QCD with isospin chemical potential: low densities and Taylor expansion

Bastian Brandt and Gergely Endrődi

Goethe University Frankfurt

28.07.2016

Contents

- 1. (short) Introduction
- 2. Simulation setup and λ extrapolation
- 3. QCD at small isospin chemical potential
- 4. Comparison to Taylor expansion around $\mu_I = 0$

1. Introduction

QCD at finite isospin chemical potential

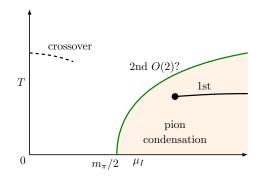
QCD at finite chemical potential ($N_f = 2$): u quark: μ_u d quark: μ_d

- Can be decomposed in baryon and isospin chemical potentials: $\mu_B = 3(\mu_u + \mu_d)/2$ and $\mu_I = (\mu_u - \mu_d)/2$
- Non-zero μ_l introduces an asymmetry between isospin ±1 particles Positive μ_l: ⇒ More protons than neutrons!
- Such situations occur regularly in nature:
 - ▶ Within nuclei with # neutrons > # protons.
 - Within neutron stars.
 - ▶ ...
- However: Usually $\mu_I \ll \mu_B$.
- Finite μ_I breaks $SU_V(2)$ explicitly to $U_{\tau_3}(1)$.

Here: consider $\mu_B = 0!$

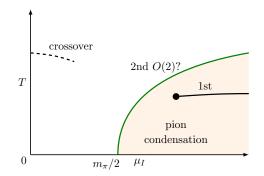
Expected phase diagram

Exploring the phase diagram using χ PT at finite μ_I : [Son, Stephanov, PRL86 (2001)]



Expected phase diagram

Exploring the phase diagram using χ PT at finite μ_l : [Son, Stephanov, PRL86 (2001)]



First lattice simulations ($N_t = 4$, $m_{\pi} > m_{\pi}^{\text{phys}}$): 1st order deconfinement and 2nd order curve join?

 \Rightarrow Existence of tri-critical point?

[Kogut, Sinclair, PRD66 (2002); PRD70 (2004)]

2. Simulation setup and λ extrapolation

Lattice action

[G. Endrődi, PRD90 (2014)]

- Gauge action: Symanzik improved
- Mass-degenerate u/d quarks:

Fermion matrix:

 $M = \left(\begin{array}{cc} D(\mu) & \lambda\gamma_5 \\ -\lambda\gamma_5 & D(-\mu) \end{array}\right)$

[Kogut, Sinclair, PRD66 (2002); PRD70 (2004)]

 $D(\mu)$: staggered Dirac operator with 2×-stout smeared links

 $\lambda:$ small explicit breaking of residual symmetry

- Necessary to observe spontaneous symmetry breaking at finite V.
- Serves as a regulator in the pion condensation phase.
- Strange quark: rooted staggered fermions (no chemical potential)
- Quark masses are tuned to their physical values.

. . .

Lattice sizes: 6×16^3 , 24^3 , 32^3 , 8×24^3 , 32^3 , 40^3 , 10×28^3 , 40^3

Lattice action

[G. Endrődi, PRD90 (2014)]

- Gauge action: Symanzik improved
- Mass-degenerate u/d quarks:

Fermion matrix:

 $M = \left(\begin{array}{cc} D(\mu) & \lambda\gamma_5 \\ -\lambda\gamma_5 & D(-\mu) \end{array}\right)$

[Kogut, Sinclair, PRD66 (2002); PRD70 (2004)]

 $D(\mu)$: staggered Dirac operator with 2×-stout smeared links

 $\lambda:$ small explicit breaking of residual symmetry

- Necessary to observe spontaneous symmetry breaking at finite V.
- Serves as a regulator in the pion condensation phase.
- Strange quark: rooted staggered fermions (no chemical potential)
- Quark masses are tuned to their physical values.

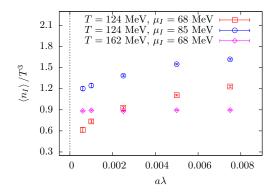
. . .

Lattice sizes: $\mathbf{6} \times 16^3$, $\mathbf{24}^3$, 32^3 , 8×24^3 , 32^3 , 40^3 , 10×28^3 , 40^3

λ -extrapolations

For physical results: λ needs to be removed!

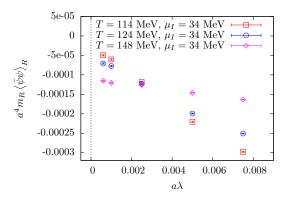
Problem: dependence on λ is not known! (at least for most of the observables)



λ -extrapolations

For physical results: λ needs to be removed!

Problem: dependence on λ is not known! (at least for most of the observables)



λ -extrapolations

For physical results: λ needs to be removed!

