Sea quark QED effects and twisted mass fermions

R. Frezzotti, G.C. Rossi, N. Tantalo

Physics Dept. - University of Roma Tor Vergata
INFN - Sezione di Roma Tor Vergata - Roma, Italy

July 26, 2016 - Lattice 2016 - Southampton

Outline of the talk

(1) Motivation \& Introduction

- About twisted mass sea fermions coupled to photons
(2) EM \& strong $\mathrm{U}_{A}(1)$ anomalies
- QCD+QED with no θ term at maximal twist
(3 Maximal twist by symmetry recovery
- How to fix the critical mass beyond electro-quenching
(1) Strategy for leading isospin breaking (LIB) effects
- Mixed action and RM123 insertion method

Motivation \& Introduction

Q(C+E)D with maximal twisted mass (MTM) fermions: $\quad \psi^{t}=(u, d)$

$$
\begin{aligned}
& S_{\mathrm{F}}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}(\psi, \bar{\psi}, U, E)=a^{4} \sum_{x} \bar{\psi}(x)\left[\gamma \cdot \tilde{\nabla}-i \gamma_{5} \tau_{3} W_{\text {cr }}+\mu+\tau_{3} \epsilon\right] \psi(x) \\
& \bullet \\
& \bullet \gamma \cdot \widetilde{\nabla} \equiv \frac{1}{2} \sum_{\mu} \gamma_{\mu}\left(\nabla_{\mu}^{\star}+\nabla_{\mu}\right), \quad W_{\text {cr }} \equiv-\frac{a}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu}+M_{\text {cr }} \\
& \bullet \\
& \nabla_{\mu} \psi(x) \equiv \frac{1}{a}\left[\mathcal{U}_{\mu}(x) \psi(x+a \hat{\mu})-\psi(x)\right] \\
& \quad \nabla_{\mu}^{*} \psi(x) \equiv \frac{1}{a}\left[\psi(x)-\mathcal{U}_{\mu}^{\dagger}(x-a \hat{\mu}) \psi(x-a \hat{\mu})\right] \\
& \mathcal{U}_{\mu}(x)=E_{\mu}(x) U_{\mu}(x), \quad E_{\mu}(x)=\frac{\Pi 1+\tau_{3}}{2} e^{-i e q_{u p} \mathcal{A}_{\mu}(x)}+\frac{\Pi 1-\tau_{3}}{2} e^{-i e q_{\text {dn }} \mathcal{A}_{\mu}(x)}
\end{aligned}
$$

$q_{u p} \neq q_{d n} \Rightarrow$ flavour structure $\left(11 \pm \tau_{3}\right) / 2$ in both $\bar{\psi} \gamma \cdot \widetilde{\nabla} \psi$ and $\bar{\psi} W_{\text {cr }} \psi$
Note 1- Mass splitting with τ_{3} and not τ_{1} forced by gauge invariance
Note 2- Q of an up-down doublet has the form $e\left(1 / 6+\tau_{3} / 2\right)$

EM and strong $U_{A}(1)$ anomalies

- We want to analyze how EM and strong $\mathrm{U}_{A}(1)$ anomalies affect
- the form of the (continuum fermionic) effective action, $\Gamma_{\mathrm{F}}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}$
- its dependence on the vacuum θ-angle
- We start from the general action (above we had $\theta_{u}=-\theta_{d}=\frac{\pi}{2}$)

$$
\begin{aligned}
& S^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}(\psi, \bar{\psi}, U, E)=a^{4} \sum_{x}\left[\left.F F\right|_{E}(x)+\left.\operatorname{tr}(G G)\right|_{u}(x)\right]+ \\
& +a^{4} \sum_{x} \bar{\psi}_{u}(x)\left[\gamma \cdot \widetilde{\nabla}^{u}+e^{-i \theta_{u} \gamma_{5}} W_{\mathrm{cr}}^{u}+M_{u}\right] \psi_{u}(x)+ \\
& +a^{4} \sum_{x} \bar{\psi}_{d}(x)\left[\gamma \cdot \widetilde{\nabla}^{d}+e^{-i \theta_{d} \gamma_{5}} W_{\mathrm{cr}}^{d}+M_{d}\right] \psi_{d}(x)
\end{aligned}
$$

