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Sign Problem: a brief review

Different approaches to solve the sign problem:

– Reweighting

– Expansion methods

– Stochastic differential equations

– Mapping to dual variables

– Et cetera...

Density of states approach:

– Method used FFA Functional Fit Approach ( ARXIV: 1503.04947, 1607.07340 )

– See also LLR Linear Logarithmic Relaxation by K. Langfeld, B. Lucini and A.
Rago ( ARXIV:1204.3243, 1509.08391 )
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Density of States Method

In QFT we want to compute for our theory:

Z =

∫
D[ψ]e−S[ψ] 〈O〉 =

1
Z

∫
D[ψ]O[ψ]e−S[ψ]

In the density of states approach we divide the action into two parts:

S [ψ] = Sρ[ψ] + cX [ψ]

* Sρ[ψ] and X [ψ] are real functionals of the fields ψ

* Sρ[ψ] is the part of the action that we include in the weighted density ρ

* Here c is purely imaginary: c = iξ
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Density of States Method

The weighted density is defined as:

ρ(x) =

∫
D[ψ]e−Sρ[ψ]δ(X [ψ]− x)

Using ρ(x) we can write Z and 〈O〉s:

Z =

∫ xmax

xmin

dx ρ(x) e−iξx 〈O〉 =
1
Z

∫ xmax

xmin

dx ρ(x) e−iξxO[x ]

Usually there is a symmetry ψ −→ ψ′ such that we can write:

Z = 2
∫ xmax

0
dx ρ(x) cos(ξx)

... and for the observables O:

〈O〉 =
2
Z

∫ xmax

0
dx ρ(x) {cos(ξx)Oeven(x)− i sin(ξx)Oodd(x)}

Where Oeven = O(x)+O(−x)
2 and Oodd = O(x)−O(−x)

2
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First example: SU(3)-spin model Arxiv:1607.07340

SU(3) spin model is a 3D effective theory for heavy dense QCD

Relevant d.o.f. is the Polyakov loop P(n) ∈ SU(3) (static quark source at n)

The model has a real and positive dual representation ⇒ reference data

We have an action:

S [P] = −τ
∑
n

3∑
ν=1

[
TrP(n) TrP(n+ν)†+c .c .

]
−κ

∑
n

[eµ TrP(n) +e−µ TrP(n)†]

The action depends only on the trace ⇒ simple parametrization

P(n) =

e iθ1(n) 0 0
0 e iθ2(n) 0
0 0 e−i(θ1(n)+θ2(n))


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Definition of density of states

We define the weighted density of states with Sρ[P] = Re[S [P]] and
Im[S [P]] = 2κ sinh(µ)X [P]:

ρ(x) =

∫
D[P] e−Sρ[P] δ(x − X [P]) x ∈ [−xmax , xmax ]

Symmetry P(n)→ P(n)∗ implies ρ(−x) = ρ(x)

This simplifies the partition function:

Z =

xmax∫
−xmax

dx ρ(x) cos(2κ sinh(µ)x) = 2

xmax∫
0

dx ρ(x) cos(2κ sinh(µ)x)

〈O
[
X
]
〉 =

2
Z

xmax∫
0

dx ρ(x)
[
OE (x) cos(2κ sinh(µ)x) + i OO(x) sin(2κ sinh(µ)x)

]
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Parametrization of the density ρ(x)

Ansatz for the density: ρ(x) = e−L(x), normalization ρ(0) = 1⇒ L(0) = 0

We divide the interval [0, xmax ] into N intervals n = 0, 1, . . . ,N − 1.

L(x) is continuous and linear on each of the intervals, with a slope kn:

0

1

2

3

4

5

∆0 ∆1∆2 ∆3 ∆4∆5 ∆6 ∆N−2 ∆N−1

k0

k1
k2

k3

k4 k5
k6

kN−2

kN−1

lmax

Mario Giuliani (Universität Graz) Southampton, 26th July 2015 7 / 22



Determination of the slopes kn

How do we find the slopes kn?
Restricted expectation values which depend on a parameter λ ∈ R:

〈〈O〉〉n(λ) =
1

Zn(λ)

∫
D[P] e−Sρ[P]+λX [P]O

[
X [P]

]
θn
[
X [P]

]
Zn(λ) =

∫
D[P] e−Sρ[P]+λX [P] θn

[
X [P]

]
θn
[
x
]

=

{
1 for x ∈ [xn, xn+1]

