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The goal of this project is to compute the NP running of the quark masses with Nf=3 in the SF 
with a crucial control on systematics and high accuracy in a large range of scales: from the EW 
scale down to an hadronic scale to make contact with large volume simulations. 

The computational cost of measuring the SF coupling grows fast at low energies and in particular 
towards the continuum limit. Thus it is challenging to reach the low energy domain characteristic 
of hadronic physics, especially if one aims at maintaining the high precision.
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The GF coupling seems to be better suited for this task. The relative precision of the coupling in 
this scheme is typically high and shows a weak dependence on both the energy scale and the 
cutoff. 

Since this work is a joint project with the one of the running coupling by ALPHA we follow the 
same strategy they have been using.
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RG Equations

Renormalization Group functions for the coupling and mass are given by 

they admit a perturbative expansion as 

where d0, b0, b1 are the only scheme independent coefficients  

The RG evolution between two scales              is then 
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We than introduce the Renormalization Group Invariant (RGI) quantities,  
formal solution of the RG equations as
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ZP (g0, L/a)
fP (L/2)p

3f1
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SF Renormalization Scheme

The SF renormalization condition is imposed at vanishing quark mass

✓ = 0.5

�P (u) = lim
a!0

⌃P (u, g0, L/a)⌃P (u, g0, L/a) =
ZP (g0, 2L/a)

ZP (g0, L/a)

����
u=ḡ2(L)

The correlation functions entering the definition above are given by

The lattice version of the SSF is than defined as the ratio of renormalization constants 
at     and       identifying                   and for L 2L µ = L�1

uSF = [1.1100, 1.1844, 1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120]

M.Luscher et al.  
Nucl.Phys. B582 (2000) 

 
M.Della Morte et al.  

Nucl.Phys. B729 (2005)

s = 2
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M.Luscher et al.
Nucl.Phys. B384 (1992)

fP (x0)

f1

uGF = [2.1257, 2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010, 5.8673, 6.5489]
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We consider lattices 

Since the switching!
scale between the two 
schemes is defined at 

in order to have a better 
control on the continuum  
extrapolation we consider also  
the step 16 ! 32

ḡ2SF (L0) = 2.012

2L/a = [12, 16, 24]

SEE TALK BY: 
S.Sint

1607.06423 [hep-lat]
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where  �(a/L) are the 1-loop  
SSF cutoff effects.

Sint and Weisz 
[Nucl.Phys. B545 (1999) 529-542]



Continuum Extrapolation GF ⌃P (u, a/L) = �P (u) + ⇢0(u)(a/L)2

L/a = [8, 12, 16]

2L/a = [16, 24, 32]

Due to the large cutoff effect 
induced by the GF coupling 
we use larger lattices respect  
to the ones used in SF

ḡ2GF (2L0) = 2.6723(64)

From the GF side, the switching 
scale is defined by

SEE TALK BY: 
A.Ramos,

1607.06423 [hep-lat]
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pPT
1 = �d0 ln(2)�P (u) = 1 + p1u+ p2u

2 + p3u
3 + p4u

4 + . . .

Step Scaling Functions

In order to be able to compute the running we have to fit the SSF. It can be fitted as a polynomial  
where the first coefficient is fixed by perturbation theory 

another equivalent strategy adopted in this project for the first time is to fit directly for an  
NP    with the universal coefficient fixed to PT.⌧

where the NP effective      is used as an input in this analysis:�

and the anomalous dimension is fitted as a polynomial with LO and NLO coefficients 
fixed to PT in the SF side.

