A simple method to optimize HMC performance

Andrea Bussone

27 July 2016

<u>CP³Origins</u>

Collaborators: V. Drach, M. Della Morte, C. Pica, A. Hietnanen, J. Rantaharju, M. R. L. Hansen

Plan of the talk

- 2 Poisson Bracket measurement
 - Benchmarks
- 3 Bulding the cost of a simulation
 - Variances
 - Matrix Vector Multiplications
 - Minimum cost of a simulation
- Comparison with actual simulations
 - Preliminary results
- 5 Conclusions
 - Conclusions and outlook

Poisson Bracket measurement Bulding the cost of a simulation Comparison with actual simulations Conclusions

Introduction

Poisson Bracket measurement Bulding the cost of a simulation Comparison with actual simulations Conclusions

Motivations & Set-up

HMC algorithms have a large number of parameters

- Integrators: Omelyan α , ...
- Mass preconditioning: Hasenbusch mass μ , ...
- Multi-time scale integration: n, m, k, \ldots

Optimize them it is not an easy task!

[Urbach et al. Comput. Phys. Commun. 174 (2006) 87]

Remark: In BSM strongly interacting theories, changing fermion representation, forces hierarchy may be different from QCD

Model under investigation:

- SU(2) gauge group
- unimproved Wilson fermion in the fundamental representation
- $\beta = 2.2$, $m_0 = -0.72$, $m_{
 m cr} \simeq 0.75(1)$ (no mass dependence study)

Poisson Bracket measurement Bulding the cost of a simulation Comparison with actual simulations Conclusions

Simulation cost and integrator choice

We define the Cost of a simulation

$$\mathsf{Cost} = \frac{\#\mathsf{MVM}}{P_{\mathrm{acc}}}$$

· · · · #MVM is machine independent

 $P_{\rm acc}(\underline{x}) \gtrsim 60 - 70\%$ Creutz formula (neglect autocorrelation)

The goal is to minimize the cost! \rightarrow OPTIMIZATION PROBLEM

Omelyan integrator

$$\exp\left(\alpha\delta\tau S\right) \underbrace{\exp\left(\frac{\delta\tau}{2}T\right)}_{\text{exp}\left((1-2\alpha)\delta\tau S\right)} \exp\left(\frac{\delta\tau}{2}T\right) \underbrace{\exp\left(\alpha\delta\tau S\right)}_{\text{exp}\left(\alpha\delta\tau S\right)}$$

[Omelyan et al. Comput. Phys. Commun. 151 (2003) 272-314]

Poisson Bracket measurement Bulding the cost of a simulation Comparison with actual simulations Conclusions

Basic definitions

Shadow Hamiltonian

For any symplectic integrator it exists an exactly conserved Hamiltonian

[Kennedy et al. Phys. Rev. D 87 (2013) no.3]

Shadow Hamiltonian is found through BCH asymptotic expansion in $\delta \tau$

$$\widetilde{H} = H + \delta\tau^2 \left(\frac{6\alpha^2 - 6\alpha + 1}{12} \underbrace{[S, [S, T]]}_{\text{Poisson bracket}} + \frac{6\alpha - 1}{24} [T, [T, S]] \right)$$

By setting $\alpha=1/6$ and $\,{\cal T}=\pi^2/2$ we have

$$\delta H \equiv \frac{\delta \tau^2}{72} [S, [S, T]] \equiv \frac{\delta \tau^2}{72} |\mathcal{F}|^2 = \frac{\delta \tau^2}{72} \sum_{x, \mu, a} T_{\mathcal{R}} (F^a_\mu(x))^2$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < ○ < ○

Benchmarks

Poisson Bracket measurement

Benchmarks

Integrator set-up

Mass preconditioning definitions

D = massless Dirac operator, $D_m = D + m$, $Q = \gamma_5 D_m$

We split the fermion determinant for a doublet as

$$|\det Q|^2 = \det(DD^{\dagger} + \mu^2) \det\left(rac{Q^2}{DD^{\dagger} + \mu^2}
ight)$$

We introduce two kind of pseudofermions with action

$$S[\phi_1, \phi_2; U] = \underbrace{\phi_1^{\dagger}(DD^{\dagger} + \mu^2)^{-1}\phi_1}_{\text{HMC}} + \underbrace{\phi_2^{\dagger}\left(\frac{Q^2}{DD^{\dagger} + \mu^2}\right)^{-1}\phi_2}_{\text{Hasenbusch}}$$