0 otherwise

Update with a restricted Monte Carlo

Vary the parameter λ to fully explore the density
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Functional Fit Approach FFA

Expressed in terms of the density:

Zn(λ) =

xmax∫
−xmax

dx ρ(x) eλx θn
[
x
]

=

xn+1∫
xn

dx ρ(x) eλx = c

xn+1∫
xn

dx e(−kn+λ)x

= c
e(λx−kn)xn+1 − e(λx−kn)xn

λ− kn

For computing the slopes we use as observable X [P]:

〈〈X [P]〉〉n(λ) =
1

Zn(λ)

xn+1∫
xn

dx ρ(x) eλx x =
∂

∂λ
ln
[
Zn(λ)

]
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Functional Fit Approach FFA

Explicit expression for restricted expectation values:

1
∆n

[
〈〈X [P]〉〉n(λ)−

n−1∑
j=0

∆j

]
− 1

2
= h
(
(λ− kn)∆n

)
h(r) =

1
1− e−r

− 1
r
− 1

2

Strategy to find kn:

1 Evaluate 〈〈X [P]〉〉n(λ) for different values of λ

2 Fit these Monte Carlo data h((λ− kn)∆n)

3 kn are obtained from simple one parameter fits

The quality of the fit provide a self-consistent check of our simulation
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Fit of slopes ⇒ density ρ(l)

Example: 83, κ = 0.005, µ = 0.0
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Observables

1 Particle number density n:

n =
1
V

1
2κ

∂

∂ sinh(µ)
lnZ =

1
V

2
Z

xmax∫
0

dx ρ(x) sin(2κ sinh(µ)x) x

2 ... and the corresponding susceptibility χn:

χn =
1
2κ

∂

∂ sinh(µ)
n

=
1
V

{
2
Z

xmax∫
0

dx ρ(x) cos(2κ sinh(µ)x) x2 +
( 2
Z

xmax∫
0

dx ρ(x) sin(2κ sinh(µ)x
)2
}
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Comparison with dual approach

With large statistic and small intervals we are able to explore results up to µ = 4:
Particle number density n

Lattice 83, τ = 0.130 and κ = 0.005:
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We find a good agreement for chemical potential up to µ ≈ 4.0
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Comparison with dual approach

Susceptibility χn

Lattice 83, τ = 0.130 and κ = 0.005:
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Comparison with dual approach

We can also go to bigger lattice size with the same parameters:
Particle number density n

Lattice 123, τ = 0.130 and κ = 0.005:
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We find a good agreement for chemical potential up to µ ≈ 4.0
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Comparison with dual approach

Susceptibility χn

Lattice 123, τ = 0.130 and κ = 0.005:
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We find smaller error bars for larger µ

The oscillating factor is bigger, but we still have: ∆n � 2π
2κ sinhµ

This can be explained looking at the different densities:
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The changed shape of the density above µ ≈ 2.25 weakens the piling up of the
errors on the singles kn
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Second example: SU(3) static quarks

Further step towards a real QCD system

SU(3) static quarks is a 4D effective theory for heavy dense QCD

A SU(3) gauge theory plus the static quarks represented by Polyakov loops

We have the following action:

S [U] = −β
3

∑
n

∑
µ<ν

Re
[
TrUµν(n)

]
− κ
[
eµNT

∑
~n

P(~n) + e−µNt

∑
~n

P(~n)†
]

Where the Polyakov loops are:

P(~n) =
1
3
Tr

NT−1∏
n4=0

U4(~n, n4)
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What is the idea of our simulation?

We can do a simulation for µ = 0, where we don’t have the sign problem

We can find a transition looking at the norm of the Polyakov loop

We see that for larger κ we have a shift towards smaller β
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Phase diagram

The phase diagram would be something like:

k

β

µ

Simulating the blue lines we hope to find the bending of the phase transition
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Preliminary results

For now we find something in agreement with that idea:
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They are preliminary results so we need to improve them

We should find a different method to check our results
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Conclusions

DoS is a general approach but its crucial point is the accuracy of ρ

At very large µ the rapidly oscillating factor limits the accuracy of DoS

FFA uses restricted Monte Carlo and probes the density with an additional
Boltzmann weight

Tested in SU(3) Spin model: good agreement and now we have a good
understanding how to scale the intervals size and the statistics

Testing towards theory more similar to QCD: SU3 static quarks. First results are
encouraging

For the future it would be interesting to introduce dynamical fermions in our
system
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