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Introduction

• Simulation with dynamical chiral fermions in a lattice is a
challenging task.

• The famous no-go theorem:Lattice fermion actions with,
• locality
• chiral symmetry
• hermiticity

must produce massless fermions in multiples of two in
continuum limit.

• There exist lot of fermion prescriptions to avoid fermion
doubling caused by the naive fermions.

• Every model has its own advantges and also individual
shortcomings.
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Borici Creutz fermions in 4 D



Borici Creutz fermions in 4D

• Borici Creutz action in 4 dimensional space is written as,

SBC =
∑

n

[1
2
∑
µ

ψ̄nγµ(ψn+µ − ψn−µ)

− ir
2
∑
µ

ψ̄n(Γ− γµ)(2ψn − ψn+µ − ψn−µ)

+mψ̄nψn
]

• Then the Dirac operator in momentum space (a = 1),[1]

DBC(p) =
∑
µ

[
iγµ sin pµ − i(γ′µ)(1 − cos(pµ)

]
︸ ︷︷ ︸

Two zeros at (0,0,0,0) and (π2 ,
π
2 ,

π
2 ,

π
2 )

.

1M. Creutz JHEP 0804,017(2008),A. Borici PRD 78 017(2010)
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More on Borici Creutz fermion

Important relations:

γ′µ =
∑
µ

γµΓγµ

Γ =
1
2(γ1 + γ2 + γ3 + γ4) and Γ2 = 1

{Γ, γµ} = {Γ, γ′µ} = 1.

• Hypercubic symmetry is broken so we can introduce
other dimension counter terms but as long as Mf(pµ) is
cubic symmetric, only three and four dimensional
counterterms will be required.
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More on BC fermion

• For BC action we here only discuss the dimension three
counter term(c3) and for simplicity tune the coefficient of
4 dimension counter term to zero,

• Adding that term the action looks like,

SBC =
∑

n

[1
2
∑
µ

ψ̄nγµ(ψn+µ − ψn−µ)

− ir
2
∑
µ

ψ̄n(Γ− γµ)(2ψn − ψn+µ − ψn−µ)

+ic3ψ̄nΓψn + mψ̄nψn
]

• Other two types are in the family: KW and TO fermions.
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More on BC fermion

• So its look like in momentum space(a = 1)

DBC(p) =
∑
µ

[
iγµ sin pµ + i(Γ− γµ)cos(pµ)

]
+ i(c3 − 2)Γ

• Now the term c3 changes the number and postion of the
zeros,

c3 =


0 two zeros (0,0,0,0) and (π2 ,

π
2 ,

π
2 ,

π
2 )

4 two zeros (π, π, π, π) and (π2 ,
π
2 ,

π
2 ,

π
2 )

2 no zeros

• Other two types are in the family: KW and TO fermions.
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Borici-Creutz fermions in 2D



Multipicity of the free Dirac operator In 2D

• The Borici-Creutz action has already been defined
previously. In 2D, Γ = 1

2(γ1 + γ2), {Γ, γµ} = 1, and
Γ2 = 1

2 .[(2×2) gamma matrices]
• The free Dirac operator in momentum space is written as,

DBC(p) =
∑
µ

[iγµ sin pµ + i(Γ− γµ)cos(pµ)] + i(c3 − 2)Γ.

• For c3 = 0 and c3 = 4 only one zero of the Dirac operator
but dispersion becomes unphysical.

• For 0 < c3 < 0.59 and 3.41 < c3 < 4 the Dirac
operator has only two zeros i.e this is the region of
minimal doubling.

• And for the rest of the region i.e 0.59 < c3 < 3.41 the
Dirac operator has four zeros. Out of those zeros, we get
correct continuum limit of the Dirac operator only when
p1 = p2. 7/24
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Gross Neveu Model in 2 dimensions

• The free action (with r = 1) is

SBC =
∑

n

[1
2
∑
µ

ψ̄nγµ(ψn+µ − ψn−µ)

− i
2
∑
µ

ψ̄n(Γ− γµ)(2ψn − ψn+µ − ψn−µ)

+i(c3 − 2)ψ̄nΓψn + mψ̄nψn
]

• After including the four fermi interactions,

SBCGN =
∑

n

[
SBC − g2

2N [(ψ̄nψn)
2 + (ψ̄niΓψn)

2]
]
.
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HMC of the model

• For numerical simulation we take c3 = 0.1.The value of c3
is taken where the BC action describes two flavor
fermions with Lorentz invariant dispersion relation.

• The lattice version of the action is written as,

S = ψ̄iMijψj +
N

2g2 (σ
2 + π2

Γ),

• where the auxilary fields are defines as,

σ = −g2

N (ψ̄ψ),

πΓ = −g2

N (ψ̄iΓψ)
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Simulation details

• With pseudofermions the action becomes,

S = ϕ†(M†M)−1ϕ+
1
g2 (σ

2 + π2
Γ).

• Hybrid Monte Carlo(HMC) details:
The configurations are generated by considering
step-size(△t)=0.1 in the leapfrog method and ten steps
per trajectory in the molecular dynamics chain. We do
not use any preconditioning during the simulation. First
1000 ensembles are rejected for thermalization and
analysis is performed over the next 8000 ensembles.

• And bare mass is 0.3 and β = 0.7.
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Correlators

For meson mass spectrum calculation, we need to evaluate
the correlators

Cij(t) = ⟨Oi(t)O†
j (0)⟩.