- Phases can be moved to masses through singlet axial lattice rotations

$$
\begin{array}{ll}
\psi_{u}=e^{i \gamma_{5} \theta_{u} / 2} \chi_{u} & \bar{\psi}_{u}=\bar{\chi}_{u} e^{i \gamma_{5} \theta_{u} / 2} \\
\psi_{d}=e^{i \gamma_{5} \theta_{d} / 2} \chi_{d} & \bar{\psi}_{d}=\bar{\chi}_{d} e^{i_{5} \theta_{d} / 2}
\end{array}
$$

- Lattice rotations are not anomalous
- $S_{\mathrm{F}}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}$ is periodic in θ_{u} and θ_{d}

Action and effective action

The action becomes (recall $M_{u, d}>0$, Wilson terms $W_{c r}^{u, d}$ are critical)

$$
\begin{aligned}
& S^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}(\chi, \bar{\chi}, U, E)=a^{4} \sum_{x}\left[\left.F F\right|_{E}(x)+\operatorname{tr}(G G) \mid u(x)\right]+ \\
& +a^{4} \sum_{x} \bar{\chi}_{u}(x)\left[\gamma \cdot \widetilde{\nabla}^{u}+W_{\mathrm{cr}}^{u}+e^{i \theta_{u} \gamma_{5}} M_{u}\right] \chi_{u}(x)+ \\
& +a^{4} \sum_{x} \bar{\chi}_{d}(x)\left[\gamma \cdot \widetilde{\nabla}^{d}+W_{\mathrm{cr}}^{d}+e^{i \theta_{d} \gamma_{5}} M_{d}\right] \chi_{d}(x)
\end{aligned}
$$

Note: $\quad M_{u, d} \cos \theta_{u, d} \equiv m_{u, d} \stackrel{\star}{\sim} \frac{m_{u, d}^{\mathrm{ren}}}{Z_{m_{u, d}}}, \quad M_{u, d} \sin \theta_{u, d} \equiv \mu_{u, d}=\frac{\mu_{u, d}^{\mathrm{ren}}}{Z_{\mu_{u, d}}}$

* Actually $m_{u, d}^{\text {ren }}=Z_{m_{u, d}}\left[m_{u, d}\left(1+\rho_{m}^{u, d}\right)+m_{d, u} \tilde{p}_{m}^{d, u}\right] \quad$ - see e.g. Horkel \& Sharpe, Phys.Rev. D92 (2015) 7,074501

Symmetries (see below) \Rightarrow continuum local effective action reads

$$
\begin{aligned}
& {[\#] \quad S_{c o n t}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}=\int d^{4} x\left\{\left.F F\right|_{\mathcal{A}}(x)+\left.\operatorname{tr}(G G)\right|_{\mathcal{G}}(x)\right\}+} \\
& +\int d^{4} x\left\{\bar{\chi}_{u}(x)\left[\gamma \cdot D^{u}+e^{i \hat{\theta}_{u} \gamma_{5}} \hat{M}_{u}\right] \chi_{u}(x)+\bar{\chi}_{d}(x)\left[\gamma \cdot D^{d}+e^{i \hat{\theta}_{d} \gamma_{5}} \hat{M}_{d}\right] \chi_{d}(x)\right\} \\
& \hat{M}_{u, d}=Z_{S u, d}^{\text {cont }} \sqrt{\left(m_{u, d}^{\text {ren }}\right)^{2}+\left(\mu_{u, d}^{\text {ren }}\right)^{2}}, \quad \hat{\theta}_{u, d}=\arctan \left(\frac{z_{\mu, d}}{z_{u, d}} \tan \theta_{u, d}\right)
\end{aligned}
$$

