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Introduction

The goal of this project is to compute the NP running of the quark masses with Nf=3 in the SF
with a crucial control on systematics and high accuracy in a large range of scales: from the EW
scale down to an hadronic scale to make contact with large volume simulations.

Since this work is a joint project with the one of the running coupling by ALPHA we follow the
same strategy they have been using.

The computational cost of measuring the SF coupling grows fast at low energies and in particular
towards the continuum limit. Thus it is challenging to reach the low energy domain characteristic
of hadronic physics, especially if one aims at maintaining the high precision.

The GF coupling seems to be better suited for this task. The relative precision of the coupling in
this scheme is typically high and shows a weak dependence on both the energy scale and the
cutoff.
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Two Schemes, Two Regions, More fun
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RG Equations

Renormalization Group functions for the coupling and mass are given by

dg dn
uﬁ — B(g) u% = 7(g)im

they admit a perturbative expansion as

B(g) = —g*(bo + b1g* + bag* +...) 7(g) = —g*(do + d1g* + dag* + ...)
where dg, bg, b1 are the only scheme independent coefficients

We than introduce the Renormalization Group Invariant (RGI) quantities,
formal solution of the RG equations as

9N by /(262) . —1/(2b05% (1)) 5(u) 1 1 b1
A= (bpg”) /¢ exp - dx W—Fbo?—b%—x

M /im(u) = (2bog® () ="/ 2) exp { /O " i [T(x) - @]}

B(x)  box

The RG evolution between two scales U, ,LL/Sis then

VEGS g
—ln(s)—/\/m ()
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RG Equations

Renormalization Group functions for the coupling and mass are given by

dg dn
ui — B(g) u% = 7(g)im

they admit a perturbative expansion as

B(g) = —g*(bo + b1g* + bag* +...) 7(g) = —g*(do + d1g* + dag* + ...)
where dg, bg, b1 are the only scheme independent coefficients

We than introduce the Renormalization Group Invariant (RGI) quantities,
formal solution of the RG equations as

72)=b1/(263) —1/(2605% (1)) 7 ! 1L _ b
A= (bpg”) /¢ exp - dx Wx)ijo?_b%_x

M /im(u) = (2bog® () ="/ 2) exp { /O " i [T(x) - @]}

B(x)  box

for s = 2 we have the “usual” definition of the SSFs

\/m dg
—In(2) = /ﬁ @
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M.Luscher et al.
Nucl.Phys. B384 (1992)

SF Renormalization Scheme

The SF renormalization condition is imposed at vanishing quark mass

M.Luscher et al. f (L/Q) 0
Nucl.Phys. B582 (2000)

y Zp(g0, L/a)=E 5 = ¢3(0,a/L) 6 =0.5

1

M.Della Morte et al.
Nucl.Phys. B729 (2005)

m=0

The correlation functions entering the definition above are given by
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The lattice version of the SSF is than defined as the ratio of renormalization constants
at I, and 2L identifying i = L~ and for s = 2

Zp(go,2L/a) ,
> L — ’ op(u) = lim Xp(u, go, L/a

usp = [1.1100, 1.1844, 1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120]
uar = [2.1257,2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010(5.8673, 6.5489
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Continuum Extrapolation SF

Yp(u,a/L) = op(u) + p'(u)(a/L)’

The 1-loop improved SSF are
defined as

EP(UH CL/L)
14+ d6(a/L)u
where §(a /L) are the 1-loop
SSF cutoff effects.

Sint and Weisz

@ (u,a/L) =

[Nucl.Phys. B545 (1999) 529-542]

We consider lattices
L/a=1[6,8,12]
2L/a = [12,16, 24]

Since the switching

scale between the two
schemes is defined at

gar(Lo) = 2.012

S.Sint

1607.06423 [hep-lat]

in order to have a better
control on the continuum
extrapolation we consider also

the step 16 — 32
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Continuum Extrapolation GF
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Due to the large cutoff effect
induced by the GF coupling
we use larger lattices respect
to the ones used in Sk

L/a=[8,12,16]
2L/a = [16,24, 32]

From the GF side, the switching
scale is defined by

gar(2L0) = 2.6723(64)
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Step Scaling Functions

In order to be able to compute the running we have to fit the SSF. It can be fitted as a polynomial
where the first coefficient is fixed by perturbation theory

(O’p(U) =1+ piu +p2u2 —|—p3u3 +p4u4 + .. ) pr = —dyIn(2)

another equivalent strategy adopted in this project for the first time is to fit directly for an
NP 7 with the universal coefficient fixed to PT.