Problem: dependence on λ is not known! (at least for most of the observables)

Best possibility for model independence:

- ► Use a (cubic) spline extrapolation.
 - Fix one of the external points.
 - Leave the associated outer derivatives free. (additional free parameters)
- To stabilise the extrapolation:

Need to assume that last two points lie on a (cubic) curve!

Remaining systematic effect: Position of nodepoints influences the result!

λ -extrapolations

Possible solution: Perform a "spline Monte-Carlo" [see S. Borsanyi]

- Average "all" splines with a similarly good description of the data. Allow for changes of # of nodes and node positions.
- Splines are weighted according to some suitable "action" S. Two possibilities:
 - Use the Akaike information criterion: $S_{
 m AIC} = 2N_P + \chi^2$
 - Use the negative goodness of the fit: $S_{
 m GOD} = P(\chi^2,\,N_{
 m dof}) 1$

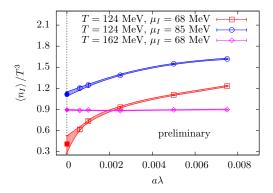
$$\begin{split} P(\chi^2, N_{\rm dof}) &= \frac{\gamma(\chi^2/2, N_{\rm dof}/2)}{\Gamma(N_{\rm dof}/2)} - \mbox{cumulative } \chi^2 \mbox{ distribution function} \\ (\gamma: \mbox{ lower incomplete gamma fct.}) \end{split}$$

- Problem: oscillating solutions
 - \Rightarrow Include some measure δ for oscillations

Full action: $S = S_{AIC/GOD} + f \times \delta$ (parameter f needs to be tuned)

λ -extrapolations

Results with S_{AIC} and f = 10.0:



3. QCD at small isospin chemical potential

Definition of the transition point

Investigate the finite temperature transition (crossover) for $\mu_I < \mu_I^C$.

Transition temperature T_C is defined by the behaviour of $\langle \bar{\psi}\psi \rangle$:

- Standard: Use the inflection point of the condensate.
- Easier alternative for $\mu_I < \mu_I^C$:

Use the point where subtracted condensate reaches a certain value. (that value has to be known from $\mu = 0$ – Silver Blaze)

Definition of the transition point

Investigate the finite temperature transition (crossover) for $\mu_I < \mu_I^C$.

Transition temperature T_C is defined by the behaviour of $\langle \bar{\psi}\psi \rangle$:

- Standard: Use the inflection point of the condensate.
- Easier alternative for $\mu_I < \mu_I^C$:

Use the point where subtracted condensate reaches a certain value. (that value has to be known from $\mu = 0$ – Silver Blaze)

Definition of the transition point

Investigate the finite temperature transition (crossover) for $\mu_I < \mu_I^C$.

Transition temperature T_C is defined by the behaviour of $\langle \bar{\psi}\psi \rangle$:

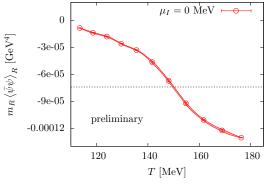
- Standard: Use the inflection point of the condensate.
- Easier alternative for $\mu_I < \mu_I^C$:

Use the point where subtracted condensate reaches a certain value. (that value has to be known from $\mu = 0$ – Silver Blaze)

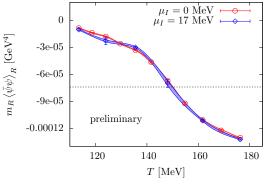
Here: Use subtracted u/d condensate renormalised by the quark mass:

$$m_{R}\left\langle \bar{\psi}\psi\right\rangle _{R}=m_{u/d}\left(\left\langle \bar{\psi}\psi\right\rangle -\left\langle \bar{\psi}\psi\right\rangle \right|_{T=0,\mu_{I}=0}\right)$$

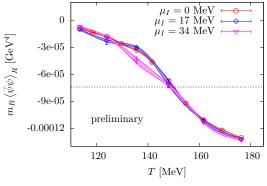
Value at the transition (in continuum): $m_R \langle \bar{\psi} \psi \rangle_R = -7.407 \ 10^{-5} \ {
m GeV^4}$ [BW: Borsanyi *et al*, JHEP1009 (2010)]



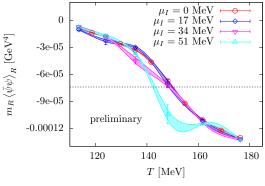
Curves: Simple spline interpolation.



Curves: Simple spline interpolation.

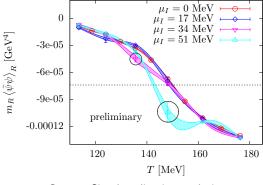


Curves: Simple spline interpolation.



Curves: Simple spline interpolation.

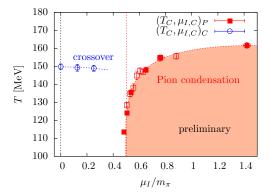
Definition of the transition point



Curves: Simple spline interpolation.

