Hadronic contributions to the muon

(g-2) from Lattice QCD

Hartmut Wittig

PRISMA Cluster of Excellence, Institute for Nuclear Physics and Helmholtz Institute Mainz

Lattice 2016
34th International Symposium on Lattice Field Theory 24-30 July 2016

Anomalous magnetic moment of the muon

Current status:

$$
a_{\mu} \equiv \frac{1}{2}(g-2)_{\mu}= \begin{cases}116592089(54)(33) \cdot 10^{-11} & \text { Experiment } \\ 116591828(43)(26)(2) \cdot 10^{-11} & \text { SM prediction }\end{cases}
$$

Hadronic vacuum polarisation:

Dispersion theory:

$$
a_{\mu}^{\mathrm{hvp}}=(6949 \pm 43) \cdot 10^{-11}
$$

(combined $e^{+} e^{-}$data)

Hadronic light-by-light scattering:

Model estimates:

$$
a_{\mu}^{\mathrm{hlbl}}=(105 \pm 26) \cdot 10^{-11}
$$

"Glasgow consensus"

Anomalous magnetic moment of the muon

Hadronic Vacuum Polarisation and Dispersion Theory

$$
a_{\mu}^{\mathrm{hvp}}=\left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2}\left\{\int_{m_{\pi}^{2}}^{E_{\mathrm{cut}}^{2}} d s \frac{R_{\mathrm{had}}^{\mathrm{data}}(s) \hat{K}(s)}{s^{2}}+\int_{E_{\mathrm{cut}}^{2}}^{\infty} d s \frac{R_{\mathrm{had}}^{\mathrm{pQCD}}(s) \hat{K}(s)}{s^{2}}\right\}
$$

* SM estimate subject to experimental uncertainties in $R_{\text {had }}\left(e^{+} e^{-} \rightarrow\right.$ hadrons)

Hadronic Light-by-Light Scattering

* Model uncertainties difficult to quantify
* Dispersive formalism much more complicated than HVP
[Colangelo et al., JHEP 1409 (2014) 091, PLB 738 (2014) 6, JHEP 1509 (2015) 074]
[Pauk \& Vanderhaeghen, PRD 90 (2014) 113012]
* Identify dominant sub-processes, e.g. $\gamma^{*} \gamma^{*} \rightarrow \pi^{0}, \eta, \eta^{\prime}$

Anomalous magnetic moment of the muon

Motivation for first-principles approach:

* No reliance on experimental data
- except for simple hadronic quantities to fix bare parameters
* No model dependence
- except for chiral extrapolation and constraining the IR regime

Anomalous magnetic moment of the muon

Motivation for first-principles approach:

* No reliance on experimental data
- except for simple hadronic quantities to fix bare parameters
* No model dependence
- except for chiral extrapolation and constraining the IR regime
* New experiments: E989 @ FNAL, E34 @ J-PARC
- improve direct determination of a_{μ} by a factor four

Anomalous magnetic moment of the muon

Motivation for first-principles approach:

* No reliance on experimental data
- except for simple hadronic quantities to fix bare parameters
* No model dependence
- except for chiral extrapolation and constraining the IR regime
* New experiments: E989 @ FNAL, E34 @ J-PARC
- improve direct determination of a_{μ} by a factor four
* Can lattice QCD deliver estimates with sufficient accuracy in the coming years?

$$
\delta a_{\mu}^{\mathrm{hvp}} / a_{\mu}^{\mathrm{hvp}}<0.5 \%, \quad \delta a_{\mu}^{\mathrm{hbl}} / a_{\mu}^{\mathrm{hbl}} \lesssim 10 \%
$$

\Rightarrow Crucial for exploring the limits of the Standard Model

Hadronic contributions to $(g-2)$

Lattice QCD approach to HVP

* Convolution integral over Euclidean momenta:

$$
\begin{aligned}
& a_{\mu}^{\mathrm{hvp}}=4 \alpha^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left\{\Pi\left(Q^{2}\right)-\Pi(0)\right\} \\
& \Pi_{\mu \nu}(Q)=\int \mathrm{e}^{i Q \cdot(x-y)}\left\langle J_{\mu}(x) J_{\nu}(y)\right\rangle \equiv\left(Q_{\mu} Q_{\nu}-\delta_{\mu \nu} Q^{2}\right) \Pi\left(Q^{2}\right) \\
& J_{\mu}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{1}{3} \bar{s} \gamma_{\mu} s+\ldots
\end{aligned}
$$

Lattice QCD approach to HVP

* Convolution integral over Euclidean momenta:

$$
\begin{aligned}
& a_{\mu}^{\mathrm{hvp}}=4 \alpha^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left\{\Pi\left(Q^{2}\right)-\Pi(0)\right\} \\
& \Pi_{\mu \nu}(Q)=\int \mathrm{e}^{i Q \cdot(x-y)}\left\langle J_{\mu}(x) J_{\nu}(y)\right\rangle \equiv\left(Q_{\mu} Q_{\nu}-\delta_{\mu \nu} Q^{2}\right) \Pi\left(Q^{2}\right) \\
& J_{\mu}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{1}{3} \bar{s} \gamma_{\mu} s+\ldots
\end{aligned}
$$

* Determine VPF $\Pi\left(Q^{2}\right)$ and additive renormalisation $\Pi(0)$
* Integrand peaked near $Q^{2} \approx(\sqrt{5}-2) m_{\mu}^{2}$

Lattice QCD approach to HVP

* Convolution integral over Euclidean momenta:

$$
\begin{align*}
& a_{\mu}^{\mathrm{hvp}}=4 \alpha^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right)\left\{\Pi\left(Q^{2}\right)-\Pi(0)\right\} \\
& \Pi_{\mu \nu}(Q)=\int \mathrm{e}^{i Q \cdot(x-y)}\left\langle J_{\mu}(x) J_{\nu}(y)\right\rangle \equiv\left(Q_{\mu} Q_{\nu}-\delta_{\mu \nu} Q^{2}\right) \Pi\left(Q^{2}\right) \\
& J_{\mu}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{1}{3} \bar{s} \gamma_{\mu} s+\ldots
\end{align*}
$$

* Determine VPF $\Pi\left(Q^{2}\right)$ and additive renormalisation $\Pi(0)$
* Integrand peaked near $Q^{2} \approx(\sqrt{5}-2) m_{\mu}^{2}$
* Lattice momenta are quantised: $Q_{\mu}=\frac{2 \pi}{L_{\mu}}$
* Statistical accuracy of $\Pi\left(Q^{2}\right)$ deteriorates as $Q \longrightarrow 0$

Lattice QCD approach to HVP

Main issues:

* Statistical accuracy at the sub-percent level required
* Reduce systematic uncertainty associated with region of small Q^{2} \Leftrightarrow accurate determination of $\Pi(0)$
* Perform comprehensive study of finite-volume effects
* Include quark-disconnected diagrams

* Include isospin breaking: $m_{u} \neq m_{d}$, QED corrections

Low-momentum region: Twisted BCs

* Model-independent fits compromised when applied to $Q^{2} \gg m_{\mu}{ }^{2}$
* Determination of $\Pi(0)$ may be biased by more accurate data at large Q^{2}

Low-momentum region: "Hybrid method"

* Minimise model dependence: [Golterman, Maltman \& Peris, Phys Rev D90 (2014) 074508]

* Determine $\Pi(0)$ and $\Pi\left(Q^{2}\right)$ from models in small-momentum region: Padé approximants, conformal polynomials, time moments

Low-momentum region: Time moments

* Expansion of VPF at low- $Q^{2}: \quad \Pi\left(Q^{2}\right)=\Pi_{0}+\sum_{j=1}^{\infty} Q^{2 j} \Pi_{j}$
* Vacuum polarisation for $Q=(\omega, \overrightarrow{0})$:

$$
\Pi_{k k}(\omega)=a^{4} \sum_{x_{0}} \mathrm{e}^{i \omega x_{0}} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle
$$

* Spatially summed vector correlator: $G\left(x_{0}\right)=-a^{3} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle$

Low-momentum region: Time moments

* Expansion of VPF at low- $Q^{2}: \quad \Pi\left(Q^{2}\right)=\Pi_{0}+\sum_{j=1}^{\infty} Q^{2 j} \Pi_{j}$
* Vacuum polarisation for $Q=(\omega, \overrightarrow{0})$:

$$
\Pi_{k k}(\omega)=a^{4} \sum_{x_{0}} \mathrm{e}^{i \omega x_{0}} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle
$$

* Spatially summed vector correlator: $G\left(x_{0}\right)=-a^{3} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle$
* Time moments:
[Chakraborty et al., Phys Rev D89 (2014) 114501]

$$
G_{2 n} \equiv a \sum_{x_{0}} x_{0}^{2 n} G\left(x_{0}\right)=(-1)^{n} \frac{\partial^{2 n}}{\partial \omega^{2 n}}\left\{\omega^{2} \hat{\Pi}\left(\omega^{2}\right)\right\}_{\omega^{2}=0}
$$

Low-momentum region: Time moments

* Expansion of VPF at low- Q^{2} :

$$
\Pi\left(Q^{2}\right)=\Pi_{0}+\sum_{j=1}^{\infty} Q^{2 j} \Pi_{j}
$$

* Vacuum polarisation for $Q=(\omega, \overrightarrow{0})$:

$$
\Pi_{k k}(\omega)=a^{4} \sum_{x_{0}} \mathrm{e}^{i \omega x_{0}} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle
$$

* Spatially summed vector correlator: $G\left(x_{0}\right)=-a^{3} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle$
* Time moments:

$$
G_{2 n} \equiv a \sum_{x_{0}} x_{0}^{2 n} G\left(x_{0}\right)=(-1)^{n} \frac{\partial^{2 n}}{\partial \omega^{2 n}}\left\{\omega^{2} \hat{\Pi}\left(\omega^{2}\right)\right\}_{\omega^{2}=0}
$$

* Expansion coefficients: $\quad \Pi(0) \equiv \Pi_{0}=\frac{1}{2} G_{2}, \quad \Pi_{j}=(-1)^{j+1} \frac{G_{2 j+2}}{(2 j+2)!}$

Hybrid Method versus Time Moments

* Construct Padé approximants either from fits or time moments

Fit Padé [1,1] for $Q_{\text {low }}^{2} \lesssim 0.5 \mathrm{GeV}^{2}$
[Hanno HORCH, TUE 14:40]

Hybrid Method versus Time Moments

* Construct Padé approximants either from fits or time moments

Fit Padé [1,1] for

$$
Q_{\text {low }}^{2} \lesssim 0.5 \mathrm{GeV}^{2}
$$

[Hanno HORCH, TUE 14:40]

Hybrid Method versus Time Moments

* Construct Padé approximants either from fits or time moments

Fit Padé [1,1] for

$$
Q_{\text {low }}^{2} \lesssim 0.5 \mathrm{GeV}^{2}
$$

[Hanno HORCH, TUE 14:40]

Hybrid Method versus Time Moments

* Construct Padé approximants either from fits or time moments

Fit Padé [1,1] for

$$
Q_{\text {low }}^{2} \lesssim 0.5 \mathrm{GeV}^{2}
$$

[Hanno HORCH, TUE 14:40]

