 0.7
677.5 640.5 ± 21.0 17.8 ± 0.6 827.5 540.8 ± 18.1 21.4 ± 0.7
682.5 668.0 ± 21.9 18.8 ± 0.6 832.5 496.4 ± 17.7 19.8 ± 0.7
687.5 724.4 ± 22.9 20.6 ± 0.6 837.5 450.4 ± 16.8 18.1 ± 0.6
692.5 783.5 ± 23.2 22.5 ± 0.7 842.5 404.7 ± 15.2 16.4 ± 0.6
697.5 858.6 ± 25.3 24.9 ± 0.7 847.5 391.3 ± 15.4 16.0 ± 0.6
702.5 893.8 ± 25.4 26.2 ± 0.7 852.5 364.0 ± 15.0 15.0 ± 0.6
707.5 897.8 ± 25.0 26.6 ± 0.7 857.5 339.6 ± 14.0 14.2 ± 0.6
712.5 978.6 ± 26.6 29.3 ± 0.8 862.5 310.0 ± 13.7 13.0 ± 0.6
717.5 1059.1 ± 27.9 32.0 ± 0.8 867.5 283.8 ± 13.0 12.1 ± 0.5
722.5 1086.0 ± 28.3 33.2 ± 0.9 872.5 256.5 ± 12.4 11.0 ± 0.5
727.5 1088.4 ± 27.7 33.6 ± 0.9 877.5 237.3 ± 11.4 10.3 ± 0.5
732.5 1158.8 ± 29.2 36.2 ± 0.9 882.5 229.7 ± 11.6 10.0 ± 0.5
737.5 1206.5 ± 29.6 38.2 ± 0.9 887.5 224.0 ± 11.6 9.9 ± 0.5
742.5 1229.9 ± 29.0 39.3 ± 0.9 892.5 196.1 ± 10.5 8.7 ± 0.4
747.5 1263.3 ± 30.3 40.9 ± 1.0 897.5 175.9 ± 9.7 7.9 ± 0.4

Fig. 7. Our calculation of the leading-order (LO) hadronic vacuum polarization 2π contributions to (g − 2)µ in the energy range 600–900 MeV from BESIII and based on the 
data from KLOE 08 [6], 10 [7], 12 [8], and BaBar [10], with the statistical and systematic errors. The statistical and systematic errors are added quadratically. The band shows 
the 1σ range of the BESIII result.

8. Conclusion

A new measurement of the cross section σ bare(e+e− →
π+π−(γFSR)) has been performed with an accuracy of 0.9% in the 
dominant ρ(770) mass region between 600 and 900 MeV/c2, using 
the ISR method at BESIII. The energy dependence of the cross sec-
tion appears compatible with corresponding measurements from 
KLOE and BaBar within approximately one standard deviation. The 
two-pion contribution to the hadronic vacuum polarization contri-
bution to (g − 2)µ has been determined from the BESIII data to be 
aππ ,LO
µ (600–900 MeV) = (368.2 ± 2.5stat ± 3.3sys) · 10−10. By aver-

aging the KLOE, BaBar, and BESIII values of aππ ,LO
µ and assuming 

that the five data sets are independent, a deviation of more than 
3σ between the SM prediction of (g − 2)µ and its direct measure-

ment is confirmed. For the low mass region < 600 MeV/c2 and 
the high mass region > 900 MeV/c2, the BaBar data was used in 
this calculation.
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Fig. 4. The measured squared pion form factor |Fπ |2. Only statistical errors are 
shown. The solid line represents the fit using the Gounaris–Sakurai parametriza-
tion.

Table 3
Fit parameters and statistical errors of the Gounaris–Sakurai fit of the pion form 
factor. Also shown are the PDG 2014 values [33].

Parameter BESIII value PDG 2014

mρ [MeV/c2] 776.0 ± 0.4 775.26 ± 0.25
#ρ [MeV] 151.7 ± 0.7 147.8± 0.9
mω [MeV/c2] 782.2 ± 0.6 782.65 ± 0.12
#ω [MeV] fixed to PDG 8.49 ± 0.08
|cω | [10−3] 1.7± 0.2 –
|φω | [rad] 0.04 ± 0.13 –

Fig. 5. Relative difference of the form factor squared from BaBar [10] and the BESIII
fit. Statistical and systematic uncertainties are included in the data points. The 
width of the BESIII band shows the systematic uncertainty only.

Wigner function cω = |cω|eiφω . The width of the ω meson is fixed 
to the PDG value [33]. The resulting values are shown in Table 3. 
As can be seen, the resonance parameters are in agreement with 
the PDG values [33] within uncertainties, except for #ρ , which 
shows a 3.4σ deviation. Corresponding amplitudes for the higher 
ρ states, ρ(1450), ρ(1700), and ρ(2150), as well as the masses 
and widths of those states were taken from Ref. [10], and the sys-
tematic uncertainty in #ρ due to these assumptions has not been 
quantitatively evaluated.