SEE TALK BY: 
A.Ramos,

1607.06423 [hep-lat]
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Step Scaling Functions
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NP Mass Anomalous Dimension SF & GF
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⌧(g) = �g2(d0 + d1g
2 + d2g

4 + . . . )



NP Running: strategy

M
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=
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����
GF

The running from an hadronic scale identified by           can be written as Lhad

13Southampton, 26 July 2016



NP Running: strategy

M

m̄(Lhad)
=

M

m̄(Lpt)

����
SF

m̄(Lpt)

m̄(L0)

����
SF

m̄(L0)

m̄(2L0)

����
SF

m̄(2L0)

m̄(Lhad)

����
GF

Lpt =
L0

2N
M

m̄(Lpt)
= (2b0ḡ

2
(Lpt))

�d0/(2b0)
exp

(
�
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The running from an hadronic scale identified by           can be written as Lhad

where each term explicitly is computed as it follows
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NP Running: strategy
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ui = ḡ2(2�iL0)
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NP Running: strategy
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The running from an hadronic scale identified by           can be written as Lhad

where each term explicitly is computed as it follows

ui = ḡ2(2�iL0)

Connection with 
GF scheme 

m̄(L0)

m̄(2L0)

����
SF

= �P (u0) u0 = ḡ2(L0) = 2.012
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NP Running: strategy

Connection with 
GF scheme 
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The running from an hadronic scale identified by           can be written as Lhad

where each term explicitly is computed as it follows

ui = ḡ2(2�iL0)

(this procedure is alternative  
to the usual SSF recursion)

m̄(L0)

m̄(2L0)

����
SF

= �P (u0) u0 = ḡ2(L0) = 2.012
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NP Running: results

M

m̄(L0)
= 1.9163(42) rel err = 0.2%SSF recursion

NP ⌧,�
M

m̄(L0)
= 1.9156(50) rel err = 0.3%

The connection with PT at NLO has been performed at  

uhad = 5.3010

SF

SF+GF

1/L0 ⇠ 4GeV

Two strategy for computing the NP running have been applied, the usual fit of the SSF and the  
extraction of the effective anomalous dimension for the mass. Both procedure agree.

In order to go below   2L0 it is than required to switch the scheme to the one denoted by  the GF coupling.
The largest renormalized GF coupling we are considering that will allow us to make 
contact with CLS large volume simulations have been estimated to be                     

m̄(Lpt)

m̄(L0)
= 0.7949(13)

m̄(Lpt)

m̄(L0)
= 0.7946(21)

upt = ḡ2SF (Lpt = 2�4L0) = 1.19187(510) ⇠ 64GeV

m̄(2L0)

m̄(Lhad)
= 0.5184(42)

ḡ2(Lhad) = �(uhad) = 9.3812

M

m̄(Lhad)
= 0.9088(78) rel err = 0.9%

Lhad

L0
= 18.74(26)

⇠ 213MeV

SEE TALK BY: 
A.Ramos,

1607.06423 [hep-lat]!
&

R.Sommer

NP ⌧,�

Preliminary
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Lhad

Lhad

Lpt
= 300(4)



• We have computed the NP running quark mass for Nf=3 between !
                and                 with an uncertainty  
!

• For the first time we dealt with two schemes, providing a strategy for a 
NP matching between them at the intermediate scale of   

• We are also providing for the first time an ”effective” NP anomalous 
dimension for both SF and GF-based schemes allowing to chose        

           in a broad range of values. What has been showed here is just one 

Conclusions & Outlook

⇠ 200MeV ⇠ 60GeV

⇠ 2GeV

. 1%

• The next point in the project is the matching with large volume betas 
!

• Along with the mass project we have collected data for applying the 
same strategy to the Tensor current the only other bilinear with an 
independent anomalous dimension.

19Southampton, 26 July 2016

illustration pushing toward the lowest possible value of the hadronic 
matching scale.

Lhad



Backup
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SF Renormalization Scheme

The SF renormalization condition is imposed at vanishing quark mass
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The correlation functions entering the definition above are given by

The lattice version of the SSF is than defined as the ratio of renormalization constants 
at     and       identifying                   and for L 2L µ = L�1

uSF = [1.1100, 1.1844, 1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120]

M.Luscher et al.  
Nucl.Phys. B582 (2000) 

 
M.Della Morte et al.  