* Low-order Padé approximants consistent for $Q^{2}<0.5 \mathrm{GeV}^{2}$

Time-Momentum Representation

* Integral representation of subtracted VPF $\quad \hat{\Pi}\left(Q^{2}\right) \equiv \Pi\left(Q^{2}\right)-\Pi(0)$

$$
\begin{aligned}
& \Pi\left(Q^{2}\right)-\Pi(0)=\frac{1}{Q^{2}} \int_{0}^{\infty} d x_{0} G\left(x_{0}\right)\left[Q^{2} x_{0}^{2}-4 \sin ^{2}\left(\frac{1}{2} Q x_{0}\right)\right] \\
& G\left(x_{0}\right)=-a^{3} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle \quad \begin{array}{c}
\text { [Bernecker \& Meyer, Eur Phys J A47 (2011) 148, } \\
\text { Francis et al. Phys Rev D88 (2013) 054502, } \\
\text { Feng et al., Phys Rev D88 (2013) 034505] }
\end{array}
\end{aligned}
$$

* Q^{2} is a tuneable parameter
* No extrapolation to $Q^{2}=0$ required
* Must determine $I=1$ vector correlator $G\left(x_{0}\right)$ at all distances
$\rightarrow G\left(x_{0}\right)$ dominated by two-pion state for $x_{0} \rightarrow \infty$
\rightarrow Include multi-particle states to capture long-distance behaviour

Equivalence of time moments and TMR

* Subtracted VPF: $\quad \hat{\Pi}\left(Q^{2}\right) \equiv \Pi\left(Q^{2}\right)-\Pi(0)$
* Spatially summed vector correlator: $\quad G\left(x_{0}\right)=-a^{3} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle$

$$
\begin{aligned}
\hat{\Pi}\left(Q^{2}\right) & =\frac{1}{Q^{2}} \int_{0}^{\infty} d x_{0} G\left(x_{0}\right)\left[Q^{2} x_{0}^{2}-4 \sin ^{2}\left(\frac{1}{2} Q x_{0}\right)\right] \\
& =\frac{1}{Q^{2}} \int_{-\infty}^{\infty} d x_{0} G\left(x_{0}\right) \sum_{k=1}^{\infty}(-1)^{k+1} \frac{\left(Q x_{0}\right)^{2 k+2}}{(2 k+2)!}
\end{aligned}
$$

Equivalence of time moments and TMR

* Subtracted VPF: $\quad \hat{\Pi}\left(Q^{2}\right) \equiv \Pi\left(Q^{2}\right)-\Pi(0)$
* Spatially summed vector correlator: $\quad G\left(x_{0}\right)=-a^{3} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle$

$$
\begin{aligned}
\hat{\Pi}\left(Q^{2}\right) & =\frac{1}{Q^{2}} \int_{0}^{\infty} d x_{0} G\left(x_{0}\right)\left[Q^{2} x_{0}^{2}-4 \sin ^{2}\left(\frac{1}{2} Q x_{0}\right)\right] \\
& =\frac{1}{Q^{2}} \int_{-\infty}^{\infty} d x_{0} G\left(x_{0}\right) \sum_{k=1}^{\infty}(-1)^{k+1} \frac{\left(Q x_{0}\right)^{2 k+2}}{(2 k+2)!} \\
& =\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{(2 k+2)!} \overbrace{\int_{-\infty}^{\infty} d x_{0} x_{0}^{2 k+2} G\left(x_{0}\right)}^{G_{2 k+2}} Q^{2 k}
\end{aligned}
$$

Equivalence of time moments and TMR

* Subtracted VPF: $\quad \hat{\Pi}\left(Q^{2}\right) \equiv \Pi\left(Q^{2}\right)-\Pi(0)$
* Spatially summed vector correlator: $\quad G\left(x_{0}\right)=-a^{3} \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle$

$$
\begin{aligned}
\hat{\Pi}\left(Q^{2}\right) & =\frac{1}{Q^{2}} \int_{0}^{\infty} d x_{0} G\left(x_{0}\right)\left[Q^{2} x_{0}^{2}-4 \sin ^{2}\left(\frac{1}{2} Q x_{0}\right)\right] \\
& =\frac{1}{Q^{2}} \int_{-\infty}^{\infty} d x_{0} G\left(x_{0}\right) \sum_{k=1}^{\infty}(-1)^{k+1} \frac{\left(Q x_{0}\right)^{2 k+2}}{(2 k+2)!} \\
& =\sum_{k=1}^{\infty} \underbrace{\frac{(-1)^{k+1}}{(2 k+2)!} \overbrace{\int_{-\infty}^{\infty} d x_{0} x_{0}^{2 k+2} G\left(x_{0}\right)}^{G_{2 k+2}} Q^{2 k} \equiv \sum_{k=1}^{\infty} \Pi_{k} Q^{2 k}}_{\Pi_{k}}
\end{aligned}
$$

TMR and time moments: model dependence

* Determine long-distance contribution to vector correlator:

$$
G\left(x_{0}\right)= \begin{cases}G\left(x_{0}\right)^{\mathrm{data}}, & x_{0} \leq x_{0, \mathrm{cut}} \\ G\left(x_{0}\right)^{\mathrm{fit}}, & x_{0}>x_{0, \mathrm{cut}}\end{cases}
$$

* Single-exponential fit for $x>x_{0, \text { cut }}$
* $G\left(x_{0}\right)$ dominated by two-pion state at long distances
\Rightarrow Include multi-particle states to eliminate model dependence when $x_{0} \rightarrow \infty$

TMR and time moments: model dependence

* Determine long-distance contribution to vector correlator:

$$
G\left(x_{0}\right)= \begin{cases}G\left(x_{0}\right)^{\mathrm{data}}, & x_{0} \leq x_{0, \mathrm{cut}} \\ G\left(x_{0}\right)^{\mathrm{fit}}, & x_{0}>x_{0, \mathrm{cut}}\end{cases}
$$

* Single-exponential fit for $x>x_{0, \text { cut }}$
* $G\left(x_{0}\right)$ dominated by two-pion state at long distances
\Rightarrow Include multi-particle states to eliminate model dependence when $x_{0} \rightarrow \infty$

$$
G\left(x_{0}\right)=A_{\mathrm{eff}} \mathrm{e}^{-m_{\rho} x_{0}}
$$

TMR and time moments: model dependence

* Determine long-distance contribution to vector correlator:

$$
G\left(x_{0}\right)= \begin{cases}G\left(x_{0}\right)^{\mathrm{data}}, & x_{0} \leq x_{0, \mathrm{cut}} \\ G\left(x_{0}\right)^{\mathrm{fit}}, & x_{0}>x_{0, \mathrm{cut}}\end{cases}
$$

* Single-exponential fit for $x>x_{0, \text { cut }}$
* $G\left(x_{0}\right)$ dominated by two-pion state at long distances
\Rightarrow Include multi-particle states to eliminate model dependence when $x_{0} \rightarrow \infty$

$$
G\left(x_{0}\right)=A_{\text {eff }} \mathrm{e}^{-m_{\rho} x_{0}}
$$

HVP from magnetic susceptibilities

* $\Pi\left(p^{2}\right)$ can be interpreted as a magnetic susceptibility
* $\Pi(0)$ obtained from homogeneous background field: $\chi_{0}=\Pi(0)$
* Efficient evaluation employing 4D random noise sources at fixed momentum
* Precise determination of disconnected contribution
(rooted staggered quarks; physical pion mass; $a=0.29 \mathrm{fm}$)
[Bali \& Endrődi, Phys Rev D92 (2015) 054506]

Disconnected Contributions

Disconnected Contributions

* Current-current correlator contains quark-disconnected contributions

$$
\left\langle\operatorname{Tr}\left(\gamma_{\mu} S^{f}(x, x)\right) \operatorname{Tr}\left(\gamma_{v} S^{f^{\prime}}(y, y)\right)\right\rangle
$$

Disconnected Contributions

* Current-current correlator contains quark-disconnected contributions

$$
\left\langle\operatorname{Tr}\left(\gamma_{\mu} S^{f}(x, x)\right) \operatorname{Tr}\left(\gamma_{v} S^{f^{\prime}}(y, y)\right)\right\rangle
$$

Disconnected Contributions

* Current-current correlator contains quark-disconnected contributions

$$
\left\langle\operatorname{Tr}\left(\gamma_{\mu} S^{f}(x, x)\right) \operatorname{Tr}\left(\gamma_{\nu} S^{f^{\prime}}(y, y)\right)\right\rangle
$$

* Apply noise-reduction techniques
- Stochastic noise cancellation [Gülpers et al., arXiv:1411.7592; v. Gülpers, PhD Thesis 2015]
- Low-mode averaging
[Blum et al., PRL 116 (2016) 232002]
- Momentum sources
[Bali \& Endrődi, PRD 92 (2015) 054506]
- All-mode-averaging, hopping parameter expansion, sparsening schemes,...
[Blum, Izubuchi \& Shintani, PRD 88 (2013) 094503, Bali, Collins \& Schäfer, CPC 181 (2010) 1570,...]

Minimising stochastic noise

* Electromagnetic current correlator with u, d, s quarks:

$$
G\left(x_{0}\right):=-a \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle, \quad J_{k}=\frac{2}{3} \bar{u} \gamma_{k} u-\frac{1}{3} \bar{d} \gamma_{k} d-\frac{1}{3} \bar{s} \gamma_{k} s
$$

* $G\left(x_{0}\right)$ splits into connected and disconnected parts:

$$
\begin{array}{ll}
G\left(x_{0}\right)=\frac{5}{9} C^{\ell \ell}\left(x_{0}\right)+\frac{1}{9} C^{s s}\left(x_{0}\right)-\frac{1}{9} D^{\ell s}\left(x_{0}\right), & \left(m_{u}=m_{d}=m_{\ell}\right) \\
D^{\ell s}\left(x_{0}\right)=\left(\Delta^{\ell}\left(x_{0}\right)-\Delta^{s}\left(x_{0}\right)\right)\left(\Delta^{\ell}(0)-\Delta^{s}(0)\right), & \Delta^{f}\left(x_{0}\right) \sim \gamma_{k}
\end{array}
$$

Minimising stochastic noise

* Electromagnetic current correlator with u, d, s quarks:

$$
G\left(x_{0}\right):=-a \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle, \quad J_{k}=\frac{2}{3} \bar{u} \gamma_{k} u-\frac{1}{3} \bar{d} \gamma_{k} d-\frac{1}{3} \bar{s} \gamma_{k} s
$$

* $G\left(x_{0}\right)$ splits into connected and disconnected parts:

$$
\begin{array}{ll}
G\left(x_{0}\right)=\frac{5}{9} C^{\ell \ell}\left(x_{0}\right)+\frac{1}{9} C^{s s}\left(x_{0}\right)-\frac{1}{9} D^{\ell s}\left(x_{0}\right), & \left(m_{u}=m_{d}=m_{\ell}\right) \\
D^{\ell s}\left(x_{0}\right)=\underbrace{\left(\Delta^{\ell}\left(x_{0}\right)-\Delta^{s}\left(x_{0}\right)\right)}_{\text {noise cancellation }}\left(\Delta^{\ell}(0)-\Delta^{s}(0)\right), \quad \Delta^{f}\left(x_{0}\right) \sim \gamma_{k}
\end{array}
$$

* Preserve correlation in stochastic evaluation of $\Delta^{\ell}\left(x_{0}\right)-\Delta^{s}\left(x_{0}\right)$ to achieve noise cancellation [Gülpers et al., arXiv:1411.7592; V. Gülpers, PhD Thesis 2015]

