Computing the nucleon Dirac radius directly at $Q^{2}=0$

Nesreen Hasan
University of Wuppertal

in collaboration with Stefan Meinel, Jeremy Green, Michael Engelhardt, Stefan Krieg, John Negele, Andrew Pochinsky, Sergey Syritsyn

July 28, 2016

Outline

- Introduction
- Strategy and method
- Momentum derivatives of nucleon correlation functions
- The ratio method
- Anomalous magnetic moment and Dirac radius
- Removal of excited states
- Results
- Ensemble
- Isovector Dirac radius
- Anomalous isovector magnetic moment
- Numerical results
- Summary

Introduction

- Proton radius puzzle: 7σ discrepancy between Muonic hydrogen Lamb shift ($\left.r_{E}^{p}=0.84087(39) \mathrm{fm}\right)$ and atomic hydrogen and scattering experiments using electrons ($\left.r_{E}^{p}=0.8775(51) \mathrm{fm}\right)$
- Model dependent fit
- $Q_{\text {min }}^{2}<0.005 \mathrm{GeV}^{2}$ from scattering experiment (e.g. from Mainz, Phys.Rev.Lett. 105 (2010) 242001) whereas on the lattice $Q_{\min }^{2}=0.05 \mathrm{GeV}^{2}$ for $V=(5.8 \mathrm{fm})^{3}$
- Controversy about finding the radius from fitting scattering data.
"Consistency of electron scattering data with a small proton radius", Phys.Lett. B737 (2014) 57-59, Phys.Rev. C93 (2016) no.6, 065207, Phys.Rev. C93 (2016) no.5, 055207
"Solution of the proton radius puzzle? Low momentum transfer electron scattering data are not enough", arxiv:1511.00479, Phys.Rev. D92 (2015) no.1, 013013, axXiv:1606.02159
- This motivates the need for a direct calculation of the radius without fitting to form factors.

Momentum derivative (without smearing)

Nucleon two-point function:
$C_{2}(\vec{p}, t)_{\alpha \beta}=\sum_{\vec{x}} e^{-i \vec{p} \vec{x}}\left\langle N_{\alpha}(\vec{x}, t) \bar{N}_{\beta}(0)\right\rangle=$
$\sum_{\vec{x}} \epsilon^{a b c} \epsilon^{d e f} f_{\alpha \gamma \delta \epsilon} f_{\beta \zeta \eta \theta}\langle\underbrace{e^{-i \vec{p} \vec{x}} G_{\epsilon \zeta}^{c d}(x, 0)}_{G_{\epsilon \zeta}^{c d}(x, 0 ; \vec{p})}\left(G_{\gamma \theta}^{a f}(x, 0) G_{\delta \eta}^{b e}(x, 0)-G_{\gamma \eta}^{a e}(x, 0) G_{\delta \theta}^{b f}(x, 0)\right)\rangle$

Momentum derivative (without smearing)

Nucleon two-point function:
$C_{2}(\vec{p}, t)_{\alpha \beta}=\sum_{\vec{x}} e^{-i \vec{p} \vec{x}}\left\langle N_{\alpha}(\vec{x}, t) \bar{N}_{\beta}(0)\right\rangle=$
$\sum_{\vec{x}} \epsilon^{a b c} \epsilon^{d e f} f_{\alpha \gamma \delta \epsilon} f_{\beta \zeta \eta \theta}\langle\underbrace{e^{-i \vec{p} \vec{x}} G_{\epsilon \zeta}^{c d}(x, 0)}\left(G_{\gamma \theta}^{a f}(x, 0) G_{\delta \eta}^{b e}(x, 0)-G_{\gamma \eta}^{a e}(x, 0) G_{\delta \theta}^{b f}(x, 0)\right)\rangle$

$$
G_{\epsilon \zeta}^{c d}(x, 0 ; \vec{p})
$$

Nucleon three-point function ($\left.\vec{p}^{\prime}=0\right)$:

$C_{3}(\vec{p}, \tau, T)_{\alpha \beta}=\sum_{\vec{x}, \vec{y}} e^{-i \vec{p} \vec{y}}\left\langle N_{\alpha}(\vec{x}, T) O_{\Gamma}(\vec{y}, \tau) \bar{N}_{\beta}(0)\right\rangle \sim \sum_{\vec{y}}\left\langle G_{S}(y) \Gamma G(y, 0 ; \vec{p})\right\rangle$
$G_{S}(y)$ is the sequential back-ward propagator

Rome method: (Phys. Lett. B 718, 589 (2012) [arXiv:1208.5914])

$$
\begin{aligned}
& \frac{p_{k}}{\left.\frac{\partial}{\partial p_{k}} G(x, y ; \vec{p})\right|_{\vec{p}=0}}=-i p_{k} \cdots+\left(i p_{k}\right)^{2}\left\{\cdots \cdots+\frac{1}{2} \cdots-\cdots+\cdots\right.
\end{aligned}
$$

$$
\left.\frac{\partial^{2} G(x, y ; \vec{p})}{\left(\partial p_{k}\right)^{2}}\right|_{\vec{p}=0}=-2 \sum_{z, z^{\prime}} G(x, z) \Gamma_{V}^{k} G\left(z, z^{\prime}\right) \Gamma_{V}^{k} G\left(z^{\prime}, y\right)
$$

$$
-\sum_{z} G(x, z) \Gamma_{T}^{k} G(z, y)
$$

For clover fermions:
$\Gamma_{V / T}^{\mu} G(z, y) \equiv U_{\mu}^{\dagger}(z-\hat{\mu}) \frac{1+\gamma^{\mu}}{2} G(z-\hat{\mu}, y) \mp U_{\mu}(z) \frac{1-\gamma^{\mu}}{2} G(z+\hat{\mu}, y)$

Momentum derivative (with smearing)

Smeared-source smeared sink propagator:

$$
\begin{aligned}
\tilde{G}(x, y ; \vec{p}) & =e^{-i \vec{p}(\vec{x}-\vec{y})} \sum_{x^{\prime}, y^{\prime}} K\left(x, x^{\prime}\right) G\left(x^{\prime}, y^{\prime}\right) K\left(y^{\prime}, y\right) \\
& =\sum_{x^{\prime}, y^{\prime}} \underbrace{e^{-i \vec{p}\left(\vec{x}-\vec{x}^{\prime}\right)} K\left(x, x^{\prime}\right)}_{K\left(x, x^{\prime} ; \vec{p}\right)} \underbrace{e^{-i \vec{p}\left(\vec{x}^{\prime}-\vec{y}^{\prime}\right)} G\left(x^{\prime}, y^{\prime}\right)}_{G\left(x^{\prime}, y^{\prime} ; \vec{p}\right)} \underbrace{e^{-i \vec{p}\left(\vec{y}^{\prime}-\vec{y}\right)} K\left(y^{\prime}, y\right)}_{K\left(y^{\prime}, y ; \vec{p}\right)}
\end{aligned}
$$

$(K G K)^{\prime}=K^{\prime} G K+K(G K)^{\prime}$
$(K G K)^{\prime \prime}=K^{\prime \prime} G K+2 K^{\prime}(G K)^{\prime}+K(G K)^{\prime \prime}$
Smeared source point-sink propagator:
$(G K)^{\prime}=G\left[-i \Gamma_{V} G K+K^{\prime}\right]$
$(G K)^{\prime \prime}=G\left[-2 i \Gamma_{V}(G K)^{\prime}-\Gamma_{T} G K+K^{\prime \prime}\right]$

Wuppertal smearing:

$$
\begin{aligned}
& K(x, y ; \vec{p})=\sum_{x^{\prime}, x^{\prime \prime}}, \ldots \underbrace{\left.K_{0}\left(x, x^{\prime} ; \vec{p}\right) K_{0}\left(x^{\prime}, x^{\prime \prime} ; \vec{p}\right) \ldots K_{0}\left(x^{\prime} \ldots\right]^{\prime}, y ; \vec{p}\right)}_{N_{W}} \\
& K_{0}(x, y ; \vec{p})=e^{-i \vec{p}(\vec{x}-\vec{y})} \frac{1}{1+6 \alpha}\left(\delta_{x, y}+\alpha \sum_{j=1}^{3}\left[U_{j}(x) \delta_{x+\hat{j}, y}+U_{j}^{\dagger}(x-\hat{j}) \delta_{x-\hat{\jmath}, y}\right]\right) \\
& K_{0}^{(m)}(x, y)\left.\equiv\left(\frac{\partial}{\partial p^{j}}\right)^{m} K_{0}(x, y ; \vec{p})\right|_{\vec{p}=0} \\
&=\frac{\alpha}{1+6 \alpha}\left[i^{m} U_{j}(x) \delta_{x+\hat{j}, y}+(-i)^{m} U_{j}^{\dagger}(x-\hat{j}) \delta_{x-\hat{j}, y}\right]
\end{aligned}
$$

Iteratively for $K=K_{0}^{N_{W}}$:

$$
\begin{aligned}
& \left(K_{0}^{N}\right)^{\prime}=K_{0}^{\prime} K_{0}^{N-1}+K_{0}\left(K_{0}^{N-1}\right)^{\prime} \\
& \left(K_{0}^{N}\right)^{\prime \prime}=K_{0}^{\prime \prime} K_{0}^{N-1}+2 K_{0}^{\prime}\left(K_{0}^{N-1}\right)^{\prime}+K_{0}\left(K_{0}^{N-1}\right)^{\prime \prime}
\end{aligned}
$$

Ground-state contributions ($\vec{p}^{\prime}=0$):

$$
C_{2}(\vec{p}, t)=e^{-E(\vec{p}) t}\langle\Omega| N_{\alpha}|p\rangle\langle p| \bar{N}_{\beta}|\Omega\rangle
$$

$$
C_{3}(\vec{p}, \tau, T)=e^{-m(T-\tau)} e^{-E(\vec{p}) \tau}\langle\Omega| N|0\rangle\langle 0| \bar{q} \gamma^{\mu} q|p\rangle\langle p| \bar{N}|\Omega\rangle
$$

$$
\begin{gathered}
\left\langle p^{\prime}\right| V_{q}^{\mu}|p\rangle=\bar{u}\left(p^{\prime}\right) \underbrace{\mathscr{F}\left(\Gamma, \bar{p}^{\prime}, \vec{p}\right)} u(p), \text { and } \quad\langle\Omega| N|p\rangle=Z(\vec{p})[\Gamma u(p)] \\
F_{1}^{q} \gamma^{\mu}+F_{2}^{q} \frac{i \sigma^{\mu \nu} q_{\nu}}{2 m}
\end{gathered}
$$

$$
\begin{aligned}
R(\vec{p}) & =\frac{C_{3}(\vec{p}, \tau)_{\alpha \beta}}{\sqrt{C_{2}(0, T) C_{2}(\vec{p}, T)}} \sqrt{\frac{C_{2}(\vec{p}, T-\tau) C_{2}(0, \tau)}{C_{2}(0, T-\tau) C_{2}(\vec{p}, \tau)}} \\
& =\frac{\left[\left(1+\gamma^{0}\right) \mathscr{F}(\Gamma, 0, \vec{p})(m+\not p)\left(1+\gamma^{0}\right)\right]_{\alpha \beta}}{8 \sqrt{2 E(\vec{p})(E(\vec{p})+m)}} \text { (positive parity) }
\end{aligned}
$$

Compute $\left.\frac{\partial R}{\partial p_{i}}\right|_{\vec{p}=0}$ and $\left.\frac{\partial^{2} R}{\partial p_{i}{ }^{2}}\right|_{\vec{p}=0}$ for $\mu=0,1,2$ vector components in x, y and z directions to find for $\Gamma_{\text {pol }}=\left(1+\gamma^{3} \gamma_{5}\right) \frac{1+\gamma^{0}}{2}$:

Anomalous magnetic moment and Dirac radius

$$
\begin{aligned}
\kappa & =-2 m \operatorname{lm}\left(\operatorname{Tr}\left[R^{\prime}(\mu=2) \Gamma_{p o l}\right]\right)-\operatorname{Tr}\left[R(\mu=0) \Gamma_{p o l}\right] \\
r_{1}^{2} & =\frac{12 m \operatorname{lm}\left[R^{\prime}(\mu=2) \Gamma_{p o l}\right]+3 \operatorname{Tr}\left[R(\mu=0) \Gamma_{p o l}\right]-12 m^{2} \operatorname{Tr}\left[R^{\prime \prime}(\mu=0) \Gamma_{p o l}\right]}{4 m^{2} \operatorname{Tr}\left[R(\mu=0) \Gamma_{p o l}\right]}
\end{aligned}
$$

Where $r_{1}^{2}=\left.\frac{-6}{F_{1}} \frac{d F_{1}}{d Q^{2}}\right|_{Q^{2}=0}$
Average over equivalent vector components and directions:

$$
\begin{aligned}
\operatorname{Tr}\left[R^{\prime}(\mu=2) \Gamma_{p o l}\right]= & \frac{1}{2}\left(\operatorname{Tr}\left[\partial_{1} R(\mu=2) \Gamma_{p o l}\right]-\operatorname{Tr}\left[\partial_{2} R(\mu=1) \Gamma_{p o l}\right]\right) \\
\operatorname{Tr}\left[R^{\prime \prime}(\mu=0) \Gamma_{p o l}\right]= & \frac{1}{3}\left(\operatorname{Tr}\left[\partial_{1}^{2} R(\mu=0) \Gamma_{p o l}\right]+\operatorname{Tr}\left[\partial_{2}^{2} R(\mu=0) \Gamma_{p o l}\right]+\right. \\
& \left.\operatorname{Tr}\left[\partial_{3}^{2} R(\mu=0) \Gamma_{p o l}\right]\right)
\end{aligned}
$$

Removal of excited states

- Ratio-plateau method: compute ratio

$$
R(T, \tau)=c_{00}+c_{10} e^{\Delta E_{10}(\vec{p}) \tau}+c_{01} e^{\Delta E_{10}\left(\vec{p}^{\prime}\right)(T-\tau)}
$$

where c_{00} is the desired ground-state matrix element. Then average a fixed number of points around $\tau=T / 2$.
Asymptotic errors:

$$
R,\left.\frac{\partial}{\partial p_{i}} R\right|_{\vec{p}=0} \sim e^{-\Delta E_{10} T / 2},\left.\quad \frac{\partial^{2}}{\partial p_{i}^{2}} R\right|_{\vec{p}=0} \sim T e^{-\Delta E_{10} T / 2}
$$

- Summation method: compute sums

$$
S(T)=\sum_{\tau} R(T, \tau)=b+c_{00} T+d T e^{-\Delta E T}+\ldots
$$

then find their slope, which gives c_{00}.
Asymptotic errors:

$$
S,\left.\frac{\partial}{\partial p_{i}} S\right|_{\vec{p}=0} \sim T e^{-\Delta E_{10} T},\left.\quad \frac{\partial^{2}}{\partial p_{i}^{2}} S\right|_{\vec{p}=0} \sim T^{2} e^{-\Delta E_{10} T}
$$

Ensemble

- BMW $N_{f}=2+1$ 2HEX-clover, $L_{s}=L_{t}=64$.
- $\beta=3.5, a^{-1}=2.131(13) \mathrm{GeV}, a=0.093 \mathrm{fm}$.
- Physical pion mass, $m_{\pi} L=4$.
- Three source-sink separations $T / a \in\{10,13,16\}$, which corresponds to T between 0.9 and 1.5 fm .
- 442 gauge configurations analyzed
- AMA, using 64 sources per configuration with approximate propagators and one source for the bias correction.

Numerical results:

Quantity	Traditional method	Derivative method
κ^{v}	$3.74(14)$	$3.71(35)$
$\left[r_{1}^{v}\right]^{2}[\mathrm{fm}]^{2}$	$0.547(91)$	$0.45(28)$

Summary

- Our approach is based on the Rome method and is model independent, .
- Our results on κ^{v} and $\left[r_{1}^{v}\right]^{2}$ are consistent with fitting to form factors.
- The statistical errors are higher on quantities containing second derivative of the ratio.