The Gounaris–Sakurai fit provides an excellent description of 
the BESIII data in the full mass range from 600 to 900 MeV/c2, re-
sulting in χ2/ndf = 49.1/56. Fig. 5 shows the difference between 
fit and data. Here the data points show the statistical uncertainties 
only, while the shaded error band of the fit shows the systematic 
uncertainty only.

Fig. 6. Relative difference of the form factor squared from KLOE [6–8] and the 
BESIII fit. Statistical and systematic uncertainties are included in the data points. 
The width of the BESIII band shows the systematic uncertainty only.

In order to compare the result with previous measurements, 
the relative difference of the BESIII fit and data from BaBar [10], 
KLOE [6–8], CMD2 [1,2], and SND [3] is investigated. Such a com-
parison is complicated by the fact, that previous measurements 
used different vacuum polarization corrections. Therefore, we con-
sistently used the vacuum polarization correction from Ref. [31]
for all the comparisons discussed in this section. The KLOE 08, 10, 
12, and BaBar spectra have, hence, been modified accordingly. The 
individual comparisons are illustrated in Figs. 5 and 6. Here, the 
shaded error band of the fit includes the systematic error only, 
while the uncertainties of the data points include the sum of the 
statistical and systematic errors. We observe a very good agree-
ment with the KLOE 08 and KLOE 12 data sets up to the mass 
range of the ρ–ω interference. In the same mass range the BaBar 
and KLOE 10 data sets show a systematic shift, however, the devia-
tion is, not exceeding 1 to 2 standard deviations. At higher masses, 
the statistical error bars in the case of BESIII are relatively large, 
such that a comparison is not conclusive. There seem to be a good 
agreement with the BaBar data, while a large deviation with all 
three KLOE data sets is visible. There are indications that the BE-
SIII data and BESIII fit show some disagreement in the low mass 
and very high mass tails as well. We have also compared our re-
sults in the ρ peak region with data from Novosibirsk. At lower 
and higher masses, the statistical uncertainties of the Novosibirsk 
results are too large to draw definite conclusions. The spectra from 
SND and from the 2006 publication of CMD-2 are found to be in 
very good agreement with BESIII in the ρ peak region, while the 
2004 result of CMD-2 shows a systematic deviation of a few per-
cent.

We also compute the contribution of our BESIII cross section 
measurement σ bare(e+e− → π+π−(γFSR)) to the hadronic contri-
bution of (g − 2)µ ,

aππ ,LO
µ (0.6–0.9 GeV) = 1

4π3

(0.9GeV)2∫

(0.6GeV)2

ds′K (s′)σ bare
ππ(γ ) , (8)

where K (s′) is the kernel function [11, Eq. (5)]. As summarized in 
Fig. 7, the BESIII result, aππ ,LO

µ (600–900 MeV) = (368.2 ± 2.5stat ±
3.3sys) · 10−10, is found to be in good agreement with all three 
KLOE values. A difference of about 1.7σ with respect to the BaBar 
result is observed.

[BESIII	Collaboracon	(M.	Ablikim	et	al.),	Phys	Lee	B753	(2016)	629]

Re-analysis	of	BaBar	data	in	progress
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Future	measurements

J-PARC	E34

Fermilab	E989		(Storage	ring	of	BNL	E821)

• 20	6mes	larger	data	sample	
• beGer	field	calibra6on	
• target	precision	of	0.14	ppm

• ultra-cold	muon	beam	
• 66cm	magne6c	storage	ring	
• measure	aμ	alongside	dμ	
• target	precision	of	0.1	ppm

Figure 3. Left: storage
ring and 3-dimensional
spiral injection.
Right: Silicon tracker for
positron detection.

between the peaks correspond to the muon precession period as shown in equation 6. We expect
the ultra-cold muon beam of order of 106 per second from the source. This is enough statistics
to achieve 0.1 ppm in a year (107 seconds)!

Figure 4. Left: Positron time spectrum above appropriate energy threshold. Right:Blue solid
line is the same spectrum as shown in right plot. Green and pink lines are subset spectra of
upward and downward positrons. Rightest plot is asymmetry between them.

We need one more step to decompose �ωa and �ωd from �ω. As discussed in equation 6, �ωd is
parallel to the outer product of �β × �B, i.e., �ωd stays always on the muon orbit plane. This
makes phase difference between two positron spectra emitted to upward and downward the
muon orbit plane as shown in right side of figure 4. Therefore, if we take asymmetry of these
two spectra, we can extract ωd. We expect the sensitivity is dµ ∼ 10−20e·cm or better. Biggest
source of the systematic uncertainty, however, is how well we control and know the muon orbit
plane precisely. This is closely related with the muon beam injection scheme, which is discuss
in the next.