Minimising stochastic noise

* Electromagnetic current correlator with u, d, s quarks:

$$
G\left(x_{0}\right):=-a \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle, \quad J_{k}=\frac{2}{3} \bar{u} \gamma_{k} u-\frac{1}{3} \bar{d} \gamma_{k} d-\frac{1}{3} \bar{s} \gamma_{k} s
$$

* $G\left(x_{0}\right)$ splits into connected and disconnected parts:

$$
\begin{array}{ll}
G\left(x_{0}\right)=\frac{5}{9} C^{\ell \ell}\left(x_{0}\right)+\frac{1}{9} C^{s s}\left(x_{0}\right)-\frac{1}{9} D^{\ell s}\left(x_{0}\right), & \left(m_{u}=m_{d}=m_{\ell}\right) \\
D^{\ell s}\left(x_{0}\right)=\underbrace{\left(\Delta^{\ell}\left(x_{0}\right)-\Delta^{s}\left(x_{0}\right)\right)}_{\text {noise cancellation }}\left(\Delta^{\ell}(0)-\Delta^{s}(0)\right), & \Delta^{f}\left(x_{0}\right) \sim \gamma_{k}
\end{array}
$$

[Gülpers et al., arXiv:1411.7592]

Minimising stochastic noise

* Electromagnetic current correlator with u, d, s quarks:

$$
G\left(x_{0}\right):=-a \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle, \quad J_{k}=\frac{2}{3} \bar{u} \gamma_{k} u-\frac{1}{3} \bar{d} \gamma_{k} d-\frac{1}{3} \bar{s} \gamma_{k} s
$$

* $G\left(x_{0}\right)$ splits into connected and disconnected parts:

$$
\begin{array}{ll}
G\left(x_{0}\right)=\frac{5}{9} C^{\ell \ell}\left(x_{0}\right)+\frac{1}{9} C^{s s}\left(x_{0}\right)-\frac{1}{9} D^{\ell s}\left(x_{0}\right), & \left(m_{u}=m_{d}=m_{\ell}\right) \\
D^{\ell s}\left(x_{0}\right)=\underbrace{\left(\Delta^{\ell}\left(x_{0}\right)-\Delta^{s}\left(x_{0}\right)\right)}_{\text {noise cancellation }}\left(\Delta^{\ell}(0)-\Delta^{s}(0)\right), \quad \Delta^{f}\left(x_{0}\right) \sim \gamma_{k}
\end{array}
$$

* Refinements: exact treatment of low modes

$$
S^{f}(x, y)=\sum_{k=1}^{N_{\mathrm{ev}}} \frac{v_{k}(x) \otimes v_{k}(y)^{\dagger}}{\lambda_{k}}+S_{\perp}^{f}(x, y), \quad \lambda_{N_{\mathrm{ev}}} \simeq m_{s}
$$

Minimising stochastic noise

* Electromagnetic current correlator with u, d, s quarks:

$$
G\left(x_{0}\right):=-a \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle, \quad J_{k}=\frac{2}{3} \bar{u} \gamma_{k} u-\frac{1}{3} \bar{d} \gamma_{k} d-\frac{1}{3} \bar{s} \gamma_{k} s
$$

* $G\left(x_{0}\right)$ splits into connected and disconnected parts:

$$
\begin{array}{ll}
G\left(x_{0}\right)=\frac{5}{9} C^{\ell \ell}\left(x_{0}\right)+\frac{1}{9} C^{s s}\left(x_{0}\right)-\frac{1}{9} D^{\ell s}\left(x_{0}\right), & \left(m_{u}=m_{d}=m_{\ell}\right) \\
D^{\ell s}\left(x_{0}\right)=\underbrace{\left(\Delta^{\ell}\left(x_{0}\right)-\Delta^{s}\left(x_{0}\right)\right)}_{\text {noise cancellation }}\left(\Delta^{\ell}(0)-\Delta^{s}(0)\right), \quad \Delta^{f}\left(x_{0}\right) \sim \gamma_{k}
\end{array}
$$

* Refinements: exact treatment of low modes [T. Blum et al., PRL 116 (2016) 232002]

$$
S^{f}(x, y)=\sum_{k=1}^{N_{\mathrm{ev}}} \frac{v_{k}(x) \otimes v_{k}(y)^{\dagger}}{\lambda_{k}}+S_{\perp}^{f}(x, y), \quad \lambda_{N_{\mathrm{ev}}} \simeq m_{s}
$$

Minimising stochastic noise

* Electromagnetic current correlator with u, d, s quarks:

$$
G\left(x_{0}\right):=-a \sum_{\vec{x}}\left\langle J_{k}(x) J_{k}(0)\right\rangle, \quad J_{k}=\frac{2}{3} \bar{u} \gamma_{k} u-\frac{1}{3} \bar{d} \gamma_{k} d-\frac{1}{3} \bar{s} \gamma_{k} s
$$

* $G\left(x_{0}\right)$ splits into connected and disconnected parts:

$$
\begin{array}{ll}
G\left(x_{0}\right)=\frac{5}{9} C^{\ell \ell}\left(x_{0}\right)+\frac{1}{9} C^{s s}\left(x_{0}\right)-\frac{1}{9} D^{\ell s}\left(x_{0}\right), & \left(m_{u}=m_{d}=m_{\ell}\right) \\
D^{\ell s}\left(x_{0}\right)=\underbrace{\left(\Delta^{\ell}\left(x_{0}\right)-\Delta^{s}\left(x_{0}\right)\right)}_{\text {noise cancellation }}\left(\Delta^{\ell}(0)-\Delta^{s}(0)\right), \quad \Delta^{f}\left(x_{0}\right) \sim \gamma_{k}
\end{array}
$$

* Refinements: exact treatment of low modes
[T. Blum et al., PRL 116 (2016) 232002]

$$
S^{f}(x, y)=\sum_{k=1}^{N_{\mathrm{ev}}} \frac{v_{k}(x) \otimes v_{k}(y)^{\dagger}}{\lambda_{k}}+S_{\perp}^{f}(x, y), \quad \lambda_{N_{\mathrm{ev}}} \simeq m_{s}
$$

* AMA, time translations, sparsening schemes

Random noise sources

* Random noise source at fixed momentum:
[Bali \& Endrődi, PRD 92 (2015) 054506]

$$
\phi^{(r)}(x \mid p)=\sum_{z} D(x, z)^{-1} \eta^{(r)}(z) \mathrm{e}^{-i p \cdot z}, \quad p_{\mu}=n_{\mu} \frac{2 \pi}{L_{\mu}}, \quad r=1, \ldots N_{\mathrm{r}}
$$

$\lim _{N_{\mathrm{r}} \rightarrow \infty} \operatorname{Tr}\left[\eta(x)^{\dagger} \gamma_{k} \phi(x \mid p)\right]=\sum_{x} \mathrm{e}^{-i p \cdot x} \operatorname{Tr}\left(\gamma_{k} S(x, x)\right) \quad$ (stochastic average)
\Rightarrow disconnected contribution to $-p^{2} \Pi\left(p^{2}\right)$ at fixed momentum

Random noise sources

* Random noise source at fixed momentum:
[Bali \& Endrődi, PRD 92 (2015) 054506]

$$
\phi^{(r)}(x \mid p)=\sum_{z} D(x, z)^{-1} \eta^{(r)}(z) \mathrm{e}^{-i p \cdot z}, \quad p_{\mu}=n_{\mu} \frac{2 \pi}{L_{\mu}}, \quad r=1, \ldots N_{\mathrm{r}}
$$

$\lim _{N_{\mathrm{r}} \rightarrow \infty} \operatorname{Tr}\left[\eta(x)^{\dagger} \gamma_{k} \phi(x \mid p)\right]=\sum_{x} \mathrm{e}^{-i p \cdot x} \operatorname{Tr}\left(\gamma_{k} S(x, x)\right) \quad$ (stochastic average)
\Rightarrow disconnected contribution to $-p^{2} \Pi\left(p^{2}\right)$ at fixed momentum

Random noise sources

* Random noise source at fixed momentum:
[Bali \& Endrődi, PRD 92 (2015) 054506]
$\phi^{(r)}(x \mid p)=\sum_{z} D(x, z)^{-1} \eta^{(r)}(z) \mathrm{e}^{-i p \cdot z}, \quad p_{\mu}=n_{\mu} \frac{2 \pi}{L_{\mu}}, \quad r=1, \ldots N_{\mathrm{r}}$
$\lim _{N_{\mathrm{r}} \rightarrow \infty} \operatorname{Tr}\left[\eta(x)^{\dagger} \gamma_{k} \phi(x \mid p)\right]=\sum_{x} \mathrm{e}^{-i p \cdot x} \operatorname{Tr}\left(\gamma_{k} S(x, x)\right) \quad$ (stochastic average)
\Rightarrow disconnected contribution to $-p^{2} \Pi\left(p^{2}\right)$ at fixed momentum

Disconnected Contributions

RBC/UKQCD Collaboration:

- Domain wall fermions; physical pion mass
- $a \approx 0.11 \mathrm{fm}, m_{\pi} L \approx 3.9$
- Low-mode averaging, AMA

Monitor saturation of

$$
\begin{gathered}
L_{T}=\sum_{x_{0}=0}^{T} w\left(x_{0}\right) D^{\ell s}\left(x_{0}\right) \xrightarrow{T \rightarrow \infty}\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} \\
w\left(x_{0}\right)=4 \alpha^{2} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} f\left(Q^{2}\right)\left\{Q^{2} x_{0}^{2}-4 \sin ^{2}\left(\frac{1}{2} Q x_{0}\right)\right\}
\end{gathered}
$$

$$
\text { [T. Blum et al., PRL } 116 \text { (2016) 232002] }
$$

Disconnected Contributions

RBC/UKQCD Collaboration:

- Domain wall fermions; physical pion mass
- $a \approx 0.11 \mathrm{fm}, m_{\pi} L \approx 3.9$
- Low-mode averaging, AMA

Monitor saturation of

$$
\begin{aligned}
& L_{T}=\sum_{x_{0}=0}^{T} w\left(x_{0}\right) D^{\ell s}\left(x_{0}\right) \xrightarrow{T \rightarrow \infty}\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} \\
& w\left(x_{0}\right)=4 \alpha^{2} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} f\left(Q^{2}\right)\left\{Q^{2} x_{0}^{2}-4 \sin ^{2}\left(\frac{1}{2} Q x_{0}\right)\right\} \\
& \Rightarrow \quad\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}}=-(9.6 \pm 3.3 \pm 2.3) \cdot 10^{-10} \\
& \text { [T. Blum et al., PRL } 116 \text { (2016) 232002] }
\end{aligned}
$$

Disconnected Contributions

Mainz/CLS:

[Gülpers et al., in preparation]

- $N_{\mathrm{f}}=2$ Clover fermions; $m_{\pi}=311,437 \mathrm{MeV}$
- $a \approx 0.063 \mathrm{fm}, m_{\pi} L>4.0$
- HPE, stochastic noise cancellation
- Statistics: 4800 k measurements
$G_{\text {disc }}^{\ell s}$ dominates uncertainty for $x_{0}>1.6 \mathrm{fm}$
Disconnected contribution for $x_{0} \rightarrow \infty$:

$$
-\frac{1}{9} \frac{G_{\text {disc }}^{\ell_{s}}}{G^{\rho \rho}} \xrightarrow{x_{0} \rightarrow \infty}-\frac{1}{9}
$$

Upper bound on disconnected contribution:

$$
\begin{aligned}
& G_{\mathrm{disc}}^{\ell s}=\left\{\begin{array}{cc}
0, & x_{0} \leq 1.6 \mathrm{fm} \\
-1 / 9, & x_{0}>1.6 \mathrm{fm}
\end{array}\right. \\
& \Rightarrow \text { sub-percent effect }
\end{aligned}
$$