Continuum $U_{A}(1)$-rotations and anomaly

Recall $\quad S_{\mathrm{F}, \text { cont }}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}=\int d^{4} x \bar{\chi}(x)\left[\gamma \cdot D+e^{i \alpha \gamma_{5}} \mu\right] \chi(x)=$

$$
\begin{aligned}
& =\int d^{4} x \bar{\chi}(x) e^{i \gamma_{5} \frac{\alpha}{2}}[\gamma \cdot D+\mu] e^{i \gamma_{5} \frac{\alpha}{2}} \chi(x) \Longrightarrow \\
& \Longrightarrow \quad S_{\mathrm{F}, \operatorname{cont}}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}=\int d^{4} x \bar{\psi}(x)[\gamma \cdot D+\mu] \psi(x)+ \\
& \quad+i \frac{\alpha}{32 \pi^{2}} \int d^{4} x\left[\left.e^{2} \tilde{F} F\right|_{\mathcal{A}}(x)+g^{2} \operatorname{tr}\left[\left.\tilde{G} G\right|_{\mathcal{G}}(x)\right]\right]
\end{aligned}
$$

- Continuum theory property above implies in our case

$$
\begin{aligned}
& S_{\text {cont }}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}=\int d^{4} x\left\{\left.F F\right|_{\mathcal{A}}(x)+\left.\operatorname{tr}(G G)\right|_{\mathcal{G}}(x)\right\}+ \\
& =\int d^{4} x \bar{\psi}_{u}(x)\left[\gamma \cdot D^{u}+\hat{M}_{u}\right] \psi_{u}(x)+\int d^{4} x \bar{\psi}_{d}(x)\left[\gamma \cdot D^{d}+\hat{M}_{d}\right] \psi_{d}(x)+ \\
& +i \frac{e^{2}}{32 \pi^{2}}\left(\hat{\theta}_{u}+\hat{\theta}_{d}\right) \int d^{4} x \tilde{F} F(x)+i \frac{g^{2}}{32 \pi^{2}}\left(\hat{\theta}_{u}+\hat{\theta}_{d}\right) \int d^{4} x \operatorname{tr}[\tilde{G} G(x)]
\end{aligned}
$$

- Note: $\quad \theta_{u}=-\theta_{d}=\frac{\pi}{2}$ (MTM) $\leftrightarrow \hat{\theta}_{u}=-\hat{\theta}_{d}=\frac{\pi}{2}$ (no P-breaking)

A few observations

(1) $\hat{M}_{u}=\hat{M}_{d}=0 \rightarrow$ only the trivial topological sector contributes
$\hat{\theta}_{u}+\hat{\theta}_{d}=0 \rightarrow$ all sectors contribute with equal weight
(2) No CP-breaking term if $\hat{\theta}_{u}=-\hat{\theta}_{d}$. Indeed, one could set to zero both mass phases with a non-anomalous axial- τ_{3} rotation
(3) MTM case ($\theta_{u}=-\theta_{d}=\pi / 2$ or $\left.\mu_{u}>0, \mu_{d}<0, m_{u, d} \rightarrow 0^{+}\right)$ amounts to $\hat{\theta}_{u}=-\hat{\theta}_{d}=\pi / 2$ (in all renormalization schemes)
\Rightarrow MTM quarks well suited for QCD+QED via RM123 approach
Agreement with findings by Horkel \& Sharpe [Phys.Rev. D92 (2015) 7, 074501 and 9, 094514] Incidentally: within lattice QCD the action

$$
\begin{aligned}
& S^{\mathrm{QCD}}(\psi, \bar{\psi}, U)=a^{4} \sum_{x} \operatorname{tr}(G G) \mid u(x)+ \\
& +a^{4} \sum_{x} \bar{\psi}(x)\left[\gamma \cdot \widetilde{\nabla}+e^{-i \theta \gamma_{5}} W_{\mathrm{cr}}+M\right] \psi(x)
\end{aligned}
$$

was shown to lead to $S_{\text {cont }}^{Q C D}$ with θ-vacuum (Seiler\&Stamatescu '81)