4. Beam Injection and Storage
One of new interesting technical challenges is the muon beam injection into storage ring. Higher
magnetic field (i.e. higher precession frequency: see equation 6) and higher momentum of
muon beam (i.e. longer lifetime) are of advantage for the precise ω measurement. Based on
current technical capabilities and estimation cost, we design 3 Tesla of the storage magnetic
field and 300 MeV/c of the muon beam. This corresponds to the cyclotron radius of 0.33 m
and period of 7.4 nsec. Such a compact storage ring requires brand-new beam injection concept:
3-dimensional spiral injection scheme.

4
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Oða2Λ2
QCDÞ with ΛQCD chosen to be a few hundred MeV.

The combined effect of the finite spatial volume and
potentially missing two-pion tail is estimated using a
one-loop finite-volume (FV) lattice-regulated chiral per-
turbation theory (ChPT) version of Eq. (5.1) of Ref. [32].
Our ChPT computation also agrees with Eq. (2.12) of
Ref. [35] after correcting for a missing factor of 2 in the first
version of Ref. [35]. The ChPT result is then transformed to
position space to obtain CðtÞ. Figure 6 shows a corre-
sponding study of LT for different volumes. We take the
difference of LT¼20 on the 483 × 96 lattice used here and

LT¼48 on the 963 × 192 lattice and obtain
δaFV;ππμ ¼ 1.4 × 10−10. The remaining long-time effects
are estimated by FT¼20. We compare the result for two
fit ranges FT¼20ð½11;…; 17%Þ ¼ −1.1ð6Þ × 10−10 and
FT¼20ð½12;…; 17%Þ ¼ −0.6ð0.9Þ × 10−10. We conserva-
tively take the 1 σ bound δaFT ¼ 1.7 × 10−10 as additional
uncertainty. The fit ranges correspond to the largest mini-
mum times before losing a statistical signal, thereby
minimizing a potential excited-state contribution in our
estimate.
Combining the systematic uncertainties in quadrature,

we report our final result,

aHVP ðLOÞ disc
μ ¼ −9.6ð3.3Þð2.3Þ × 10−10; ð12Þ

where the first error is statistical and the second systematic.
Before concluding, we note that our result appears to be

dominated by very low energy scales. This is not surprising
since the signal is expressed explicitly as the difference of
light-quark and strange-quark Dirac propagators. We there-
fore expect energy scales significantly above the strange
mass to be suppressed. We already observed this above in
the dominance of low modes of the Dirac operator for our
signal. Furthermore, our result, which includes the two-
pion contributions from first principles, is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.
Conclusion.—We have presented the first ab initio

calculation of the hadronic vacuum polarization discon-
nected contribution to the muon anomalous magnetic
moment at physical pion mass. We were able to obtain
our result with modest computational effort utilizing a
refined noise-reduction technique explained above. This
computation addresses one of the major challenges for a
first-principles lattice QCD computation of aHVPμ at percent
or subpercent precision, necessary to match the anticipated
reduction in experimental uncertainty. The uncertainty of
the result presented here is already slightly below the
current experimental precision and can be reduced further
by a straightforward numerical effort.
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Non-zero	disconnected	contribu6on	can	be	resolved

RBC/UKQCD:		Domain	wall	fermions;	physical	pion	mass;	a	≈	0.11	fm,	mπ	L	≈	3.9;	Low-mode	averaging,	AMA

HPQCD:		Anisotropic	Clover	ac6on;	mπ	=	391	MeV;	as	≈	0.12	fm;	Dis6lla6on

CLS/Mainz:		Nf	=	2	Clover	fermions;	mπ	=	311,	437	MeV;	a	=	0.063	fm;	HPE;	3D	stochas6c	noise	sources

Bali	&	Endrődi:		Rooted	staggered	fermions;	physical	pion	mass;	a	=	0.1	–	0.29	fm;	4D	stochas6c	noise	sources

Statistics

HPQCD –	0.14(5)% ≈	–	0.84 Ncfg	=	553,	Ndist	=	162

RBC/UKQCD –	1.6(7)% –	(9.6	±	3.3	±	2.3) Ninv	=	11.3	k,	
Nev	=	2000

CLS/Mainz –	0.0032(11)% –	(0.019	±	0.07) Ninv	=	4800	k

Bali	&	Endrődi –	(3.6	±	4.5)	∙	10–4 Ninv	=	20	k
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TABLE IV: Pion masses for di↵erent tastes, and the corresponding finite-volume plus staggered-pion corrections to be added to
the Taylor coe�cients ⇧j for each configuration in Table II. The pion masses are based upon results in [21], using our definition
of the lattice spacing. The Taylor coe�cients include an extra 10% uncertainty, beyond that due to uncertainties in the pion
masses, to account for higher-mass resonances and higher-order terms in chiral perturbation theory. Results are also given for
the ⇢ decay constant for each configuration (in lattice units).