Disconnected Contributions: Results Summary

* Non-zero disconnected contribution can be resolved

HPQCD: Anisotropic Clover action; $m_{\pi}=391 \mathrm{MeV} ; a_{s} \approx 0.12 \mathrm{fm}$; Distillation

$$
\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} /\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{con}}^{(\ell \ell)}=-0.14(5) \%, \quad\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} \approx-0.84 \cdot 10^{-10}
$$

RBC/UKQCD: Domain wall fermions; physical pion mass; $a \approx 0.11 \mathrm{fm}, m_{\pi} L \approx 3.9$;

$$
\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} /\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{con}}^{(\ell \ell)}=-1.6(7) \%, \quad\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}}=-(9.6 \pm 3.3 \pm 2.3) \cdot 10^{-10}
$$

CLS/Mainz: $N_{\mathrm{f}}=2$ Clover fermions; $m_{\pi}=311,437 \mathrm{MeV} ; a=0.063 \mathrm{fm} ;$

$$
\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} /\left(a_{\mu}^{\mathrm{hvp}}\right)_{\text {con }}^{(\ell \ell)}<-1 \%
$$

Bali \& Endrődi: Rooted staggered fermions; physical pion mass; $a=0.1-0.29 \mathrm{fm}$;

$$
\Pi^{\mathrm{disc}} / \Pi^{\mathrm{con}}=-(3.6 \pm 4.5) \cdot 10^{-4} \text { at } Q^{2}=0.03 \mathrm{GeV}^{2}
$$

Chiral Perturbation Theory

* Two-loop calculations of connected vs. disconnected and effects of twisted boundary conditions in $\Pi_{\mu \nu}(Q) \quad$ [Hans BUNENS, THU 14:00]
* NLO ChPT estimate: $\Pi^{\text {disc }} / \Pi^{\text {con }}=-1 / 10 \quad$ [Jütner \& Della Morte, JHEP 1011 (2010) 154]

\Rightarrow Corrections are large, but not in the ratio $\Pi^{\text {disc }} / \Pi^{\text {con }}$

Finite-volume effects

Finite-volume effects: Anisotropy studies

* Consider subtracted VP tensor in a finite volume of $L^{3} \cdot T$:

$$
\bar{\Pi}_{\mu \nu}(p)=\sum_{\kappa, \lambda} P_{\mu \kappa}^{T}\left(\Pi_{\kappa \lambda}(p)-\Pi_{\kappa \lambda}(0)\right) P_{\lambda \nu}^{T} \quad \Rightarrow \text { satisfies Ward Identities }
$$

\Rightarrow contains five irreducible substructures: $\quad A_{1}, A_{1}^{44}, T_{1}, T_{2}, E$

* Study deviation between different irreps. for $m_{\pi}=220 \mathrm{MeV}, L=3.8 \mathrm{fm}$

[Aubin et al., PRD 93 (2016) 054508]

Finite-volume effects: Anisotropy studies

* Compare vector correlator along spatial and temporal directions

> [Christoph LEHNER, TUE 14:00]
> $w\left(x_{1}\right) G^{(L)}\left(x_{1}\right)-w\left(x_{0}\right) G^{(T)}\left(x_{0}\right)$
(domain wall fermions)

* Anisotropy well described by FV ChPT after removing backward propagating ρ-meson
* FV correction for $m_{\pi}=140 \mathrm{MeV}, L=5.3 \mathrm{fm}: \quad a_{\mu}^{\mathrm{hvp}}(\infty)-a_{\mu}^{\mathrm{hvp}}(L) \approx 3 \%$

Finite-volume effects: taste breaking

* Finite volume effects for calculations using staggered (HISQ) quarks
* Consider effective theory of photons, pions and rho-mesons; compute hadronic contributions to photon propagator:

$$
\Pi\left(Q^{2}\right)-\Pi(0)=-\frac{4 Q^{2}}{3} \int \frac{d^{3} k}{(2 \pi)^{3}} F\left(E_{a}, E_{b}, \boldsymbol{k}\right)+\cdots
$$

* Taylor expansion for $m_{a, b}=m_{\pi}$ yields coefficients $\Pi_{j}^{(\pi \pi)}$ (similarly for $\Pi_{j}^{(\rho)}$)
* Replace integral by a finite sum over discrete momenta \boldsymbol{k}

Finite-volume effects: taste breaking

* Finite volume effects for calculations using staggered (HISQ) quarks
* Consider effective theory of photons, pions and rho-mesons; compute hadronic contributions to photon propagator:

$$
\Pi\left(Q^{2}\right)-\Pi(0)=-\frac{4 Q^{2}}{3} \int \frac{d^{3} k}{(2 \pi)^{3}} F\left(E_{a}, E_{b}, \boldsymbol{k}\right)+\cdots
$$

* Taylor expansion for $m_{a, b}=m_{\pi}$ yields coefficients $\Pi_{j}^{(\pi \pi)}$ (similarly for $\Pi_{j}^{(\rho)}$)
* Replace integral by a finite sum over discrete momenta \boldsymbol{k}
* Average over taste multiplets and determine shift in $\Pi_{j}^{(\pi \pi)}$

$$
\begin{aligned}
& m_{\pi}=140 \mathrm{MeV}, L=4.5 \mathrm{fm}: \\
& \qquad \delta \Pi_{1} / \Pi_{1} \approx 10 \% \quad \Rightarrow \quad a_{\mu}^{\mathrm{hvp}}(\infty)-a_{\mu}^{\mathrm{hvp}}(L) \approx 7 \%
\end{aligned}
$$

Finite-volume effects: TMR analysis

* Starting point: $\quad a_{\mu}^{\mathrm{hyp}}(L)=\int_{0}^{\infty} d x_{0} G\left(x_{0}, L\right) w\left(x_{0}\right)$
* Small x_{0} : Compute $G\left(x_{0}, \infty\right)-G\left(x_{0}, L\right)$ using Poisson-resummation
* Large x_{0} : Relate $G\left(x_{0}, L\right)$ to low-lying energy eigenstates on a torus

$$
G\left(x_{0}, \infty\right)=\int_{0}^{\infty} d \omega \omega^{2} \rho\left(\omega^{2}\right) \mathrm{e}^{-\omega\left|x_{0}\right|}=\frac{1}{48 \pi^{2}} \int_{0}^{\infty} d \omega \omega^{2}\left(1-4 m_{\pi}^{2} / \omega^{2}\right)^{3 / 2}\left|F_{\pi}(\omega)\right|^{2} \mathrm{e}^{-\omega x_{0}}
$$

* Finite volume: $\quad G\left(x_{0}, L\right)=\sum_{n}\left|A_{n}\right|^{2} \mathrm{e}^{-\omega_{n} x_{0}}, \quad \omega_{n}=2 \sqrt{m_{\pi}^{2}+k_{n}^{2}}$

$$
\begin{aligned}
& \delta_{11}(k)+\phi\left(\frac{k L}{2 \pi}\right)=n \pi, \quad n=1,2, \ldots \\
& \left|F_{\pi}(\omega)\right|^{2}=\left\{\left(z \phi^{\prime}(z)\right)_{z=k L / 2 \pi}+k \frac{\partial \delta_{1}(k)}{\partial k}\right\} \frac{3 \pi \omega^{2}}{2 k^{2}}|A|^{2}
\end{aligned}
$$

Finite-volume effects: TMR analysis

* Input quantity: timelike pion form factor $F_{\pi}(\omega)=\left|F_{\pi}(\omega)\right| \mathrm{e}^{i \delta_{11}(k)}$
* Use Gounaris-Sakurai parameterisation and evaluate $\left|F_{\pi}(\omega)\right|, \delta_{11}(k)$ for given (m_{π}, m_{ρ}) of a given gauge ensemble
* Finite-volume effects in HVP dominated by long-distance contribution
* For $m_{\pi}=190 \mathrm{MeV}, L=4.0 \mathrm{fm}$,

$$
\begin{aligned}
& m_{\pi} L=4.0: \\
& \quad a_{\mu}^{\mathrm{hvp}}(\infty)-a_{\mu}^{\mathrm{hvp}}(L)=5.2 \%
\end{aligned}
$$

Finite-volume effects: TMR analysis

* Input quantity: timelike pion form factor $F_{\pi}(\omega)=\left|F_{\pi}(\omega)\right| \mathrm{e}^{i \delta_{11}(k)}$
* Use Gounaris-Sakurai parameterisation and evaluate $\left|F_{\pi}(\omega)\right|, \delta_{11}(k)$ for given (m_{π}, m_{ρ}) of a given gauge ensemble
* Finite-volume effects in HVP dominated by long-distance contribution
* For $m_{\pi}=190 \mathrm{MeV}, L=4.0 \mathrm{fm}$,

$$
\begin{aligned}
& m_{\pi} L=4.0: \\
& \quad a_{\mu}^{\mathrm{hvp}}(\infty)-a_{\mu}^{\mathrm{hvp}}(L)=5.2 \%
\end{aligned}
$$

* Procedural variations: assign uncertainty of $\approx 10 \%$
\Rightarrow Dynamical theory of finite-volume effects in terms of m_{ρ} / m_{π} and $m_{\pi} L$

[H.B. Meyer et al., in preparation]

Recent results: HPQCD

* Simulation details: [Chakraborty et al., arXiv:1601.03071, Christine DAVIES, poster session]
$N_{\mathrm{f}}=2+1+1$ flavours of staggered quarks (HISQ)
10 ensembles; three lattice spacings: $a=0.09,0.12,0.15 \mathrm{fm}$
Physical pion mass: $m_{\pi}^{\min } L=3.9$
Statistics: ≈ 16000 per ensemble
* $\Pi\left(Q^{2}\right)-\Pi(0)$ determined from time moments
* Reduce $m_{u, d}$-dependence of $a_{\mu}^{\text {hyp }}$:

- Rescale $\pi^{+} \pi^{-}$contribution in continuum EFT

$$
\delta m_{l} / m_{s}
$$

- Rescale time moment Π_{j} by $\left(m_{\rho}^{\text {lat }} / m_{\rho}^{\text {phys }}\right)^{2 j}$
* Combined chiral and continuum extrapolation using Bayesian priors

Recent results: HPQCD

* Simulation details:
$N_{\mathrm{f}}=2+1+1$ flavours of staggered quarks (HISQ)
10 ensembles; three lattice spacings: $a=0.09,0.12,0.15 \mathrm{fm}$
Physical pion mass: $m_{\pi}^{\min } L=3.9$
Statistics: ≈ 16000 per ensemble
* Results:

$$
\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{con}} \cdot 10^{10}=\left\{\begin{array}{cl}
598 \pm 11 & (u, d) \\
53.4 \pm 0.6 & (s) \\
14.4 \pm 0.4 & (c)
\end{array}\right.
$$

Recent results: HPQCD

* Simulation details:
$N_{\mathrm{f}}=2+1+1$ flavours of staggered quarks (HISQ)
10 ensembles; three lattice spacings: $a=0.09,0.12,0.15 \mathrm{fm}$
Physical pion mass: $m_{\pi}^{\min } L=3.9$
Statistics: ≈ 16000 per ensemble
* Results:

$$
\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{con}} \cdot 10^{10}=\left\{\begin{array}{cll}
598 \pm 11 & (u, d) & \text { contains finite-volume and } \\
53.4 \pm 0.6 & (s) & \text { isospin corrections } \\
14.4 \pm 0.4 & (c) &
\end{array}\right.
$$

