Coupled-Channel Analysis of $D\pi$, $D\eta$ and $D_s\overline{K}$ Scattering using Lattice **QCD**

Graham Moir

Hadron Spectrum Collaboration

University of Cambridge

28th July 2016

Lattice 2016, Southampton

Based on arXiv:1607.07093

Heavy-Light Mesons

Heavy-Light Mesons

Heavy-quark limit (HQL): $J = |L + s_q|$

Heavy-Light Mesons

Heavy-quark limit (HQL): $J = |L + s_q|$

Influence from thresholds? ۲ Ĵ⁺ Mass (MeV) Width (MeV) Meson 0^{+} $D_0^{\star}(2400)$ 2318(29) 267(40) First principles $D_{s0}^{\star}(2317)$ 0^{+} 2317.6(6)< 3.8 understanding?

Scattering on the Lattice

- Lüscher method \Rightarrow finite-volume energy levels map out phase shift
- Resonances decay to multiple channels \Rightarrow coupled-channel extensions

Coupled-Channel Lüscher Method

Finite-volume spectrum is given by energies solving

$$\det\left[t_{ij}^{-1}(E)+\mathcal{M}_{ij}(E,L)\right]=0$$

- *i*, *j* label channels $(D\pi, D\eta, D_s \overline{K})$
- $t_{ij}(E)$ is the infinite-volume scattering *t*-matrix ... mixes channels
- $\mathcal{M}_{ij}(E, L)$ are known finite-volume functions ... mixes partial waves

Scattering on the Lattice

- Lüscher method \Rightarrow finite-volume energy levels map out phase shift
- Resonances decay to multiple channels \Rightarrow coupled-channel extensions

Coupled-Channel Lüscher Method

Finite-volume spectrum is given by energies solving

$$\det\left[t_{ij}^{-1}(E)+\mathcal{M}_{ij}(E,L)\right]=0$$

- *i*, *j* label channels $(D\pi, D\eta, D_s \overline{K})$
- $t_{ij}(E)$ is the infinite-volume scattering *t*-matrix ... mixes channels
- $\mathcal{M}_{ij}(E, L)$ are known finite-volume functions ... mixes partial waves

Idea: Use the lattice QCD spectrum to obtain the infinite volume t-matrix

Scattering on the Lattice - Tackling Coupled-Channels

The bad news

- *N* coupled-channels \Rightarrow *t*-matrix has $(N^2 + N)/2$ unknowns (per energy level)
- This is a very under-constrained problem

A work-around

- Parametrise the *t*-matrix using a "few" free parameters
- Use many more than a "few" lattice QCD energy levels to constrain t(E)

We want to

- Preserve *S*-matrix unitarity
- Analytically continue into the complex $s = E_{cm}^2$ plane
- Examine the pole content of the parametrised *t*-matrix (least analysis-dependent way of comparing between different calculations!)

Scattering on the Lattice - Tackling Coupled-Channels

A *convenient choice* is given by a \mathcal{K} -matrix description

$$t_{ij}^{-1}(s)=\mathcal{K}_{ij}^{-1}(s)+\mathcal{I}_{ij}(s)$$

Preservation of unitarity

- Above kinematic threshold: $\text{Im}[\mathcal{I}_{ij}(s)] = -\delta_{ij}\rho_i(s)$
- Below kinematic threshold: $\text{Im}[\mathcal{I}_{ij}(s)] = 0$

Flexibility in $\operatorname{Re}[\mathcal{I}_{ij}(s)]$

- Zero above kinematic threshold
- Chew-Mandelstam prescription

Most freedom comes from parametrising $\mathcal{K}_{ij}(s)$, for example,

$$\mathcal{K}_{ij}(s) = \sum_{p} \frac{g_i^{(p)} g_j^{(p)}}{m_p^s - s} + \sum_{n} \gamma_{ij}^{(n)} s^n$$

Scattering on the Lattice - Tackling Coupled-Channels

A convenient choice is given by a \mathcal{K} -matrix description

$$t_{ij}^{-1}(s)=\mathcal{K}_{ij}^{-1}(s)+\mathcal{I}_{ij}(s)$$

Preservation of unitarity

- Above kinematic threshold: $\text{Im}[\mathcal{I}_{ij}(s)] = -\delta_{ij}\rho_i(s)$
- Below kinematic threshold: $\text{Im}[\mathcal{I}_{ij}(s)] = 0$