Set m⇡(⇠5) m⇡(⇠5µ) m⇡(⇠µ⌫) m⇡(⇠µ) m⇡(1) �⇧1 �⇧2 �⇧3 �⇧4 af latt
⇢

1 0.302(2) 0.362(3) 0.407(4) 0.451(5) 0.485(19) 0.0012(1) �0.0054 (6) 0.015 (2) �0.036 (4) 0.178(1)
2 0.216(1) 0.294(3) 0.348(4) 0.399(6) 0.438(23) 0.0028(3) �0.0172(18) 0.067 (7) �0.229 (25) 0.164(2)
3 0.133(1) 0.240(3) 0.304(5) 0.362(7) 0.405(26) 0.0094(9) �0.0880(90) 0.608(64) �4.430(482) 0.166(2)
4 0.301(2) 0.334(2) 0.360(3) 0.390(4) 0.413 (9) 0.0008(1) �0.0041 (4) 0.012 (1) �0.031 (3) 0.139(2)
5 0.218(1) 0.262(2) 0.295(3) 0.331(4) 0.359(11) 0.0025(2) �0.0150(16) 0.059 (6) �0.202 (23) 0.130(5)
6 0.217(1) 0.261(2) 0.294(3) 0.331(4) 0.358(11) 0.0022(2) �0.0139(14) 0.056 (6) �0.203 (22) 0.128(3)
7 0.216(1) 0.261(2) 0.294(3) 0.330(4) 0.358(11) 0.0021(2) �0.0133(14) 0.054 (6) �0.197 (22) 0.129(3)
8 0.133(1) 0.197(2) 0.240(4) 0.284(5) 0.316(13) 0.0081(8) �0.0806(83) 0.587(62) �4.420(481) 0.131(1)
9 0.308(2) 0.319(2) 0.328(2) 0.337(2) 0.345 (4) 0.0005(1) �0.0027 (3) 0.008 (1) �0.022 (2) 0.101(2)
10 0.219(1) 0.235(1) 0.247(2) 0.259(3) 0.270 (5) 0.0013(1) �0.0089 (9) 0.040 (4) �0.153 (17) 0.094(2)

FIG. 4: Uncertainty in aHVP,LO
µ due to finite-volume and

staggered-pion e↵ects as a function of the average taste-
splitting �m2

⇡ between pions and the spatial size L of the
lattice at the physical value of m⇡+ (140 MeV). Here the line
marked �m2

⇡ refers to the splittings for configuration set 8
in Table IV for which L = 5.8 fm. The splittings decrease
slightly faster than a2 as the lattice spacing decreases, so the
other lines shown correspond to conservative uncertainties at
lattice spacings of approximately 0.09 fm, 0.06 fm, 0.045 fm
and 0.03 fm. The uncertainties are estimated to be 1/10 of
the correction.

polarization contribution is larger than the physical pion
mass because of the staggering. This strongly suppresses
finite-volume e↵ects. Fig. 4 shows how the uncertainty
from this correction depends upon the taste-splittings be-
tween pions �m

2
⇡ and the spatial size L of the lattice.

Lines are drawn for varying �m

2
⇡ at physical pion mass

starting from coarse set 8. The uncertainty shown in the
figure for the largest �m

2
⇡ is somewhat smaller than the

uncertainty that we use for configuration set 8 because
the pion mass on that ensemble is smaller than the phys-
ical pion mass.
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FIG. 5: Our final result for aHVP,LO
µ from lattice QCD

compared to an earlier lattice result (also with u, d, s and
c quarks) from the ETM Collaboration [13], and to results
using experimental cross-section information [5–8]. We also
compare with the result expected from the experimental value
for aµ assuming that there are no contributions from physics
beyond the Standard Model.

aµ FIT

We obtain an estimate for aµ from each of our ensem-
bles after we correct for finite-volume plus staggered-pion
lattice artifacts and rescale with the ⇢ mass as described
in the main paper. Our corrections greatly reduce the
dependence of these estimates on the valence and sea
quark masses, and on the lattice spacing. We fit our re-
sults from the di↵erent configurations to the formula in
eq. (6) so we could extrapolate to the correct masses and
zero lattice spacing to obtain our final results. The first
two correction terms in eq. (6) allow for residual depen-
dence on ml and (slight) mistuning in the s quark’s mass.

Uncertainty	in	finite-volume	shils	as	a	func6on	of	average	taste	spliUng:	

�m2
⇡ ⇠ a2Scaling:

Physical	pion	mass:
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