Recent results: HPQCD

* Simulation details: [Chakraborty et al., arXiv:1601.03071, Christine DAVIES, poster session]
$N_{\mathrm{f}}=2+1+1$ flavours of staggered quarks (HISQ)
10 ensembles; three lattice spacings: $a=0.09,0.12,0.15 \mathrm{fm}$
Physical pion mass: $m_{\pi}^{\min } L=3.9$
Statistics: ≈ 16000 per ensemble
* Results:

$$
\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{con}} \cdot 10^{10}=\left\{\begin{array}{cl}
598 \pm 11 & (u, d) \\
53.4 \pm 0.6 & (s) \\
14.4 \pm 0.4 & (c)
\end{array}\right.
$$

contains finite-volume and isospin corrections

* Disconnected contribution: $\quad\left(a_{\mu}^{\text {hyp }}\right)_{\text {disc }}=(0 \pm 9) \cdot 10^{-10}$
* Final estimate: $\quad a_{\mu}^{\text {hyp }}=(666 \pm 6 \pm 12) \cdot 10^{-10}$

Recent results: RBC/UKQCD

* Simulation details:
$N_{\mathrm{f}}=2+1$ flavours; Möbius domain wall fermions
Two lattice spacings: $a=0.11,0.084 \mathrm{fm}$
Physical pion mass: $m_{\pi}^{\min } L=3.9$
Noise reduction: AMA, deflation

Recent results: RBC/UKQCD

* Simulation details:
$N_{\mathrm{f}}=2+1$ flavours; Möbius domain wall fermions
Two lattice spacings: $a=0.11,0.084 \mathrm{fm}$
Physical pion mass: $m_{\pi}^{\min } L=3.9$
Noise reduction: AMA, deflation
* Employ "Hybrid Method":

Padé fits, conformal polynomials in low- Q^{2} regime, time moments
Numerical integration techniques

* Lattice and experimental data; Finite-volume study [Christoph LEHNER, TUE 14:00]
* Isospin breaking

Recent results: RBC/UKQCD

* Simulation details:
$N_{\mathrm{f}}=2+1$ flavours; Möbius domain wall fermions
Two lattice spacings: $a=0.11,0.084 \mathrm{fm}$
* Compute individual flavour contributions (connected) to $a_{\mu}^{\text {hvp }}$
* "Hybrid method": systematic effects via procedural variations
* Strange quark contribution:
[Blum et al., JHEP 04 (2016) 063]

$$
a_{\mu}^{(s) \mathrm{hvp}}=53.1(9)\left(_{-3}^{+1}\right) \cdot 10^{-10}
$$

[Matthew SPRAGGS, TUE 17:10]

Recent results: RBC/UKQCD

* Simulation details:
$N_{\mathrm{f}}=2+1$ flavours; Möbius domain wall fermions
Two lattice spacings: $a=0.11,0.084 \mathrm{fm}$
* Compute individual flavour contributions (connected) to $a_{\mu}^{\text {hvp }}$
* "Hybrid method": systematic effects via procedural variations
* Strange quark contribution:
[Blum et al., JHEP 04 (2016) 063]

$$
a_{\mu}^{(s) \mathrm{hvp}}=53.1(9)\left({ }_{-3}^{+1}\right) \cdot 10^{-10}
$$

\Rightarrow dominated by statistical error

Recent results: RBC/UKQCD

* Simulation details:
$N_{\mathrm{f}}=2+1$ flavours; Möbius domain wall fermions
Two lattice spacings: $a=0.11,0.084 \mathrm{fm}$
* Compute individual flavour contributions (connected) to $a_{\mu}^{\text {hvp }}$
* "Hybrid method": systematic effects via procedural variations
* Strange quark contribution:
[Blum et al., JHEP 04 (2016) 063]

$$
a_{\mu}^{(s) \mathrm{hvp}}=53.1(9)\binom{+1}{-3} \cdot 10^{-10}
$$

* Light quark contribution:
[Matthew SPRAGGS, TUE 17:10]

Recent results: RBC/UKQCD

* Simulation details:
$N_{\mathrm{f}}=2+1$ flavours; Möbius domain wall fermions
Two lattice spacings: $a=0.11,0.084 \mathrm{fm}$
* Compute individual flavour contributions (connected) to $a_{\mu}^{\text {hvp }}$
* "Hybrid method": systematic effects via procedural variations
* Strange quark contribution:
[Blum et al., JHEP 04 (2016) 063]

$$
a_{\mu}^{(s) \mathrm{hvp}}=53.1(9)\binom{+1}{-3} \cdot 10^{-10}
$$

* Light quark contribution:

Recent results: RBC/UKQCD

* Simulation details:
$N_{\mathrm{f}}=2+1$ flavours; Möbius domain wall fermions
Two lattice spacings: $a=0.11,0.084 \mathrm{fm}$
* Compute individual flavour contributions (connected) to $a_{\mu}^{\text {hvp }}$
* "Hybrid method": systematic effects via procedural variations
* Strange quark contribution:
[Blum et al., JHEP 04 (2016) 063]

$$
a_{\mu}^{(s) \mathrm{hvp}}=53.1(9)\binom{+1}{-1} \cdot 10^{-10}
$$

* Light quark contribution:

$$
\delta a_{\mu}^{(u, d) \mathrm{hvp}} / a_{\mu}^{(u, d) \mathrm{hvp}} \approx 3 \%
$$

[Matthew SPRAGGS, TUE 17:10]

Recent results: RBC/UKQCD

* Combining lattice and experimental data:

$$
a_{\mu}^{\mathrm{hvp}}=\sum_{x_{0}=0}^{\infty} w\left(x_{0}\right) G\left(x_{0}\right)
$$

- Experimental data more precise in long-distance regime
* Compute: $\quad a_{\mu}^{\mathrm{hvp}}=\left.\sum_{x_{0}=0}^{x_{0}^{\text {lat/exp }}} w\left(x_{0}\right) G^{\mathrm{lat}}\left(x_{0}\right)\right|_{\text {con }}+\sum_{x_{0}^{\mathrm{lat} / \exp }}^{\infty} w\left(x_{0}\right) G^{\exp }\left(x_{0}\right)$

$$
\Rightarrow \quad \delta a_{\mu}^{\mathrm{hvp}} / a_{\mu}^{\mathrm{hvp}}=0.7 \% \quad \text { at } \quad x_{0}^{\text {lat } / \mathrm{exp}}=1.7 \mathrm{fm}
$$

Recent results: BMW

* Simulation details:
$N_{\mathrm{f}}=2+1+1$ flavours of stout-smeared staggered quarks; tree-level Symanzik
17 ensembles; six lattice spacings: $a=0.063-0.133 \mathrm{fm}$
Physical pion mass: $\quad m_{\pi}^{\min } L \approx 4.2, \quad L \approx 6 \mathrm{fm}$
Statistics: $\approx 1.15 \mathrm{M}$ for $(u, d), \approx 96 \mathrm{k}$ for s, c

Recent results: BMW

* Simulation details:
$N_{\mathrm{f}}=2+1+1$ flavours of stout-smeared staggered quarks; tree-level Symanzik
17 ensembles; six lattice spacings: $a=0.063-0.133 \mathrm{fm}$
Physical pion mass: $\quad m_{\pi}^{\min } L \approx 4.2, \quad L \approx 6 \mathrm{fm}$
Statistics: $\approx 1.15 \mathrm{M}$ for $(u, d), \approx 96 \mathrm{k}$ for s, c
* $\hat{\Pi}\left(Q^{2}\right)$ determined from time moments

BMWc prelimin $\longmapsto \quad$ HPQCD '14'16 \longmapsto

Recent results: BMW

* Simulation details:
$N_{\mathrm{f}}=2+1+1$ flavours of stout-smeared staggered quarks; tree-level Symanzik
17 ensembles; six lattice spacings: $a=0.063-0.133 \mathrm{fm}$
Physical pion mass: $\quad m_{\pi}^{\min } L \approx 4.2, \quad L \approx 6 \mathrm{fm}$
Statistics: $\approx 1.15 \mathrm{M}$ for $(u, d), \approx 96 \mathrm{k}$ for s, c
* $\hat{\Pi}\left(Q^{2}\right)$ determined from time moments
* Good signal for disconnected contributions

BMWc prelimin $\longmapsto \quad$ HPQCD '14'16 \longmapsto

Recent results: BMW

* Simulation details:
$N_{\mathrm{f}}=2+1+1$ flavours of stout-smeared staggered quarks; tree-level Symanzik
17 ensembles; six lattice spacings: $a=0.063-0.133 \mathrm{fm}$
Physical pion mass: $\quad m_{\pi}^{\min } L \approx 4.2, \quad L \approx 6 \mathrm{fm}$
Statistics: $\approx 1.15 \mathrm{M}$ for $(u, d), \approx 96 \mathrm{k}$ for s, c
* $\hat{\Pi}\left(Q^{2}\right)$ determined from time moments
* Good signal for disconnected contributions
* Moments corrected for finite-volume effects in ChPT @ LO

BMWc prelimin $\longmapsto \quad$ HPQCD '14'16 \longmapsto

Recent results: Mainz/CLS

* Simulation details:
$N_{\mathrm{f}}=2$ flavours; $\mathrm{O}(a)$ improved Wilson fermions
11 ensembles; three lattice spacings: $a=0.049,0.066,0.076 \mathrm{fm}$
Minimum pion mass: $\quad m_{\pi}^{\min }=190 \mathrm{MeV}, \quad m_{\pi}^{\min } L=4.0$
Statistics: 2000-4000 per ensemble
* Determine $\Pi\left(Q^{2}\right)-\Pi(0)$ using

Padé fits, time moments and TMR

Recent results: Mainz/CLS

* Simulation details:
$N_{\mathrm{f}}=2$ flavours; $\mathrm{O}(a)$ improved Wilson fermions
11 ensembles; three lattice spacings: $a=0.049,0.066,0.076 \mathrm{fm}$
Minimum pion mass: $\quad m_{\pi}^{\min }=190 \mathrm{MeV}, \quad m_{\pi}^{\min } L=4.0$
Statistics: 2000-4000 per ensemble
* Determine $\Pi\left(Q^{2}\right)-\Pi(0)$ using Padé fits, time moments and TMR
* Combined chiral and continuum extrapolation
* Error estimates:
"Extended Frequentist Method"

Recent results: Mainz/CLS

* Simulation details:
$N_{\mathrm{f}}=2$ flavours; $\mathrm{O}(a)$ improved Wilson fermions
11 ensembles; three lattice spacings: $a=0.049,0.066,0.076 \mathrm{fm}$
Minimum pion mass: $\quad m_{\pi}^{\min }=190 \mathrm{MeV}, \quad m_{\pi}^{\min } L=4.0$
Statistics: 2000-4000 per ensemble
* Determine $\Pi\left(Q^{2}\right)-\Pi(0)$ using Padé fits, time moments and TMR
* Combined chiral and continuum extrapolation
* Error estimates:
"Extended Frequentist Method"

Recent results: Mainz/CLS

* Simulation details:
$N_{\mathrm{f}}=2$ flavours; $\mathrm{O}(a)$ improved Wilson fermions
11 ensembles; three lattice spacings: $a=0.049,0.066,0.076 \mathrm{fm}$
Minimum pion mass: $\quad m_{\pi}^{\min }=190 \mathrm{MeV}, \quad m_{\pi}^{\min } L=4.0$
Statistics: 2000-4000 per ensemble
* Determine $\Pi\left(Q^{2}\right)-\Pi(0)$ using Padé fits, time moments and TMR
* Combined chiral and continuum extrapolation
* Error estimates: "Extended Frequentist Method"