Nucl.Phys. B729 (2005)

s = 2
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uGF = [2.1257, 2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010, 5.8673, 6.5489]



Two Schemes, Two Regions, More fun

uSF = [1.1100, 1.1844, 1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120]

uGF = [2.1257, 2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010, 5.8673, 6.5489]
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�0(g0R) =

⇢
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@g0R
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⌧ 0(g0R) =

⇢
⌧(gR) + �(gR)

@

@gR
ln�m(gR)

�

gR=gR(g0
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The peculiarity of this work is to consider two different renormalization scheme for the couplings

High 
Low

d01 = d1 + 2b0�
(1)
m � d0�

(1)
g�(gR)

gR!0⇠ 1 +
1X

k=1

�(k)g2kR

but same renormalization condition for the mass! 

A change of scheme for both coupling and mass can be written  
in terms of the differences of finite parts �

At 1-loop for instance one can easily see how the NLO anomalous dimension vary from one  
scheme to another due to a change of scheme in the renormalized coupling through the finite 
parts �(1)

g

Sint and Weisz 
[Nucl.Phys. B545 (1999) 529-542]

Since we do not know the perturbative finite parts from GF and we do not want to rely on PT  
at                           we perform a NP matching                            2L0 ⇠ mb/2

22Southampton, 26 July 2016



Systematic Errors

Sint and Weisz 
[Nucl.Phys. B545 (1999) 529-542]ct, c̃t do not contribute at 1-loop for �P (u)

Still under investigation  �ui
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2016 Internal Notes 1 SYSTEMATICS FROM C IN ⌃P

1 Systematics from c in ⌃P

In order to quantify the dependence of ⌃P on the mass we can define

⌃

0
P =

1

L

@⌃P

@m

����
u,L

(1.1)

Nf u ⌃

0
P

2 0.9793 -0.0755(10)

2 2.4792 -0.1130(27)

3 2.012 -0.149(145)

Table 1: ⌃

0
P estimated on L = 6a for different Nf and u

Given the tuning precision to be |Lm| < 0.001 we can multiply the results from third row of table 1 times |Lm| in

order to obtain the variation of ⌃P respect to a shift in the mass. The resulting systematic error coming from  is

then ⇡ 0.00015(14) that is negligible respect to the the statistical error quoted in table 1.1 (red row, 3rd column).

In the worst case, combining the two squared errors, the total error on ⌃P would be ⇡ 0.00070 (probably still

compatible with the error of the error).

Detailed analysis for the runs can be found on ALTAMIRA: /gpfs/csic_projects/lqcd/production/dSigmaodm

 ⌃P �⌃P

0.135596 0.911969 0.000916

0.135584 0.911461 0.000889

0.135571 0.912560 0.000680

0.135559 0.911503 0.000819

0.135547 0.910348 0.000965

Figure 1.1: the row in red corresponds to the

critical point used for the contlim of the SSF
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Figure 1.2:
linear fit y=a+bx

�2/ndf = 0.906115
b=-0.896410(0.872059) a=0.911718(0.000373)

1

Given the tuning precision to be                              resulting systematic error coming from  

the tuning procedure is then                                that is negligible respect to the the statistical error

|Lm| < 0.001

⇠ 0.00015(14)

•  

•  

•  

but still under investigation  
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Systematics Tuning

Systematic uncertainties from tuning:

•   

�Z = g20

�����
1

f (0)
P

@f (0)
P

@m0
� 1

2f (0)
1

@f (0)
1

@m0

������m ⇠ O(10�4)

Same order as the error on Z 
BUT:

1-loop estimate:

c

�(⌃(u, a/L)) ⇠ O(10�5)

Lm < 0.001

⌃(u, a/L) = 1 + g20(Z
(1)(a/2L)� Z(1)(a/L)) +O(g40)
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Continuum Extrapolation SF ⌃P (u, a/L) = �P (u) + ⇢0(u)(a/L)2
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Nf=3 raw global A
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Nf=0

Continuum Extrapolation

Figure 8: Examples of continuum extrapolations of ΣP using Fit B. The dotted lines are the con-
tinuation of the fit functions to the data points for L/a = 6, which have been excluded from the fit.