Vet (g
/\/a dgﬁNP(g)}

—In(2) = /m dg

7l e { i e

where the NP effective (3 is used as an input in this analysis:

3
NP L -9 P(g) SF B ok SEE TALK BY:
/B (g) B {P(gg) GF P(g) o Z bkg 1607.06Ali|;§m[0}fe’p—lat]
g

and the anomalous dimension is fitted as a polynomial with LO and NLO coefficients
fixed to PT in the SF side.

NP(g) = —g%(do + d1g® + tag* + t3g%) SF
—g?(to + t19% + tag* +t3¢°) GF
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Step Scaling Functions
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Step Scaling Functions
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NP Mass Anomalous Dimension SF & GF
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NP Running: strategy

The running from an hadronic scale identified by Lpqq can be written as

M M

M(Lhad)  M(Lpt)

m(Lpt)
m(Lo)

m(2Lo)

SF m(Lhad)

SF GF
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NP Running: strategy

The running from an hadronic scale identified by Lpqq can be written as

M M

M(Lhad)  M(Lpt)

m(Lpt)
m(Lo)

m(2Lo)

SF m(Lhad)

SF GF

where each term explicitly is computed as it follows

M 9Lpe)  Tr(z)  d L
— (9bna2(L...)) o/ (2bo) _/ d _ 20 _ 0
I A e R v G
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NP Running: strategy

The running from an hadronic scale identified by Lpqq can be written as

M M

M(Lhad)  M(Lpt)

m(2Lo)

SF m(Lhad)

SF GF

where each term explicitly is computed as it follows

M 9Lpe)  Tr(z)  d L
— 2b g2 L _do/(QbO) — / d — _O— p— —O

B(x)  box
ML) (L) m(Lo/2Y")  m(Lo/2) ﬂgp(u_) o(uis1) = u;
m(Lo)  m(Lo/2NY) m(Lo/2V72)  m(Lo) L1 7 wi = g>(2 " Lo)
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NP Running: strategy

The running from an hadronic scale identified by Lpqq can be written as

M M

M(Lhad)  M(Lpt)

m(Lpt)
m(Lo)

m(2Lo)

SF m(Lhad)

SF GF

where each term explicitly is computed as it follows

M 9Lpe)  Tr(z)  d L
— Qb g2 L _do/(QbO) — / d — _O— p— —O

B(x)  box
ML) (L) m(Lo/2Y")  m(Lo/2) ﬂgp(u_) o(uis1) = u;
m(Lo)  m(Lo/2NY) m(Lo/2V72)  m(Lo) L1 7 wi = g>(2 " Lo)
m(LO) Connection with

GF scheme
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NP Running: strategy

The running from an hadronic scale identified by Lpqq can be written as

M M

M(Lhad)  M(Lpt)

m(Lpt)
m(Lo)

m(2Lo)

SF m(Lhad)

SF GF

where each term explicitly is computed as it follows

M . g(Lpt> (1 d L
— (260§2(Lpt)) do/(2bo) exp {/0 dx [ (z) — —O] Ly = 2_]8

m(Lpt) B(x)  box

m(Ly)  m(Ly)  m(Lo/2Y7Y)  m(Lo/2) :ﬂgp(u_) o(uis1) = u;
m(Lo)  m(Lo/2NY) m(Lo/2V72)  m(Lo) L1 7 wi = g>(2 " Lo)
TR = onlu) w = gLy = 2012 Compectonuit

7 g(Lhad) NP
m(2Lo) = exp { — / dg TC];VP];(Q) (this procedure is alternative
g(2Lg) GF (g) to the usual SSF recursion)
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NP Running: results

Two strategy for computing the NP running have been applied, the usual fit of the SSF and the
extraction of the effective anomalous dimension for the mass. Both procedure agree.

n(L
SSF recursion 77_1( pt) = 0.7949(13) — = 1.9163(42) rel err = 0.2%
> M
w8 ) rie01) = = 19156(50) rel err = 0.3%
m(Lo) m(Lo)

The connection with PT at NLO has been performed at
Upt = Gap(Lpt = 27 L) = 1.19187(510) ~ 64 GeV

In order to go below 2L it is than required to switch the scheme to the one denoted by the GF coupling.