Recent results: Mainz/CLS

* Determine contributions from individual quark flavours: $(u, d), s, c$

* Different methods consistent at the level of 1σ
* Significant shift due to finitevolume effects
* Overall accuracy dominated by u, d contribution
* Contributions from disconnected diagrams below 1\%

[^0]
Summary on $a^{\text {hvp }}$ Summary on a_{μ}

* Individual flavour contributions:

light (u, d)	$\approx 90 \%$
strange (s)	$\approx 8 \%$
charm (c)	$\approx 2 \%$

γ

Hadronic contributions to ($g-2$)

Lattice QCD approaches to HLbL scattering

* Numerically very demanding:
- Compute 4pt correlation function for two independent momenta, k_{1}, k_{2}
\Rightarrow Cost scales proportional to (volume) ${ }^{2}$
- Must take external momentum to zero: $q^{2} \longrightarrow 0$

Lattice QCD approaches to HLbL scattering

* Numerically very demanding:
- Compute $4 p t$ correlation function for two independent momenta, k_{1}, k_{2}

Proposed techniques:

* QCD + QED simulations
[Hayakawa et al., PoS LAT2005 (2006) 353, Blum et al., Phys Rev Lett 114 (2015) 012001]

Lattice QCD approaches to HLbL scattering

* Numerically very demanding:
- Compute 4pt correlation function for two independent momenta, k_{1}, k_{2}

Proposed techniques:

* QCD + QED simulations
[Hayakawa et al., PoS LAT2005 (2006) 353, Blum et al., Phys Rev Lett 114 (2015) 012001]
* QCD + stochastic QED
[Blum et al., Phys Rev D93 (2016) 014503, Luchang JIN, TUE 13:20]

Lattice QCD approaches to HLbL scattering

* Numerically very demanding:
- Compute 4pt correlation function for two independent momenta, k_{1}, k_{2}

Proposed techniques:

* QCD + QED simulations
[Hayakawa et al., PoS LAT2005 (2006) 353, Blum et al., Phys Rev Lett 114 (2015) 012001]
* QCD + stochastic QED
[Blum et al., Phys Rev D93 (2016) 014503, Luchang JIN, TUE 13:20]
* Light-by-light four-point function + exact QED kernel
[Green, Gryniuk, von Hippel, Meyer, Pascalutsa, Phys Rev Lett 115 (2015) 222003, Nils ASMUSSEN, TUE 15:40]

Lattice QCD approaches to HLbL scattering

* Numerically very demanding:
- Compute 4pt correlation function for two independent momenta, k_{1}, k_{2}

Proposed techniques:

* QCD + QED simulations
[Hayakawa et al., PoS LAT2005 (2006) 353, Blum et al., Phys Rev Lett 114 (2015) 012001]
* QCD + stochastic QED
[Blum et al., Phys Rev D93 (2016) 014503, Luchang JIN, TUE 13:20]
* Light-by-light four-point function + exact QED kernel
[Green, Gryniuk, von Hippel, Meyer, Pascalutsa, Phys Rev Lett 115 (2015) 222003, Nils ASMUSSEN, TUE 15:40]
* Lattice calculations of dominant sub-processes
[Feng et al., Phys Rev Lett 109 (2012) 182001, Antoine GÉRARDIN, FRI 18:10]

QCD + QED Simulations

* Compute matrix element of e.m. current between muon initial and final states:

$$
\begin{aligned}
& \left\langle\mu\left(\boldsymbol{p}^{\prime}, s^{\prime}\right)\right| J_{\mu}(0)|\mu(\boldsymbol{p}, s)\rangle=-e \bar{u}\left(\boldsymbol{p}^{\prime}, s^{\prime}\right)\left(F_{1}\left(Q^{2}\right) \gamma_{\mu}+\frac{F_{2}\left(Q^{2}\right)}{2 m} \sigma_{\mu \nu} Q_{\nu}\right) u(\boldsymbol{p}, s) \\
& a_{\mu}^{\mathrm{hlbl}}=F_{2}(0)
\end{aligned}
$$

* Large statistical errors; subtract contributions of $\mathrm{O}\left(\alpha^{4}\right)$

QCD + Stochastic QED

* Abandon non-perturbative treatment of QED contribution:
\Rightarrow insertion of three exact Feynman gauge photon propagators

$$
G_{\mu \nu}(x, y)=\frac{1}{V T} \delta_{\mu \nu} \sum_{k, \vec{k} \mid \neq 0} \frac{\mathrm{e}^{i k \cdot(x-y)}}{\hat{k}^{2}}
$$

QCD + Stochastic QED

* Abandon non-perturbative treatment of QED contribution:
\Rightarrow insertion of three exact Feynman gauge photon propagators

$$
G_{\mu \nu}(x, y)=\frac{1}{V T} \delta_{\mu \nu} \sum_{k, \vec{k} \mid \neq 0} \frac{\mathrm{e}^{i k \cdot(x-y)}}{\hat{k}^{2}}
$$

QCD + Stochastic QED

* Abandon non-perturbative treatment of QED contribution:
\Rightarrow insertion of three exact Feynman gauge photon propagators

$$
G_{\mu \nu}(x, y)=\frac{1}{V T} \delta_{\mu \nu} \sum_{k, \vec{k} \neq 0} \frac{\mathrm{e}^{i k \cdot(x-y)}}{\hat{k}^{2}}
$$

[Blum et al., Phys Rev D93 (2016) 014503]

$$
X_{\mathrm{op}}
$$

1. Stochastic selection of two internal photon vertices at x, y

QCD + Stochastic QED

* Abandon non-perturbative treatment of QED contribution:
\Rightarrow insertion of three exact Feynman gauge photon propagators

$$
G_{\mu \nu}(x, y)=\frac{1}{V T} \delta_{\mu \nu} \sum_{k, \vec{k} \mid \neq 0} \frac{\mathrm{e}^{i k \cdot(x-y)}}{\hat{k}^{2}}
$$

1. Stochastic selection of two internal photon vertices at x, y
2. Compute quark propagators from point sources at x and y
[Blum et al., Phys Rev D93 (2016) 014503]

QCD + Stochastic QED

* Abandon non-perturbative treatment of QED contribution:
\Rightarrow insertion of three exact Feynman gauge photon propagators

$$
G_{\mu \nu}(x, y)=\frac{1}{V T} \delta_{\mu \nu} \sum_{k, \vec{k} \mid \neq 0} \frac{\mathrm{e}^{i k \cdot(x-y)}}{\hat{k}^{2}}
$$

1. Stochastic selection of two internal photon vertices at x, y
2. Compute quark propagators from point sources at x and y
3. Current insertion $X_{o p}$ and third photon vertex z explicitly summed over
[Blum et al., Phys Rev D93 (2016) 014503]

QCD + Stochastic QED

* Abandon non-perturbative treatment of QED contribution:
\Rightarrow insertion of three exact Feynman gauge photon propagators

$$
G_{\mu \nu}(x, y)=\frac{1}{V T} \delta_{\mu \nu} \sum_{k, \vec{k} \mid \neq 0} \frac{\mathrm{e}^{i k \cdot(x-y)}}{\hat{k}^{2}}
$$

1. Stochastic selection of two internal photon vertices at x, y
2. Compute quark propagators from point sources at x and y
3. Current insertion $x_{o p}$ and third photon vertex z explicitly summed over
4. Avoid extrapolation to $q^{2}=0$ by computing first moment w.r.t. x_{op}
[Blum et al., Phys Rev D93 (2016) 014503]

QCD + Stochastic QED

* Abandon non-perturbative treatment of QED contribution:
\Rightarrow insertion of three exact Feynman gauge photon propagators

$$
G_{\mu \nu}(x, y)=\frac{1}{V T} \delta_{\mu \nu} \sum_{k, \vec{k} \mid \neq 0} \frac{\mathrm{e}^{i k \cdot(x-y)}}{\hat{k}^{2}}
$$

1. Stochastic selection of two internal photon vertices at x, y
2. Compute quark propagators from point sources at x and y
3. Current insertion $X_{o p}$ and third photon vertex z explicitly summed over
4. Avoid extrapolation to $q^{2}=0$ by computing first moment w.r.t. x_{op}

* Efficiency gain: two orders of magnitude

QCD + Stochastic QED

* Final result: sum over relative coordinates $|r| \equiv\left|(x-y)_{\mu}\right|$

$N_{\mathrm{f}}=2+1$ flavours; DWFs
171 MeV pion mass; $a=0.14 \mathrm{fm}$
[Blum et al., Phys Rev D93 (2016) 014503]

QCD + Stochastic QED

* Final result: sum over relative coordinates $|r| \equiv\left|(x-y)_{\mu}\right|$

$N_{\mathrm{f}}=2+1$ flavours; DWFs
Physical pion mass; $a=0.11 \mathrm{fm}$
[Luchang JIN, TUE 13:20]

QCD + Stochastic QED

* Final result: sum over relative coordinates $|r| \equiv\left|(x-y)_{\mu}\right|$

$N_{\mathrm{f}}=2+1$ flavours; DWFs
Physical pion mass; $a=0.11 \mathrm{fm}$
[Luchang JIN, TUE 13:20]

$$
\left(a_{\mu}^{\mathrm{hlbl}}\right)_{\mathrm{con}}= \begin{cases}(0.1054 \pm 0.0054)(\alpha / \pi)^{3}=(132.1 \pm 6.8) \cdot 10^{-11} & \left(m_{\pi}=171 \mathrm{MeV}, a=0.14 \mathrm{fm}\right) \\ (0.0933 \pm 0.0073)(\alpha / \pi)^{3}=(116.1 \pm 9.1) \cdot 10^{-11} & \left(m_{\pi}=139 \mathrm{MeV}, a=0.11 \mathrm{fm}\right)\end{cases}
$$

(Connected contribution; statistical error only)

QCD + Stochastic QED

* Final result: sum over relative coordinates $|r| \equiv\left|(x-y)_{\mu}\right|$

$N_{\mathrm{f}}=2+1$ flavours; DWFs
Physical pion mass; $a=0.11 \mathrm{fm}$
[Luchang JIN, TUE 13:20]

$$
\left(a_{\mu}^{\mathrm{hlbl}}\right)_{\mathrm{con}}= \begin{cases}(0.1054 \pm 0.0054)(\alpha / \pi)^{3}=(132.1 \pm 6.8) \cdot 10^{-11} & \left(m_{\pi}=171 \mathrm{MeV}, a=0.14 \mathrm{fm}\right) \\ (0.0933 \pm 0.0073)(\alpha / \pi)^{3}=(116.1 \pm 9.1) \cdot 10^{-11} & \left(m_{\pi}=139 \mathrm{MeV}, a=0.11 \mathrm{fm}\right)\end{cases}
$$

(Connected contribution; statistical error only)

* Numerical cost: 175 Mcore-hrs for 48I ensemble

Disconnected Contributions to HLbL

* Use same setup to determine leading disconnected contribution

Disconnected Contributions to HLbL

* Use same setup to determine leading disconnected contribution

$$
\left(a_{\mu}^{\mathrm{hlbl}}\right)_{\mathrm{disc}}=(-56.0 \pm 12.6) \cdot 10^{-11}
$$