Form of $\Gamma \mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}:$ sketch of the proof

Setting $\hat{M}_{f} \cos \hat{\theta}_{f} \equiv \hat{m}_{f}, \hat{M}_{f} \sin \hat{\theta}_{f} \equiv \hat{\mu}_{f}$ the thesis reads

$$
\begin{aligned}
{[\#] } & S_{\text {cont }}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}=\int d^{4} x\left\{\left.F F\right|_{\mathcal{A}}(x)+\left.\operatorname{tr}(G G)\right|_{\mathcal{G}}(x)\right\}+ \\
+ & \int d^{4} x\left\{\sum_{f=u, d} \bar{\chi}_{f}(x)\left[\gamma \cdot D^{f}+\hat{m}_{f}+i \gamma_{5} \hat{\mu}_{f}\right] \chi_{f}(x)\right\}
\end{aligned}
$$

with $\hat{m}_{f} \stackrel{\star}{\sim} Z_{S}^{\text {cont }} Z_{m_{f}} m_{f}, \hat{\mu}_{f}=Z_{S}^{\text {cont }} Z_{\mu_{f}} \mu_{f}$. Other $d=4$ terms:

- $\bar{\chi}_{f} \gamma_{5} \gamma \cdot D^{f} \chi_{f} \quad$ is ruled out by charge conjugation
- $\bar{\chi}_{f} \gamma_{5} \chi_{f}, \operatorname{tr}(\tilde{G} G), \tilde{F} F \quad$ are ruled out by $\widetilde{P} \times\left(\mu_{f} \rightarrow-\mu_{f}\right)$
- $\sum_{\mu \nu} \bar{\chi}_{f} \gamma_{\nu} \gamma_{\mu} D_{\mu}^{f} \chi_{f} \quad$ are excluded by $\widetilde{P} \times\left(\mu_{f} \rightarrow-\mu_{f}\right)$ and $H(4)$
while $a^{-1} \bar{\chi}_{f} \chi_{f}$ is allowed \& canceled by $M_{c r}^{f} \bar{\chi}_{f} \chi_{f}$. Here we defined

$$
\begin{aligned}
\widetilde{P}: & \chi_{f}(x) \rightarrow \gamma_{0} \chi_{f}\left(x_{P}\right), \bar{\chi}_{f}(x) \rightarrow \bar{\chi}_{f}\left(x_{P}\right) \gamma_{0}, x_{P}=\left(x_{0},-\vec{x}\right) \\
& U_{0}(x) \rightarrow U_{0}\left(x_{P}\right), U_{k}(x) \rightarrow U_{k}^{\dagger}(x-a \hat{k}) \\
& E_{0}(x) \rightarrow E_{0}\left(x_{P}\right), E_{k}(x) \rightarrow E_{k}^{\dagger}(x-a \hat{k})
\end{aligned}
$$

Critical mass $M_{c r}^{u, d}$ in $\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}$ with MTM quarks

Recall QCD+QED action for two distinct flavours: $\quad \psi^{t}=(u, d)$

$$
\begin{gathered}
S_{\mathrm{F}}^{\mathrm{Q}(\mathrm{C}+\mathrm{E}) \mathrm{D}}(\psi, \bar{\psi}, U, E)=a^{4} \sum_{x} \bar{\psi}(x)\left[\gamma \cdot \widetilde{\nabla}-i \gamma_{5} \tau_{3} W_{\mathrm{cr}}+\mu+\tau_{3} \epsilon\right] \psi(x) \\
\gamma \cdot \widetilde{\nabla} \equiv \frac{1}{2} \sum_{\mu} \gamma_{\mu}\left(\nabla_{\mu}^{\star}+\nabla_{\mu}\right), \quad W_{\mathrm{cr}} \equiv-\frac{a}{2} \sum_{\mu} \nabla_{\mu}^{\star} \nabla_{\mu}+M_{\mathrm{cr}}
\end{gathered}
$$