The dependence of ΣP on the lattice spacing is modelled using the following fit
functions

Fit A : ΣP(u, a/L) = σP(u) + ρ(u) a/L (A.12)

Fit B : ΣP(u, a/L) = σP(u) + ρ′(u) a2/L2. (A.13)

In other words, we compare the approach to the continuum limit assuming that the
leading cutoff effects are either linear (Fit A) or quadratic (Fit B) in a/L. Fit A is mo-
tivated by the fact that not all O(a) improvement terms are known non-perturbatively.
As a safeguard against higher order cutoff effects, we exclude the data for ΣP obtained
on our coarsest lattices, i.e. for L/a = 6 from the fits.

The extrapolated values for σP(u) show no significant dependence on the fit ansatz
(Fit A or B) for all renormalized couplings u. The biggest effect is seen at the largest
coupling, i.e. u = 3.48, where the results for σP(3.48) obtained from either Fit A or B

27

u σP(u) ρ′(u) χ2/ndf

0.8873 0.9683(21) −0.19(21) 0.51
0.9944 0.9672(23) −0.28(23) 0.47
1.0989 0.9622(24) −0.24(24) 0.09
1.2430 0.9579(29) −0.36(28) 0.13
1.3293 0.9470(28) 0.23(28) 0.27
1.4300 0.9407(30) 0.21(27) 0.40
1.5553 0.9382(33) 0.11(33) 3.01
1.6950 0.9297(32) 0.36(33) 0.00
1.8811 0.9284(36) −0.50(37) 0.21
2.1000 0.9168(37) −0.16(37) 1.10
2.4484 0.8942(38) −0.01(39) 3.04
2.7700 0.8781(42) −0.44(41) 1.44
3.48 0.8451(55) −1.20(59) 1.05
3.48∗ 0.8483(50) −0.94(48) 0.26

Table 7: Continuum extrapolations of ΣP using Fit B

differ by one standard deviation. Such an effect may be statistical or systematic. To
test for the latter possibility, we consider the data for ΣP(3.48, a/L) obtained using
ct = c2−loop

t . Figure 8 demonstrates that cutoff effects of O(a) are reduced compared to
ct = c1−loop

t . Furthermore, Fit B applied to the data set for ct = c2−loop
t produces an

extrapolated value which is entirely consistent with the one obtained for ct = c1−loop
t . We

conclude that the small uncertainties which are present in the improvement coefficients
ct, c̃t are numerically unimportant, and that extrapolations using (a/L)2 terms as the
dominant scaling violation are justified. We emphasize that such a statement can only
be made for a given level of statistical accuracy. Furthermore we use only data for
L/a = 8, 12 and 16, with the last point already fairly close to the continuum limit.

For our best estimates we have taken the results from Fit B, obtained for the
standard one-loop result for ct, and excluding the data for L/a = 6. Typical examples
of extrapolations at selected values of u are shown in Fig. 8. The fit parameters for all
extrapolations using Fit B are shown in Table 7, where the point computed using the
two-loop expression for the improvement coefficient ct is marked by an asterisk.

B Error propagation in the scale evolution

In this appendix we provide further details about the numerical solution of the recursion
relations (5.3) and (5.7), the principal aim being to explain how precisely the errors on
the final results have been determined.

As discussed in Section 5, the calculation starts by fitting the data for the step

28

Nf=0 ⌃P (u, a/L) = �P (u) + ⇢0(u)(a/L)2

�(�
P

(2.100))
�
P

(2.100)
= 4h(1)

1
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Total error = stat+syst

u σP(u) χ2/ndf

0.9793 0.9654(9)(11) 2.16
1.1814 0.9527(11)(6) 0.47
1.5031 0.9413(16)(2) 0.01
2.0142 0.9174(16)(24) 3.58
2.4792 0.8871(23)(18) 0.54
3.3340 0.8384(35)(12) 0.20

Table 1: Continuum extrapolations of ΣP fitting the L/a = 8 and L/a = 12 data
to a constant. The first error is statistical. The second error is the difference
between the fit and the L/a = 8 results and will be added linearly as a systematic
error.