Benchmarks

Integrator set-up

Benchmark: Scaling behaviour

Benchmarks

Integrator set-up

Benchmark: ΔH Approximation

$$\widetilde{H} = H + \delta H \Longrightarrow \Delta H = -\Delta(\delta H) \propto |\mathsf{Force}|^2$$

The minimum scales as predicted as the bound is saturated

n = 10

n = 20

Variances Matrix Vector Multiplications Minimum cost of a simulation

Bulding the cost of a simulation

Variances Matrix Vector Multiplications Minimum cost of a simulation

Cost of a simulation

Acceptance relation

[Gupta et al. Phys. Lett. B 242 (1990) 437]

[Clark et al. PoS LATTICE 2008 (2008) 041]

$$P_{\rm acc}(\Delta H) = \operatorname{erfc}\left(\sqrt{\operatorname{Var}\left(\Delta H\right)/8}\right) \qquad \operatorname{Var}\left(\Delta H\right) \simeq 2\operatorname{Var}\left(\delta H\right)$$
$$\swarrow P_{\rm acc}(\operatorname{Var}\left(\delta H\right)) = \operatorname{erfc}\left(\sqrt{\operatorname{Var}\left(\delta H\right)}/4\right)$$

 $2^{\rm nd}$ order Omelyan integrator with $\alpha=1/6$ and three-time scale Neglecting covariances

$$\mathsf{Var}\left(\delta \mathcal{H}\right) \simeq \frac{\delta \tau^4}{(72)^2} \left[\mathsf{Var}\left(|\mathcal{F}_1|^2\right)(\mu) + \frac{\mathsf{Var}\left(|\mathcal{F}_2|^2\right)(\mu)}{(4m^2)^2} + \frac{\mathsf{Var}\left(|\mathcal{F}_3|^2\right)(\mu)}{(16m^2k^2)^2} \right]$$

Idea: The *n*, *m*, *k*-dependence of the variances is known and they depend only on μ at a fixed mass m_0

Variances Matrix Vector Multiplications Minimum cost of a simulation

12

Cost of a simulation

Variance fits

Variances Matrix Vector Multiplications Minimum cost of a simulation

Cost of a simulation

Matrix Vector Multiplications fits

$MVM = (2n + 1) # MVM_1(\mu) + 2n(2m + 1) # MVM_2(\mu)$

Idea: The *n*, *m*-dependence of the MVMs is known and they depend only on μ at a fixed mass m_0

Variances Matrix Vector Multiplications Minimum cost of a simulation

Cost of a simulation

Minimum cost

Normalized to the minimum that is found around $(n, m, \mu) \simeq (5, 3, 0.3), \ k = 10$ fixed area in the line of $(n, m, \mu) \simeq (10, 3, 0.3), \ k = 10^{-1}$

Preliminary results

Comparison with actual simulations

Preliminary results

Cost of a simulation

Comparison with actual simulations, $m_0 = -0.72$, 299 cnfgs

We consider the agreement within 10% as a check of all our assumptions

Preliminary results

Cost of a simulation

Comparison with actual simulations, $m_0 = -0.72$, 299 cnfgs

Conclusions and outlook

Conclusions

Conclusions and outlook

Conclusions

Recipe

- Start with a *reasonable* choice for (n, m, k)
- Measure the forces in each level: $|\mathcal{F}_i|^2(\mu)$ and $Var(|\mathcal{F}_i|^2)(\mu)$
- Measure the number of MVM in each level
- By fitting the dependence in μ we predict dependence of the *acceptance* and the *cost* upon (n, m, k, μ) within 10%

Future Goals

- Mass dependence study
- Apply this optimizing method to other strongly interacting models (BSM)
- Paper in preparation

Back-up slides

・ロト・4回ト・4回ト・4回ト・4日ト

Number of configurations $m_0 = -0.72$

μ	# confs
0.05	66
0.1	67
0.15	86
0.2	102
0.25	93
0.3	101
0.35	107
0.4	113
0.45	88
0.5	91

μ	# confs
0.6	88
0.7	103
0.75	106
0.8	108
0.9	111
1	1176
1.5	79
2	1479
2.5	87
3	91

Acceptance and cost of the simulation $m_0 = -0.72$