Complex quark determinant \Rightarrow LIB effects via RM123 method Here we discuss convenient conditions to fully fix $M_{c r}^{u}$ and $M_{c r}^{d}$

$$
\begin{aligned}
& M_{c r}=M_{c r}^{u} \frac{\Pi 1+\tau_{3}}{2}+M_{c r}^{d} \frac{\Pi-\tau_{3}}{2} \equiv m_{c r} \|+\tilde{m}_{c r} \tau_{3} \\
& m_{c r}=m_{c r}^{L Q C D}+\alpha_{e m} \frac{\delta_{e m}\left(g^{2}\right)}{a}+\mathrm{O}\left(\alpha_{e m}^{2}\right) \\
& \tilde{m}_{c r}=\alpha_{e m} \frac{\tilde{\delta}_{e m}\left(g^{2}\right)}{a}+\mathrm{O}\left(\alpha_{e m}^{2}\right)
\end{aligned}
$$

where $\quad m_{c r}^{L O C D}=\frac{w\left(g^{2}\right)}{a}+w_{1}\left(g^{2}\right) \Lambda_{Q C D}+O(a)$

LIB effects à la RM123 [JHEP 1204(2012), Phys.Rev. D87(2013)]

- Leading Isospin Breaking (LIB) effects can be calculated directly by expanding the lattice path-integral in powers of $\alpha_{e m}$ and $\left(m_{d}-m_{u}\right)$

$$
\mathcal{O}(\vec{g})=\frac{\langle R[U, A ; \vec{g}] O[U, A ; \vec{g}]\rangle^{A, \vec{g}^{0}}}{\langle R[U, A ; \vec{g}]\rangle^{A, \vec{g}^{0}}}=\frac{\langle(1+\dot{R}+\ldots)(O+\dot{O}+\ldots)\rangle}{\langle 1+\dot{R}+\ldots\rangle}=\mathcal{O}\left(\vec{g}^{0}\right)+\Delta \mathcal{O}
$$

- sea quark e.m. effects via (noisy) fermion disconnected diagrams

$M_{\text {cr }}$ determination - Non-singlet chiral WTIs

- QCD+QED continuum chiral WTIs

$$
\partial_{\mu} V_{\mu}^{3}=0
$$

$$
\partial_{\mu} V_{\mu}^{1}+\boldsymbol{e} \delta \boldsymbol{q} \mathcal{A}_{\mu} i V_{\mu}^{2}+2 \epsilon i S^{2}=0 \quad \partial_{\mu} A_{\mu}^{1}+\boldsymbol{e} \delta q \mathcal{A}_{\mu} i A_{\mu}^{2}-2 \mu P^{1}=0
$$

$$
\partial_{\mu} V_{\mu}^{2}-e \delta q \mathcal{A}_{\mu} i V_{\mu}^{1}-2 \epsilon i S^{1}=0 \quad \partial_{\mu} A_{\mu}^{2}-e \delta q \mathcal{A}_{\mu} i A_{\mu}^{1}-2 \mu P^{2}=0
$$

with e.g. $P^{3}=\bar{\psi} \gamma_{5} \tau_{3} \psi$ and $\mu+\tau_{3} \epsilon=\operatorname{diag}\left(M_{u}, M_{d}\right)$

- A way to fix $M_{c r}^{u, d}$ could be to impose two continuum WTIs, e.g.

$$
\begin{aligned}
& \left\langle\partial_{\mu} V_{\mu}^{1}(x) P^{2}(0)\right\rangle+\text { ie } \delta q\left\langle\mathcal{A}_{\mu} V_{\mu}^{2}(x) P^{2}(0)\right\rangle+2 i \epsilon\left\langle S^{2}(x) P^{2}(0)\right\rangle=0 \\
& \left\langle\partial_{\mu} A_{\mu}^{1}(x) S^{1}(0)\right\rangle-i e \delta q\left\langle\mathcal{A}_{\mu} A_{\mu}^{2}(x) S^{1}(0)\right\rangle-2 \mu\left\langle P^{1}(x) S^{1}(0)\right\rangle=0
\end{aligned}
$$

with $\mathcal{A}_{\mu}=$ photon. Need chiral-covariant renormalized operators ... In the conditions above all relevant correlators are parity-violating