Flexibility in $\operatorname{Re}[\mathcal{I}_{ij}(s)]$

- Zero above kinematic threshold
- Chew-Mandelstam prescription

Most freedom comes from parametrising $\mathcal{K}_{ij}(s)$, for example,

$$\mathcal{K}_{ij}(s) = \sum_{p} \frac{g_i^{(p)} g_j^{(p)}}{m_p^s - s} + \sum_{n} \gamma_{ij}^{(n)} s^n$$

Also use other parametrisations such as Breit-Wigner and Effective Range Expansion

Extracting Finite-Volume Energy Levels

Solve a GEVP for a matrix of 2-pt functions constructed using

- Ø Distillation
 - Improves overlap with low-lying states
 - Efficient re-use of perambulators
- **②** Large bases of interpolating operators for each irrep $[\vec{P}]\Lambda$
 - "Single-meson" ~ $\bar{\psi}\Gamma D \dots \psi$ with up to 3 derivatives for $\vec{P} = 0$ (2 for $\vec{P} \neq 0$)
 - "Two-meson" ~ $\Omega_{\vec{p_1}}^{(1)\dagger} \Omega_{\vec{p_2}}^{(2)\dagger}$ for variationally optimised "single-mesons" $\Omega_{\vec{p}}^{(i)\dagger}$

$[000]A_1^+$	[001]A ₁	[011]A ₁	[111]A ₁
$\begin{array}{c} D_{000} \pi_{000} \\ D_{001} \pi_{00-1} \\ D_{011} \pi_{0-1-1} \\ * D_{111} \pi_{-1-1-1} \\ D_{000} \eta_{000} \\ D_{001} \eta_{00-1} \\ * D_{011} \eta_{0-1-1} \\ D_{s} 000 \\ K_{000} \\ D_{s} 001 \\ K_{00-1} \\ * \\ D_{s} 011 \\ K_{0-1-1} \end{array}$	$\begin{array}{c} D_{001} \pi_{000} \\ D_{000} \pi_{00-1} \\ D_{011} \pi_{00-1} \\ D_{011} \pi_{0-1-1} \\ D_{011} \pi_{0-1-1} \\ D_{011} \pi_{0-1-1} \\ D_{011} \pi_{0-1-1} \\ D_{001} \pi_{000} \\ D_{000} \pi_{00-1} \\ D_{001} \pi_{00-1} \\ D_{001} \pi_{00-1} \\ D_{000} \pi_{00-1} \\ D_{000} \kappa_{00-1} \\ D_{s} 000 \kappa_{00-1} \\ D_{s} 001 \kappa_{00-1} \\ \end{array}$	$\begin{array}{c} D_{011}\pi_{000} \\ D_{000}\pi_{0.1-1} \\ D_{001}\pi_{0.10} \\ D_{011}\pi_{-1.10} \\ D_{011}\pi_{-1.1-1} \\ D_{001}\pi_{-1.1-1} \\ D_{010}\pi_{0.1-1} \\ D_{010}\eta_{0.1-1} \\ D_{001}\eta_{0.10} \\ D_{000}\eta_{0.1-1} \\ D_{5}\eta_{-1}\pi_{000} \\ D_{5}\eta_{00}\pi_{0.1-1} \\ D_{5}\eta_{01}\pi_{00-1} \end{array}$	$\begin{array}{c} D_{111}\pi_{000}\\ D_{000}\pi_{:1-1-1}\\ D_{011}\pi_{:100}\\ D_{002}\pi_{:1-1-1}\\ D_{111}\pi_{:002}\\ D_{111}\pi_{:002}\\ D_{000}\eta_{:1-1-1}\\ D_{001}\eta_{:1-10}\\ D_{001}\eta_{:1-10}\\ D_{5}011K_{:000}\\ D_{5}001K_{:1-1-1}\\ D_{5}011K_{:100}\\ D_{5}001K_{:1-10}\\ \end{array}$
$(\bar{\psi} \Gamma \psi) \times 11$	$(\bar{\psi} \Gamma \psi) \times 32$	$(\bar{\psi} \Gamma \psi) \times 52$	$(\bar{\psi} \Gamma \psi) \times 37$

Calculations are performed on anisotropic $N_f = 2 + 1$ ensembles generated by the **Hadron Spectrum Collaboration**

Anisotropic actions

- Gauge: Symanzik-improved (tree-level tadpole improvement)
- Fermionic: Sheikholeslami-Wohlert (tree-level clover coefficients)