Biggest problem: λ -extrapolation!

Phase diagram for 6×24^3



Results for transition points from pion condensation from [Endrődi, Thu] before.

Phase diagram: Open questions

Where is the meeting point between crossover and pion condensation boundary?

What is the order of the transition on the boundary? Presence of a tri-critical point?

• What happens in the $\mu_I \rightarrow \infty$ limit?

More generally: Are the deconfinement transition and the boundary of the pion condensation phase equivalent? QCD with isospin chemical potential: low densities and Taylor expansion

Comparison Taylor expansion around $\mu_I = 0$

4. Comparison to Taylor expansion around $\mu_I = 0$

Taylor expansion around $\mu_I = 0$

Simulations at finite μ_B suffer from a sign problem!

One of the most important tools to obtain information at finite μ_B : Taylor expansion around $\mu_B = 0$.

However: Range of applicability at a given order is unknown!

Here: test Taylor expansion method using our data for $\mu_I \neq 0$

As an observable we use the isospin density (analogue to Baryon density):

$$\langle n_I \rangle = \frac{T}{V} \frac{\partial \log Z}{\partial \mu_I}$$

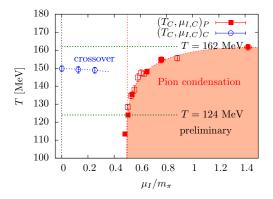
• Associated Taylor expansion (follows from expansion of pressure p/T^4):

$$\frac{\langle n_l \rangle}{T^3} = c_2 \left(\frac{\mu_l}{T}\right) + \frac{c_4}{6} \left(\frac{\mu_l}{T}\right)^3$$

Take values from Budapest-Wuppertal [BW: Borsanyi et al, JHEP1201 (2012)]

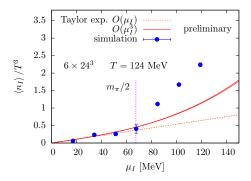
Comparison to data at finte μ_I

Compare data for 6×24^3 lattice:



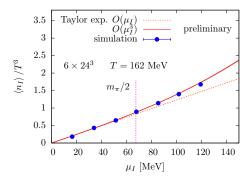
Comparison to data at finte μ_I

Compare data for 6×24^3 lattice, $T < T_C$:



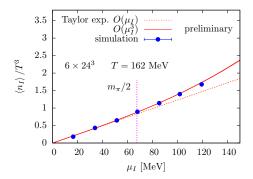
Comparison to data at finte μ_I

Compare data for 6×24^3 lattice, $T > T_C$:



Comparison to data at finte μ_I

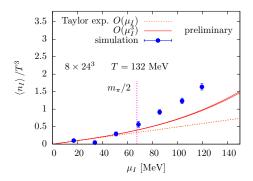
Compare data for 6×24^3 lattice, $T > T_C$:



Note: Here compare to coefficients from 6×18^3 lattices. (But finite size effects in coefficients negligible!)

Comparison to data at finte μ_I

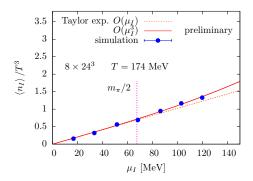
Compare data for 8×24^3 lattice, $T < T_C$:



Here: Coefficients computed on the same lattice size!

Comparison to data at finte μ_I

Compare data for 8×24^3 lattice, $T > T_C$:



Here: Coefficients computed on the same lattice size!

QCD with isospin chemical potential: low densities and Taylor expansion

Comparison Taylor expansion around $\mu_I = 0$

Comparison to data at finte μ_I

• For $T < T_C$:

Good agreement between expansion to $O(\mu_I^3)$ and data for $\mu_I < \mu_I^C$.

Note: For $\mu_l > \mu_l^c$ the system is in another (pion condensation) phase. \Rightarrow We do not expect agreement between expansion and data.

• For $T > T_C$:

Good agreement between all data and expansion to $O(\mu_I^3)$

- Generally: $O(\mu_I^5)$ contributions appear to be neligible!
- It would be interesting to simulate at larger values of μ_I for $T > T_C$ to see for how long the agreement persists.

Summary and Perspectives

- We have investigated the phase structure of QCD at finite isospin chemical potential μ₁.
- **Biggest issue:** Full control of λ -extrapolations (need to be improved).
- We have mapped the transition to the pion condensation phase using the pion condensate. (previous talk by Gergely Endrődi)
- The crossover temperatures starting from $\mu_I = 0$ decrease slightly at finite μ_I .
- Results from Taylor expansion to $O(\mu_l^3)$ agree well with results looked at so far. (except for results in the pion condensation phase as expected)

To do:

- Perform continuum limit and look at thermodynamic limit.
- Determine the order of the transitions to the pion condensation phase.

Presence of a tricritical point?

There are plenty of other interesting things to do with this theory!

QCD with isospin chemical potential: low densities and Taylor expansion

Thank you for your attention!