- Another way to fix $M_{\mathrm{cr}}^{u, d}$:
imposing one chiral WTI [RM123, 2013: electroquenched approximation] \& minimizing $m_{\pi}^{ \pm}$wrt bare $m_{u, d}$ [Horkel \& Sharpe, 2015]

Critical mass from parity/flavour restoring in tmLQCD

Inspiration from Wilson twisted mass lattice QCD: its effective
action, $\Gamma_{\text {latt }}$, contains a local term $\sum_{x}\left[\frac{w_{0}\left(g_{0}^{2}\right)}{a}-M_{0}\right]\left[\bar{\psi} i \gamma_{5} \tau_{3} \psi\right](x)$
plus further parity (P)-breaking local terms with $d=5,7, \ldots \Longrightarrow$
Enforcing P-restoration in correlators fixes $M_{0}=m_{\text {cr }}^{L Q C D}$ up to $\mathrm{O}(a)$
E.g. impose $\quad \sum_{\vec{x}}\left\langle V_{0}^{1}(x) P^{2}(0)\right\rangle_{M_{0}}^{\text {lat }}=0 \quad$ (for all $x_{0} \gg$ a: optimal $m_{\text {cr }}$)

Lattice theory @ $M_{0} \sim m_{\text {cr }}$ described by a continuum effective action

$$
S_{L E L}^{\mathrm{eff}}=\int d^{4} y\left\{L_{4}^{Q C D}(y)+\left[a^{-1} w\left(g^{2}\right)-M_{0}\right]\left[\bar{\psi} i \gamma_{5} \tau_{3} \psi\right](y)+a L_{5}(y)+\ldots\right\}
$$

s.t. lattice correlators admit formal expansion in a and $M_{0}-m_{\mathrm{cr}}$, e.g.

$$
\begin{aligned}
& \left\langle V_{0}^{1}(x) P^{2}(0)\right\rangle_{M_{0}}^{\text {latt }}=\left.\left\langle V_{0}^{1}(x) P^{2}(0)\right\rangle\right|^{L_{4}}+\mathrm{O}(a)+ \\
& +\left.\left(m_{\text {cr }}-M_{0}\right) \int d^{4} y\left\langle V_{0}^{1}(x) P^{2}(0)\left[\bar{\psi} i \gamma_{5} \tau_{3} \psi\right](y)\right\rangle\right|^{L_{4}}
\end{aligned}
$$

Note: L_{4} is P-invariant. Here $M_{0} \rightarrow m_{\text {cr }}$ limit to be taken before $a \rightarrow 0$ limit.

Critical mass from parity restoring in tmLQ(C+E)D

- Need to eliminate $a^{-1} \bar{\psi} i_{5} \tau_{3} \psi$ and $a^{-1} \bar{\psi} i_{5} \psi$ from $\Gamma_{\text {latt }}^{Q C D+Q E D}$
- P-restoration fixes $m_{0} \rightarrow m_{c r} \& \tilde{m}_{0} \rightarrow \tilde{m}_{c r}$ in $M_{0}=m_{0} \| 1+\tilde{m}_{0} \tau_{3}$
- Impose $\sum_{\vec{x}}\left\langle V_{0}^{1}(x) P^{2}(0)\right\rangle_{M_{0}}^{\text {latt }}=0$ and $\sum_{\vec{x}}\left\langle S^{1}(x) P^{1}(0)\right\rangle_{M_{0}}^{\text {latt }}=0$

Latt. theory @ $\epsilon=0,\left(m_{0}, \tilde{m}_{0}\right) \sim\left(m_{c r}, \tilde{m}_{c r}\right)$ described by cont. LEL
$L_{4}^{Q C D+Q E D}(y)+\left[m_{c r}-m_{0}\right]\left[\bar{\psi} i \gamma_{5} \tau_{3} \psi\right](y)+\left[\tilde{m}_{c r}-\tilde{m}_{0}\right]\left[\bar{\psi} i \gamma_{5} \psi\right](y)+a L_{5}(y)+\ldots$
s.t. correlators admit a formal expansion in $a, m_{0}-m_{c r}, \tilde{m}_{0}-\tilde{m}_{c r}$, e.g.