The largest renormalized GF coupling we are considering that will allow us to make
contact with CLS large volume simulations have been estimated to be Upqd = 5.3010

SF+GF 5*(Lhad) = 0(Unaa) = 93812 Lpga~ 213 MeV
m(2Lo) — 0.9088(78) rel err = 0.9%
NP T, = 0.5184(42 + ' '
6 m(Lhad) ( ) m(Lhad)
SEE TALK BY:
60 oesA'Rim[ohs’ lat] L Lyaag
1607.0642 ep-lat had B a _
R.Soflnmer 1/L() ~ 4 GeV LO o 1874(26) Lpt 300(4)
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Conclusions & Outlook

We have computed the NP running quark mass for Nf=3 between

~ 200 MeV and ~ 60 GeV with an uncertainty S 1%

For the first time we dealt with two schemes, providing a strategy for a
NP matching between them at the intermediate scale of ~ 2 GeV

We are also providing for the first time an “effective” NP anomalous
dimension for both SF and GF-based schemes allowing to chose
Lnqqin a broad range of values. What has been showed here is just one
illustration pushing toward the lowest possible value of the hadronic
matching scale.

The next point in the project is the matching with large volume betas

Along with the mass project we have collected data for applying the
same strategy to the Tensor current the only other bilinear with an
iIndependent anomalous dimension.

Southampton, 26 July 2016
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M.Luscher et al.

SF Renormalization Scheme ... door

M.Luscher et al. f (L/Q)
Nucl.Phys. B582 (2000) )=
Zp (907 L/a)

M.Della Morte et al.

The SF renormalization condition is imposed at vanishing quark mass

0
ZCg(H,CL/L) 0 =0.5

3f1

m=0

Nucl.Phys. B729 (2005)

time

0

The correlation functions entering the definition above are given by

W felen) = =5 [ @y ey T @l Wy @) [
_ 1 1 :

) h= g [ dPudvdyd s U ) Su>

space

space

The lattice version of the SSF is than defined as the ratio of renormalization constants
at I, and 2L identifying i = L~ and for s = 2

Zp(g90,2L/a)

p— :1 Z ] ,L
S g0, L/a) = S B op(u) = lim Sp(u, g0, L/a)

u=g2(L)

usr = [1.1100, 1.1844, 1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120]

uar = [2.1257,2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010, 5.8673, 6.5489]
21 I
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Two Schemes, Two Regions, More fun

The peculiarity of this work is to consider two different renormalization scheme for the couplings
usr = [1.1100,1.1844,1.2565, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120] High
uar = [2.1257,2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3010, 5.8673,6.5489]  Low

but same renormalization condition for the mass!

A change of scheme for both coupling and mass can be written
in terms of the differences of finite parts X

gr = gR\/Xg (9r) B'(9r) = {B(QR) ggi }
mpr = MrXm(9r) ' (gR) = {T(gR) + B(gR)(%% In xm(gR)}

gr=9r(9R)
At 1-loop for instance one can easily see how the NLO anomalous dimension vary from one

soheme({()) another due to a change of scheme in the renormalized coupling through the finite
parts Xg

) Sint and Weisz
[Nucl.Phys. B545 (1999) 529-542]

X(gR) QR_>O 1+ Zx(k) 2k d dl 4+ QbOX(l) doxgl
k=1

Since we do not know the perturbative finite parts from GF and we do not want to rely on PT
at 2Ly ~ my /2 we perform a NP matching
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Systematic Errors

~ . Sint and Wei
e Ct, Ct do not contribute at 1-loop for o p (u) [NucI.Phys.IIr3]52g (1933)2529-542]

but still under investigation

e U Still under investigation
Z, :lﬁz)—P §0.913
° 5/{/6 P L 8m w,L g"i i
Nf u Z/P 0911
2 | 0.9793 | -0.0755(10) 7
2 | 2.4792 | -0.1130(27) |
3 | 2.012 | -0.149(145) N