Here we list some of the parity odd interpolators for the GN
model which we expect to couple to ground state as well as
excited states:

O1(t) = ψ(x, t)γ5ψ(x, t)

Oi(t) =
1
4
(
(ψ(x + m, t)− ψ(x − m, t)

)
γ5
(
ψ(x + n, t)− ψ(x − n, t)

)
Oj(t) =

1
4
(
(ψ(x + m, t)− ψ(x − m, t)

)
γ1
(
ψ(x + n, t)− ψ(x − n, t)

)
last two are derivative sources useful for extracting excited
states.

• O2,O3 when, m = n = 3 & m = 5,n = 3 in 2nd correlator.
• O4,O5 when, m = 4,n = 3 & m = 5,n = 3 in 3rd correlator.
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Diagonal correlators (in the plots c1 ≡ C11, etc.) and effective mass
of meson in GN model for 16 × 48 lattice

The effective masses are extracted from the correlators at
different time slices by the formula

Meff = ln
(

c(t)
c(t + 1)

)
.

Only useful for ground state, but not for excited states.
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variational method for extracting states

To get the mass spectrum from eigenvalues one solves the
generalized eigenvalue problem defined by,

C(t)⃗v(n) = λ(n)(t)C(t0)⃗v(n)

where C(t) is the N × N correlation matrix constructed from N
interpolators Oi, (i = 1, 2 · · · ,N). The n-th eigenvalue
behaves as

λ(n)(t) = e−(t−t0)En
[
1 +O(e−(t−t0)∆n)

]
,

After tried with many combinations of correlators we take O1,
O2 and O3 in our correlation matrix basis.
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Volume dependence of the effective mass
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volume dependence of the effective mass

The ground state and the first
excited state show no volume
dependence and hence can be
considered as bound states

Second excited state shows
volume dependence. Specially,
for 18 × 48 lattice size, we get
an large mass for the second
excited state.

But looking at the fit of the points we expect 2nd excited state
to be a scattering state.

conclusive??
The fit for the second excited state shown in Figure includes
that point. In general, scattering states show strong volume
dependence and increase linearly with 1/L2, the volume
dependency of the second excited state in our case is not
very conclusive.
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Simulation details for chiral condensate

• We simulate our model by hybrid monte carlo (HMC)
method and evaluate the order parameter for the chiral
phase transition ⟨σ⟩ as a function of coupling constant.
We use point sources to estimate the condensate.

⟨ψ̄ψ⟩ = −⟨TrM−1⟩
⟨σ⟩ = −β⟨ψ̄ψ⟩

where β =
1
g2 .

• The configurations are generated by considering stepsize
(△t=0.1) in the leapfrog method and ten steps per
trajectory in the molecular dynamics chain.
First 500 ensembles are rejected for thermalization and
data are collected for next 16000 ensembles. 18/24
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Chiral Condensate

⟨σ⟩ vs β of m=0.01,0.02 & 0.03 for Gross-Neveu model with BC
fermions in a 32×32 lattice
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Finite volume effects of Chiral condensate

Finite volume effects of ⟨σ⟩ vs β for m=0.03 of three different lattice
sizes 20 × 20, 32 × 32, and 40 × 40
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BC fermion in a 2D U(1) gauge theory

The lattice action with BC fermion reads,

S = β
∑

p
[1 − 1

2(Up + U†
p)] + ϕ†(D†D)−1ϕ.

where Up is the Wilson Plaquette action with

Up = Ui,µUi+µ,νU†
i+ν,νU†

i,ν .

where, i is the site index and µ, ν are the directions and D is
the BC Dirac operator defined earlier. After including gauge
fields we get,

Dmn =
1
2(γµ + i(Γ− γµ))Uµ(n − µ)δn,m+µ −

1
2(γµ − i(Γ− γµ))U†

µ(n)δn,m−µ − ((2 − c3)iΓ− m0)δm,n.

The correlator with operator O1(t) couples to the ground state
and provides the mass for the lowest state. 21/24
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• In first two figures we have shown the correlator at
different time slices and the effective meson mass in 2D
QED.

• The results are presented for the fermion (electron) mass
m0 = 0.05 and β = 0.7.

• The ground state mass meff ≈ 1.0 and is much larger than
(2m0).

• The square of meson mass (m2
eff) shows a linear

dependence on the fermion mass as illustrated in the
last figure.

• For light fermions, the meson mass is much larger than
twice the bare fermion mass 2m0. As the mass increases,
the available phase space decreases and the contribution
to the meson mass from interaction diminishes so the
difference (meff − 2m0) becomes smaller.
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Summary

• We have studied the Gross-Neveu model with minimally
doubled fermion action which has been proposed by
Creutz and Borici.

• we have studied the model with HMC algorithm.
• We have calculate the mass spectrum of GN model to find
ground and excited states of meson spectrum using that
formulation.

• The order parameter ⟨σ⟩ is plotted against β = 1/g2

shows chiral symmetry breaking.
• Issues(4 D),
Counter terms ?? Renormaization ?? operator mixing
issues ??
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Thank you!
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Phase Diagram in parameter space
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Chiral boundaries in the parametric space i.e. c3 vs g2 for BC
fermions



As can be seen from figure, for heavy fermions, the meson
mass becomes less than 2m0.This can be explained from the
fact that for heavy fermions, the quantum corrections to the
effective mass become small as explained above, but the
binding energy due to strong coupling is still large, so in
combination of these two, the effective mass become less
than the sum of individual particles as one observes for
atomic or nuclear mass where the mass of the atom/nucleus
is less than the sum of the individual constituent masses.
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