(Physical pion mass; $a=0.11 \mathrm{fm}$)
(Statistical error only)

Disconnected Contributions to HLbL

* Use same setup to determine leading disconnected contribution

[Luchang JIN, TUE 13:20]

$$
\left(a_{\mu}^{\mathrm{hlbl}}\right)_{\mathrm{disc}}=(-56.0 \pm 12.6) \cdot 10^{-11}
$$

$$
\text { (Physical pion mass; } a=0.11 \mathrm{fm} \text {) }
$$

(Statistical error only)

* To do: compute additional disconnected diagrams; study finite-volume effects, lattice artefacts

Exact QED kernel

* Determine QED part perturbatively in the continuum in infinite volume
\Rightarrow no power-law volume effects

$$
a_{\mu}^{\mathrm{hlbl}}=F_{2}(0)=\frac{m e^{6}}{3} \int d^{4} y \int d^{4} x \overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y) i \Pi_{\rho ; \mu \nu \lambda \sigma}(x, y)
$$

* QCD four-point function: $\quad i \Pi_{\rho ; \mu \nu \lambda \sigma}(x, y)=-\int d^{4} z z_{\rho}\left\langle J_{\mu}(x) J_{\nu}(y) J_{\sigma}(z) J_{\lambda}(0)\right\rangle$
[Asmussen, Green, Meyer, Nyffeler, in prep.]
[Nils ASMUSSEN, TUE 15:40]

Exact QED kernel

* Determine QED part perturbatively in the continuum in infinite volume
\Rightarrow no power-law volume effects

$$
a_{\mu}^{\mathrm{hlbl}}=F_{2}(0)=\frac{m e^{6}}{3} \int d^{4} y \int d^{4} x \overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y) i \Pi_{\rho ; \mu \nu \lambda \sigma}(x, y)
$$

* QCD four-point function: $\quad i \Pi_{\rho ; \mu \nu \lambda \sigma}(x, y)=-\int d^{4} z z_{\rho}\left\langle J_{\mu}(x) J_{\nu}(y) J_{\sigma}(z) J_{\lambda}(0)\right\rangle$
* QED kernel function: $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$
- Infra-red finite; can be computed analytically
- Admits a tensor decomposition in terms of six form factors which depend on $x^{2}, \quad y^{2}, \quad x \cdot y$
$\Rightarrow 3 \mathrm{D}$ integration instead of $\int d^{4} x \int d^{4} y$

Exact QED kernel

* Determine QED part perturbatively in the continuum in infinite volume
\Rightarrow no power-law volume effects

$$
a_{\mu}^{\mathrm{hlbl}}=F_{2}(0)=\frac{m e^{6}}{3} \int d^{4} y \int d^{4} x \overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y) i \Pi_{\rho ; \mu \nu \lambda \sigma}(x, y)
$$

* QCD four-point function: $\quad i \Pi_{\rho ; \mu \nu \lambda \sigma}(x, y)=-\int d^{4} z z_{\rho}\left\langle J_{\mu}(x) J_{\nu}(y) J_{\sigma}(z) J_{\lambda}(0)\right\rangle$
* QED kernel function: $\overline{\mathcal{L}}_{[\rho, \sigma] ; \mu \nu \lambda}(x, y)$
- Infra-red finite; can be computed analytically
- Admits a tensor decomposition in terms of six form factors which depend on $x^{2}, \quad y^{2}, \quad x \cdot y$
$\Rightarrow 3 \mathrm{D}$ integration instead of $\int d^{4} x \int d^{4} y$
* Form factors computed and stored on disk

HLbL four-point correlator

* Four-point correlator of one local and three conserved vector currents

* Fully connected contribution with summed fixed kernels:

$$
\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\mathrm{pos}}\left(x_{4} ; f_{1}, f_{2}\right)=\sum_{x_{1}, x_{2}} f\left(x_{1}\right) f\left(x_{2}\right) \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\mathrm{pos}}\left(x_{1}, x_{2}, 0, x_{4}\right)
$$

(computable in terms of sequential and double-sequential propagators)

* Euclidean four-point function in momentum space:

$$
\Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(p_{4} ; p_{1}, p_{2}\right)=\sum_{x_{4}} \mathrm{e}^{-i p_{4} \cdot x_{4}} \prod_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{\mathrm{pos}^{\prime}}\left(x_{4} ; p_{1}, p_{2}\right)
$$

[Green et al., Phys Rev Lett 115 (2015) 222003]

Forward light-by-light amplitude

* Forward kinematics: $\quad Q_{1} \equiv p_{2}=-p_{1}, \quad Q_{2} \equiv p_{4}, \quad v=-Q_{1} \cdot Q_{2}$

Forward light-by-light amplitude

* Forward kinematics: $\quad Q_{1} \equiv p_{2}=-p_{1}, \quad Q_{2} \equiv p_{4}, \quad v=-Q_{1} \cdot Q_{2}$

Forward light-by-light amplitude

* Forward kinematics: $\quad Q_{1} \equiv p_{2}=-p_{1}, \quad Q_{2} \equiv p_{4}, \quad v=-Q_{1} \cdot Q_{2}$
* Forward scattering of transversely polarised virtual photons:

$$
\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, v\right)=\frac{e^{4}}{4} R_{\mu_{1} \mu_{2}} R_{\mu_{3} \mu_{4}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(-Q_{2} ;-Q_{1}, Q_{1}\right)
$$

Forward light-by-light amplitude

* Forward kinematics: $\quad Q_{1} \equiv p_{2}=-p_{1}, \quad Q_{2} \equiv p_{4}, \quad v=-Q_{1} \cdot Q_{2}$
* Forward scattering of transversely polarised virtual photons:

$$
\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, v\right)=\frac{e^{4}}{4} R_{\mu_{1} \mu_{2}} R_{\mu_{3} \mu_{4}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(-Q_{2} ;-Q_{1}, Q_{1}\right)
$$

* Related to $\sigma_{0,2}\left(\gamma^{*} \gamma^{*} \rightarrow\right.$ hadrons $)$ via subtracted dispersion relation:

$$
\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, v\right)-\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, 0\right)=\frac{2 v^{2}}{\pi} \int_{v_{0}}^{\infty} d v^{\prime} \frac{\sqrt{v^{\prime 2}-Q_{1}^{2} Q_{2}^{2}}}{v^{\prime}\left(v^{\prime 2}-v^{2}-i \epsilon\right)}\left[\sigma_{0}\left(v^{\prime}\right)+\sigma_{2}\left(v^{\prime}\right)\right]
$$

Forward light-by-light amplitude

* Forward kinematics: $\quad Q_{1} \equiv p_{2}=-p_{1}, \quad Q_{2} \equiv p_{4}, \quad v=-Q_{1} \cdot Q_{2}$
* Forward scattering of transversely polarised virtual photons:

$$
\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, v\right)=\frac{e^{4}}{4} R_{\mu_{1} \mu_{2}} R_{\mu_{3} \mu_{4}} \Pi_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}^{E}\left(-Q_{2} ;-Q_{1}, Q_{1}\right)
$$

* Related to $\sigma_{0,2}\left(\gamma^{*} \gamma^{*} \rightarrow\right.$ hadrons) via subtracted dispersion relation:

$$
\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, v\right)-\mathcal{M}_{T T}\left(-Q_{1}^{2},-Q_{2}^{2}, 0\right)=\frac{2 v^{2}}{\pi} \int_{v_{0}}^{\infty} d v^{\prime} \frac{\sqrt{v^{\prime 2}-Q_{1}^{2} Q_{2}^{2}}}{v^{\prime}\left(v^{\prime 2}-v^{2}-i \epsilon\right)}\left[\sigma_{0}\left(v^{\prime}\right)+\sigma_{2}\left(v^{\prime}\right)\right]
$$

\Rightarrow Compare lattice data to phenomenological expectations, e.g. leading contribution to a_{μ}^{hlbl} from π^{0} exchange diagrams

Forward light-by-light amplitude

* Test in two-flavour QCD (CLS ensembles):
* Cross sections: $\quad \sigma_{0}+\sigma_{2}=\sum_{\pi^{0}, \eta^{\prime}, a_{0}, f_{0}, \ldots} \sigma\left(\gamma^{*} \gamma^{*} \rightarrow M\right)+\sigma\left(\gamma^{*} \gamma^{*} \rightarrow \pi^{+} \pi^{-}\right)$
* Compare lattice data to dispersion relation and model for cross sections:

[Green et al., Phys Rev Lett 115 (2015) 222003, and in prep.]

Forward-scattering amplitudes

* Full set of eight forward-scattering amplitudes:

* Comparison with model under way - much stronger constraints

Quark-disconnected contributions

* Quark contractions:

Quark-disconnected contributions

* Quark contractions:

* Enhancement of (2,2) disconnected diagram by charge factors

Quark-disconnected contributions

* Quark contractions:

* Results for subtracted forward amplitude:

fully connected

(2,2)-disconnected

sum
[Green et al., in preparation]

HLbL from transition $\pi^{0} \longrightarrow \gamma^{*} \gamma^{*}$

* Pseudoscalar meson exchange expected to dominate LbL scattering:
[Nyffeler, EPJ Web Conf 118 (2016) 01024, arXiv:1602.03737]

* Compute transition form factor between π^{0} and two off-shell photons:

$$
\epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta} \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(m_{\pi}^{2} ; q_{1}^{2}, q_{2}^{2}\right) \equiv M_{\mu \nu}
$$

HLbL from transition $\pi^{0} \longrightarrow \gamma^{*} \gamma^{*}$

* Pseudoscalar meson exchange expected to dominate LbL scattering:
[Nyffeler, EPJ Web Conf 118 (2016) 01024, arXiv:1602.03737]

* Compute transition form factor between π^{0} and two off-shell photons:

$$
\epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta} \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(m_{\pi}^{2} ; q_{1}^{2}, q_{2}^{2}\right) \equiv M_{\mu \nu}
$$

$$
M_{\mu \nu} \sim C_{\mu \nu}^{(3)}\left(\tau, t_{\pi} ; \vec{p}, \vec{q}_{1}, \vec{q}_{2}\right)=
$$

$$
\sum_{\vec{x}, \vec{z}}\left\langle T\left\{J_{v}\left(\overrightarrow{0}, \tau+t_{\pi}\right) J_{\mu}\left(\vec{z}, t_{\pi}\right) P(\vec{x}, 0)\right\}\right\rangle \mathrm{e}^{i \vec{p} \cdot \vec{x}} \mathrm{e}^{-i \vec{q}_{1} \cdot \vec{z}}
$$

HLbL from transition $\pi^{0} \longrightarrow \gamma^{*} \gamma^{*}$

* Pseudoscalar meson exchange expected to dominate LbL scattering:
[Nyffeler, EPJ Web Conf 118 (2016) 01024, arXiv:1602.03737]

* Compute transition form factor between π^{0} and two off-shell photons:

$$
\epsilon_{\mu \nu \alpha \beta} q_{1}^{\alpha} q_{2}^{\beta} \mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}\left(m_{\pi}^{2} ; q_{1}^{2}, q_{2}^{2}\right) \equiv M_{\mu \nu}
$$

$$
\begin{aligned}
& M_{\mu \nu} \sim C_{\mu \nu}^{(3)}\left(\tau, t_{\pi} ; \vec{p}, \vec{q}_{1}, \vec{q}_{2}\right)= \\
& \quad \sum_{\vec{x}, \vec{z}}\left\langle T\left\{J_{\nu}\left(\overrightarrow{0}, \tau+t_{\pi}\right) J_{\mu}\left(\vec{z}, t_{\pi}\right) P(\vec{x}, 0)\right\}\right\rangle \mathrm{e}^{i \vec{p} \cdot \vec{x}} \mathrm{e}^{-i \vec{q}_{1} \cdot \vec{z}}
\end{aligned}
$$