1/(2*x)-1/(2* _
@9-1/2"x) 107

Given the tuning precision to be |Lm/| < 0.001 resulting systematic error coming from

the tuning procedure is then ~ 0.00015(14) that is negligible respect to the the statistical error

Southampton, 26 July 2016
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Systematics Tuning

Systematic uncertainties from tuning:

* Re Lm < 0.001

1-loop estimate:

(0) (0)
1 1
AZ = g3 | =5 o _ o | A~ O(10™%)
fo omy 21, omy

Same order as the error on Z
BUT:

Y(u,a/L) =1+ g5(Z2"(a/2L) — 2 (a/L)) + O(gp)

A(X(u,a/L)) ~ O(107°)

Southampton, 26 July 2016

24



Continuum Extrapolation SF Yp(u,a/L) = op(u) + p'(u)(a/L)’

—
O Nf=0
O  Nf=3raw
O Nf=3 1-loop imp
------- Nf=3 raw global A
------- Nf=3 raw global B | |

0.5

%%%ﬂg q$ __%
5 —0.5¢ *
1 _
= _
-1.5¢ _
_i 1'5 | é | 2|5 (I3 | I3:5
u
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Continuum Extrapolation

Nf:O ZP(’LL, a/L)

— op(u) + p/(u)(a/L)?

u  op(u) pl(u) X/ na
0.8873 0.9683(21) —0.19(21)  0.51
0.9944 0.9672(23) —0.28(23)  0.47
1.0989  0.9622(24) —0.24(24)  0.09
1.2430  0.9579(29) —0.36(28)  0.13
1.3203  0.9470(28)  0.23(28)  0.27
1.4300  0.9407(30)  0.21(27)  0.40
1.5553  0.9382(33)  0.11(33)  3.01
1.6950 0.9297(32)  0.36(33)  0.00
1.8811 0.9284(36) —0.50(37)  0.21
2.1000 0.9168(37) —0.16(37)  1.10
2.4484 0.8942(38) —0.01(39) 3.04
2.7700 0.8781(42) —0.44(41) 1.44
3.48 0.8451(55) —1.20(59) 1.05
3.48*  0.8483(50) —0.94(48)  0.26

Table 7: Continuum extrapolations of ¥p using Fit B

A(op(2.100))

= 4%

op(2.100)

0.95

0.9

Y.(u,a/L)

0.85

0.8

Nf=0

u=2.1000

l H\N u=2.7700 ¢

u=3.48, cf‘lf’op

t

u=3.48, Ctl loop

0 0.01

0.02

0.03 (a/L)2

Figure 8: Examples of continuum extrapolations of Xp using Fit B. The dotted lines are the con-
tinuation of the fit functions to the data points for L/a = 6, which have been excluded from the fit.
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Continuum Extrapolation Nf=2  Sp(u,a/L) = op(u) + p'(u)(a/L)
0.98
0.96 iiiiziiiigiiiiii‘gi:j
u op(u) X /mar 094 G---@ @~ & ----
~ 092y o ________J @Q _ ___________
0.9793  0.9654(9)(11)  2.16 2 ¥ o ®
1.1814  0.9527(11)(6)  0.47 ENRA .
1.5031  0.9413(16)(2)  0.01 A ogg T YT o
2.0142  0.9174(16)(24) 3.58 _
24792 0.8871(23)(18) 0.54 0-86
3.3340  0.8384(35)(12) 0.20 084 G- -
0.82 ! ! '
0) 0.01 0.02 0.03 0.04
(a/L)?

Table 1: Continuum extrapolations of Yp fitting the L/a = 8 and L/a = 12 data

to a constant. The first error is statistical.

The second error is the difference

between the fit and the L/a = 8 results and will be added linearly as a systematic

eITor.

Alop(2.0142))
O'p(2.0142)

= 4.4%

Total error = stat+syst
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SSF Nf=3 && Nf=2 && Nf=0
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O raw
fit B
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ST T 2 25 3 35

op(u) =1+ piu —|—p2u2 —|—p3u3 —|—p4u4 + ...
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