From Eq. (2.17) it follows immediately that

σP(u) =
m(µ)

m(µ/2)
for µ = 1/L , (3.2)

i.e. the step scaling function σP(u) describes the running of the renormalized quark
mass. We computed ΣP(u, a/L) at six values of the renormalized coupling u cor-
responding approximately to a range of box sizes of the order L = 10−2 fm . . . 1 fm
(or equivalently µ of the order 100 GeV . . . 1 GeV). At each value of u we simu-
lated three lattice resolutions L/a = 6, 8, 12 and the results for ZP and ΣP are
summarized in Table 7 in Appendix A. For the extrapolation to the continuum,
we fitted to a constant the two values of ΣP on the finer lattices, separately for
each coupling u. We then added linearly the difference between the fit and the
L/a = 8 result as a systematic error. The continuum estimates can be seen in
Fig. 2. Our data do not show any significant dependence on the lattice spac-
ing, as we could verify by trying different extrapolations (quadratic, linear in a).
This statement is based on the statistical accuracy that we could achieve. We re-
mark that also in the quenched approximation the cutoff effects were found to be
small [7] and there ΣP was computed at an even finer lattice resolution L/a = 16.
The continuum values of σP(u) are summarized in Table 1. In the last column
we list the χ2 divided by the number of degrees of freedom ndf of the fit. Their
average is close to the expected value of one.

In perturbation theory the step scaling function σP(u) has an expansion
σP(u) = 1 − ln(2)d0u + O(u2). In Fig. 3 our non–perturbative data for σP(u) are
conveniently plotted for comparison with perturbation theory. We relate σP(u) to

8

u σP(u) χ2/ndf

0.9793 0.9654(9)(11) 2.16
1.1814 0.9527(11)(6) 0.47
1.5031 0.9413(16)(2) 0.01
2.0142 0.9174(16)(24) 3.58
2.4792 0.8871(23)(18) 0.54
3.3340 0.8384(35)(12) 0.20

Table 1: Continuum extrapolations of ΣP fitting the L/a = 8 and L/a = 12 data
to a constant. The first error is statistical. The second error is the difference
between the fit and the L/a = 8 results and will be added linearly as a systematic
error.

From Eq. (2.17) it follows immediately that

σP(u) =
m(µ)

m(µ/2)
for µ = 1/L , (3.2)

i.e. the step scaling function σP(u) describes the running of the renormalized quark
mass. We computed ΣP(u, a/L) at six values of the renormalized coupling u cor-
responding approximately to a range of box sizes of the order L = 10−2 fm . . . 1 fm
(or equivalently µ of the order 100 GeV . . . 1 GeV). At each value of u we simu-
lated three lattice resolutions L/a = 6, 8, 12 and the results for ZP and ΣP are
summarized in Table 7 in Appendix A. For the extrapolation to the continuum,
we fitted to a constant the two values of ΣP on the finer lattices, separately for
each coupling u. We then added linearly the difference between the fit and the
L/a = 8 result as a systematic error. The continuum estimates can be seen in
Fig. 2. Our data do not show any significant dependence on the lattice spac-
ing, as we could verify by trying different extrapolations (quadratic, linear in a).
This statement is based on the statistical accuracy that we could achieve. We re-
mark that also in the quenched approximation the cutoff effects were found to be
small [7] and there ΣP was computed at an even finer lattice resolution L/a = 16.
The continuum values of σP(u) are summarized in Table 1. In the last column
we list the χ2 divided by the number of degrees of freedom ndf of the fit. Their
average is close to the expected value of one.

In perturbation theory the step scaling function σP(u) has an expansion
σP(u) = 1 − ln(2)d0u + O(u2). In Fig. 3 our non–perturbative data for σP(u) are
conveniently plotted for comparison with perturbation theory. We relate σP(u) to

8

Continuum Extrapolation Nf=2 ⌃P (u, a/L) = �P (u) + ⇢0(u)(a/L)2

2

�(�
P

(2.0142))
�
P

(2.0142)
= 4.4h(2)
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