Anisotropy: $\xi = a_s/a_t \approx 3.5$, where $a_s \approx 0.12$ fm

Pion mass: $M_{\pi} \approx 391$ MeV

Volumes:

•
$$L = 16^3 \times 128 \Rightarrow M_{\pi}L \approx 3.8$$
 (479 cfgs)

•
$$L = 20^3 \times 128 \Rightarrow M_{\pi}L \approx 4.8$$
 (603 cfgs)

• $L = 24^3 \times 128 \Rightarrow M_{\pi}L \approx 5.7$ (553 cfgs)

Finite-Volume Energy Levels

Finite-Volume Energy Levels

Finite-Volume Energy Levels

Elastic $D\pi$ *Scattering*

- $\bullet~$ All irreps with $\ell=0,1$
- Minimise χ^2 describing difference between *parametrised* and lattice QCD spectra
- "Pole + constant" \mathcal{K} -matrix in *S* and *P*-wave: $\chi^2/N_{dof} = \frac{44.2}{33-6} = 1.64$
- *ik*^{2ℓ+1} (dashed curves) intersects at location of sub-threshold poles

Elastic $D\pi$ **Scattering**

Parametrisation $\chi^2/N_{\rm dof}$ K-matrix with Chew-Mandelstam I(s) & $K_1 = \frac{g_1^2}{m^2 - \epsilon} + \gamma_1$ $K = \frac{g^2}{m^2 - \epsilon} + \gamma^{(0)}$ 1.64 $K = \frac{g^2}{m^2 - s} + \gamma^{(1)}s$ 1.63 $K = \frac{(g^{(1)})^2 s}{2} + \gamma^{(0)}$ 1.64 $K = \frac{(g+g^{(1)})^2 s}{m^2}$ 1.66K-matrix with Chew-Mandelstam I(s) & $K_1 = \frac{g_1^2}{m_{s-s}^2}$ $K = \frac{g^2}{m^2} + \gamma^{(0)}$ 1.82 $K = \frac{g^2}{m^2} + \gamma^{(1)}s$ 1.82K-matrix with $I(s) = -i\rho(s) \& K_1 = \frac{g_1^2}{m^2 - s} + \gamma_1$ $K = -\frac{g^2}{2} + \gamma^{(0)}$ 1.61 $K = \frac{g^2}{m^2} + \gamma^{(1)}s$ 1.64K-matrix with $I(s) = -i\rho(s)$ & $K_1 = \frac{g_1^2}{m_s^2 - s}$ $K = \frac{g^2}{m^2} + \gamma^{(0)}$ 1.81 $K = -\frac{g^2}{2} + \gamma^{(1)}s$ 1.80Effective range expansion in $\ell = 0$ & $K_1 = \frac{g_1^2}{m^2 - s} + \gamma_1$ $k_{D\pi} \cot \delta_0^{D\pi} = \frac{1}{2} + \frac{1}{2}r^2k_{D\pi}^2 + P_2k_{D\pi}^4$ 1 91 $a_t \sqrt{s_{\text{pole}}}$ 0.4016 0.4014 0.4018

 \mathcal{K} -matrix in S and P-wave including all $\ell = 0, 1$ irreps: $\chi^2/N_{dof} = \frac{61.6}{47-11} = 1.71$

$$t_{jj}=rac{\eta_j e^{2i\delta_j}-1}{2i
ho_j}$$

S-wave pole on real-axis: $\sqrt{s_{pole}} = 0.40161(15)$ $t_{ij} \sim c_i c_j / (s_{pole} - s)$ Couplings: $a_t c_{D\pi} = 0.097(28)$; $a_t c_{D\eta} = 0.077(23)$; $a_t c_{D_s \bar{K}} = 0.039(15)$.

Finite-Volume Energies

$$\ell = 2, 3, ..$$

D-wave resonance pole on all sheets with Im[k_{Dπ}] < 0

Summary and Outlook

- First *ab-initio* coupled-channel scattering calculation including heavy quarks
- Summary of isospin-1/2 channel:

• Also explored isospin-3/2 elastic $D\pi$ scattering (ask if interested)

Outlook:

- DK scattering (C. Thomas next)
- Pole dependence on the light quark mass
- Begin to address the "XYZ's"?

Graham Moir

Isospin-3/2: Finite-Volume Energy Levels

Isospin-3/2: $D\pi$ *Phase-Shift*