* Kinematics:

$$
\vec{p}=0, \quad q_{1}^{2}=\omega_{1}^{2}-\left|\vec{q}_{1}\right|^{2}, \quad q_{2}^{2}=\left(m_{\pi}-\omega_{1}\right)^{2}-\left|\vec{q}_{1}\right|^{2}
$$

[Antoine GÉRARDIN, FRI 18:10]

Transition form factor $\pi^{\mathbf{0}} \longrightarrow \boldsymbol{\gamma}^{*} \boldsymbol{\gamma}^{*}$

* Kinematical range:

Fit ansatz:
Lowest meson dominance (LMD) model:

$$
\mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}^{\mathrm{LMD}}=\frac{\alpha M_{\mathrm{V}}^{4}+\beta\left(q_{1}^{2}+q_{2}^{2}\right)}{\left(M_{\mathrm{V}}^{2}-q_{1}^{2}\right)\left(M_{\mathrm{V}}^{2}-q_{2}^{2}\right)}
$$

(refinement: LMD-V model)

Transition form factor $\pi^{0} \longrightarrow \boldsymbol{\gamma}^{*} \boldsymbol{\gamma}^{*}$

* Kinematical range:

Fit ansatz:

Lowest meson dominance (LMD) model:

$$
\mathcal{F}_{\pi^{0} \gamma^{*} \gamma^{*}}^{\mathrm{LMD}}=\frac{\alpha M_{\mathrm{V}}^{4}+\beta\left(q_{1}^{2}+q_{2}^{2}\right)}{\left(M_{\mathrm{V}}^{2}-q_{1}^{2}\right)\left(M_{\mathrm{V}}^{2}-q_{2}^{2}\right)}
$$

(refinement: LMD-V model)

HLbL contribution from $\pi^{0} \longrightarrow \gamma^{*} \gamma^{*}$

* Results for $N_{\mathrm{f}}=2$ flavours of $\mathrm{O}(a)$ improved Wilson fermions:

$$
\alpha= \begin{cases}0.275(18) \mathrm{GeV}^{-1} & (\mathrm{LMD}) \\ 0.273(24) \mathrm{GeV}^{-1} & (\mathrm{LMD}+\mathrm{V})\end{cases}
$$

(combined chiral and continuum extrapolation)
\Rightarrow agrees well with theoretical expectation $\alpha=1 /\left(4 \pi^{2} F_{\pi}\right)=0.274 \mathrm{GeV}^{-1}$

HLbL contribution from $\pi^{0} \longrightarrow \gamma^{*} \gamma^{*}$

* Results for $N_{\mathrm{f}}=2$ flavours of $\mathrm{O}(a)$ improved Wilson fermions:

$$
\alpha= \begin{cases}0.275(18) \mathrm{GeV}^{-1} & (\mathrm{LMD}) \\ 0.273(24) \mathrm{GeV}^{-1} & (\mathrm{LMD}+\mathrm{V})\end{cases}
$$

(combined chiral and continuum extrapolation)
\Rightarrow agrees well with theoretical expectation $\alpha=1 /\left(4 \pi^{2} F_{\pi}\right)=0.274 \mathrm{GeV}^{-1}$

* Results for π^{0} contribution to hadronic light-by-light scattering:

$$
\left(a_{\mu}^{\mathrm{hlbl}}\right)_{\pi^{0}}=\left\{\begin{array}{ll}
(68.2 \pm 7.4) \cdot 10^{-11} & (\mathrm{LMD}) \\
(65.0 \pm 8.3) \cdot 10^{-11} & (\mathrm{LMD}+\mathrm{V})
\end{array}\right. \text { Preliminary }
$$

\Rightarrow agrees well with phenomenological studies

Summary

Can lattice QCD deliver estimates with sufficient accuracy?

$$
\delta a_{\mu}^{\mathrm{hvp}} / a_{\mu}^{\mathrm{hvp}}<0.5 \%, \quad \delta a_{\mu}^{\mathrm{hbl}} / a_{\mu}^{\mathrm{hbl}} \lesssim 10 \%
$$

Summary

Can lattice QCD deliver estimates with sufficient accuracy?

$$
\delta a_{\mu}^{\mathrm{hvp}} / a_{\mu}^{\mathrm{hvp}}<0.5 \%, \quad \delta a_{\mu}^{\mathrm{hbl}} / a_{\mu}^{\mathrm{hbl}} \lesssim 10 \%
$$

Hadronic Vacuum Polarisation:

- Statistical accuracy limited by disconnected diagrams
- Disconnected contributions: $\lesssim 1 \%$
- Finite-volume effects:

$$
3-7 \% \text { for } m_{\pi} \simeq 140 \mathrm{MeV}, m_{\pi} L \sim 4
$$

- Charm quark contribution: 2\% (lattice artefacts)

Summary

Can lattice QCD deliver estimates with sufficient accuracy?

$$
\delta a_{\mu}^{\mathrm{hvp}} / a_{\mu}^{\mathrm{hvp}}<0.5 \%, \quad \delta a_{\mu}^{\mathrm{hlbl}} / a_{\mu}^{\mathrm{hbl}} \lesssim 10 \%
$$

Hadronic Vacuum Polarisation:

- Statistical accuracy limited by disconnected diagrams
- Disconnected contributions: $\lesssim 1 \%$
- Finite-volume effects:
- Charm quark contribution: 2\% (lattice artefacts)

Hadronic Light-by-Light Scattering:

- Statistical accuracy: $\approx 10 \%$ (connected)
- Disconnected contributions can be resolved
- Phenomenological models can be verified

Spares

Anomalous magnetic moment of the muon

Hadronic Vacuum Polarisation and Dispersion Theory

$$
a_{\mu}^{\mathrm{hvp}}=\left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2}\left\{\int_{m_{\pi}^{2}}^{E_{\mathrm{cut}}^{2}} d s \frac{R_{\mathrm{had}}^{\mathrm{data}}(s) \hat{K}(s)}{s^{2}}+\int_{E_{\mathrm{cut}}^{2}}^{\infty} d s \frac{R_{\mathrm{had}}^{\mathrm{pQCD}}(s) \hat{K}(s)}{s^{2}}\right\}
$$

* Relies on experimental data for hadronic cross section $R_{\text {had }}\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$

* New measurements of pion form factor by BESIII confirm 3.6 σ tension
[BESIII Collaboration (M. Ablikim et al.), Phys Lett B753 (2016) 629]

Anomalous magnetic moment of the muon

Hadronic Vacuum Polarisation and Dispersion Theory

$$
a_{\mu}^{\mathrm{hvp}}=\left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2}\left\{\int_{m_{\pi}^{2}}^{E_{\mathrm{cut}}^{2}} d s \frac{R_{\mathrm{had}}^{\mathrm{data}}(s) \hat{K}(s)}{s^{2}}+\int_{E_{\mathrm{cut}}^{2}}^{\infty} d s \frac{R_{\mathrm{had}}^{\mathrm{pQCD}}(s) \hat{K}(s)}{s^{2}}\right\}
$$

* Relies on experimental data for hadronic cross section $R_{\text {had }}\left(e^{+} e^{-} \rightarrow\right.$ hadrons $)$

* Re-analysis of BaBar data in progress

Future measurements

* Fermilab E989 (Storage ring of BNL E821)

- 20 times larger data sample
- better field calibration
- target precision of 0.14 ppm
* J-PARC E34
- ultra-cold muon beam
- 66 cm magnetic storage ring
- measure a_{μ} alongside d_{μ}
- target precision of 0.1 ppm

Disconnected Contributions

* Monitor saturation of:

$$
\begin{aligned}
& L_{T}=\sum_{x_{0}=0}^{T} w\left(x_{0}\right) D^{\ell s}\left(x_{0}\right) \xrightarrow{T \rightarrow \infty}\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} \\
& w\left(x_{0}\right)=4 \alpha^{2} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} f\left(Q^{2}\right)\left\{Q^{2} x_{0}^{2}-4 \sin ^{2}\left(\frac{1}{2} Q x_{0}\right)\right\}
\end{aligned}
$$

[T. Blum et al., PRL 116 (2016) 232002]

[Gülpers et al., in preparation]

Disconnected Contributions

* Monitor saturation of:

$$
\begin{aligned}
& L_{T}=\sum_{x_{0}=0}^{T} w\left(x_{0}\right) D^{\ell s}\left(x_{0}\right) \xrightarrow{T \rightarrow \infty}\left(a_{\mu}^{\mathrm{hvp}}\right)_{\text {disc }} \\
& w\left(x_{0}\right)=4 \alpha^{2} \int_{0}^{\infty} \frac{d Q^{2}}{Q^{2}} f\left(Q^{2}\right)\left\{Q^{2} x_{0}^{2}-4 \sin ^{2}\left(\frac{1}{2} Q x_{0}\right)\right\}
\end{aligned}
$$

[T. Blum et al., PRL 116 (2016) 232002]

[Gülpers et al., in preparation]

Disconnected Contributions: Results Summary

* Non-zero disconnected contribution can be resolved

	$\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} /\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{con}}^{\ell \ell}$	$\left(a_{\mu}^{\mathrm{hvp}}\right)_{\mathrm{disc}} \cdot 10^{10}$	$\Pi^{\mathrm{disc}} / \Pi^{\mathrm{con}}$	Statistics
HPQCD	$-0.14(5) \%$	≈-0.84		$N_{\mathrm{cfg}}=553, N_{\mathrm{dist}}=162$
RBC/UKQ.CD	$-1.6(7) \%$	$-(9.6 \pm 3.3 \pm 2.3)$		$N_{\mathrm{inv}}=11.3 \mathrm{k}$, $N_{\mathrm{ev}}=2000$
CLS/Mainz	$-0.0032(11) \%$	$-(0.019 \pm 0.07)$		$N_{\mathrm{inv}}=4800 \mathrm{k}$
Ball \& Endródi			$-(3.6 \pm 4.5) \cdot 10^{-4}$	$N_{\mathrm{inv}}=20 \mathrm{k}$

HPQCD: Anisotropic Clover action; $m_{\pi}=391 \mathrm{MeV} ; a_{s} \approx 0.12 \mathrm{fm}$; Distillation
RBC/UKQCD: Domain wall fermions; physical pion mass; $a \approx 0.11 \mathrm{fm}, m_{\pi} L \approx 3.9$; Low-mode averaging, AMA
CLS/Mainz: $N_{\mathrm{f}}=2$ Clover fermions; $m_{\pi}=311,437 \mathrm{MeV} ; a=0.063 \mathrm{fm}$; HPE; 3D stochastic noise sources

Bali \& Endrődi: Rooted staggered fermions; physical pion mass; $a=0.1-0.29 \mathrm{fm} ; 4 \mathrm{D}$ stochastic noise sources

Finite-volume effects: taste breaking

* Uncertainty in finite-volume shifts as a function of average taste splitting:

* Physical pion mass:

$$
a_{\mu}^{\mathrm{hvp}}(\infty)-a_{\mu}^{\mathrm{hvp}}(L)=(7.0 \pm 0.7) \%
$$

[^0]: [Hanno HORCH, TUE 14:40; Della Morte et al., in preparation]