$$
\begin{aligned}
& \left.\left\langle V_{0}^{1}(x) P^{2}(0)\right\rangle\right\rangle_{M_{0}}^{\text {latt }}=\left.\left(m_{c r}^{L Q C D}+\alpha_{e m} a^{-1} \delta_{e m}-m_{0}\right) \int d^{4} z\left\langle V_{0}^{1}(x) P^{2}(0) \bar{\psi} i_{5} \tau_{3} \psi(z)\right\rangle\right|^{L_{4}}+ \\
& +\left.\left(\alpha_{e m} a^{-1} \tilde{\delta}_{e m}-\tilde{m}_{0}\right) \int d^{4} z\left\langle V_{0}^{1}(x) P^{2}(0) \bar{\psi} i_{\gamma} \psi(z)\right\rangle\right|^{L_{4}}+O(a) \\
& \left\langle S^{1}(x) P^{1}(0)\right\rangle_{M_{0}}^{\text {lat }}=\left.\left(\alpha_{e m} a^{-1} \tilde{\delta}_{e m}-\tilde{m}_{0}\right) \int d^{4} z\left\langle S^{1}(x) P^{1}(0) \bar{\psi} i_{5} \psi(z)\right\rangle\right|^{L_{4}}+ \\
& +\left.\left(m_{c r}^{L Q C D}+\alpha_{e m} a^{-1} \delta_{e m}-m_{0}\right) \int d^{4} z\left\langle S^{1}(x) P^{1}(0) \bar{\psi} i_{5} \tau_{3} \psi(z)\right\rangle\right|^{L_{4}}+O(a)
\end{aligned}
$$

P-invariance (isospin symm. as $\alpha_{e m} \rightarrow 0$) of $L_{4}^{Q C D+Q E D}$ was (can be) used

RM123 approach for $N_{f}=2+1+1$ MTM LQ(C+E)D

Action with two-flavours Dirac operators $D_{33}^{n, \ell} \supset-i \gamma_{5} \tau_{3}+\mu_{h, \ell}+\epsilon_{h, \ell} \tau_{3}$

- is necessary to preserve e.m. gauge invariance
- in general has complex fermionic determinant

The RM123 method for LIB effects allows to extract physical info from correlation funcions (with suitable operator insertions) evaluated

* in isosymmetric lattice theory for $N_{f}=2$: real fermionic determinant
\star in a mixed action lattice theory with $e=\epsilon_{\ell}=0$ for $N_{f}=2+1+1$:

$$
S_{\text {mix }}=\left.S_{33}^{h, \ell}\right|_{e=\epsilon_{\ell}=0}+\left.\left(\bar{\psi}_{h}^{\text {sea }},\left[\gamma \cdot \tilde{\nabla}-i_{\gamma_{5}} \tau_{3} W_{\text {cr }}+\mu_{h}+\epsilon_{h} \tau^{1}\right] \psi_{h}^{\text {sea }}\right)\right|_{e=0}+
$$

$+\left.S_{\text {ghost }}\left(\Phi_{h} ; \mu_{h}+\epsilon_{h} \tau_{3}\right)\right|_{e=0} \quad$ has real fermionic determinant too
Suitable operator insertions in correlators reproduce all LIB effects due to $\epsilon_{\ell} \neq 0$ and $\alpha_{e m}>0$, included those from electro-unquenching (which need fermion disconnected diagrams evaluation) with only $\mathrm{O}\left(a^{2}\right)$ lattice artifacts
[Proof along the lines of Phys.Rev. D87 (2013) 11, 114505 (RM123) \& JHEP 0410 (2004) 070 (Frezzotti-Rossi)]

Thank you

