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• Especially for this talk I owe  these members in LatKMI:




Lightest flavor singlet mesons

• Many Flavor Theory


• scalar:               candidate of composite Higgs


• QCD


• scalar:               σ=f0(500)   still mysterious (particle);      Lattice, difficult


• pseudoscalar    η’(960)      heavy due to U(1)A anomaly; Lattice, challenging 


• Interesting problem to tackle with.


• Try to investigate them using Nf handle,  with high statistics



Simulation

• Fermion Formulation: HISQ (Highly Improved Staggered Quarks)


• Gauge Field Formulation:tree level Symanzik gauge


• all of LatKMI simulations are done in this set-up


• using MILC code v7, with modification: HMC and speed up in MD


• Computers:


• KMI phi, CX400 at Nagoya, Kyushu &


• HPCI(Kyushu) [project# hp140152, hp150157, hp160153]


• Nf=4 and 8   ongoing,  preliminary  results are shown,  Nf=12 planned



Nf=8   spectrum

• a full paper about to finish includes spectrum: π, ρ, σ   (, N, a0, a1, b1, fπ…)


• observed hierarchy of spectrum  (parametrically)  [LatKMI, PRD 2014] +update


• mπ ≃ mσ < mρ   (Nf=8)


• contrast to QCD (physical point)


• mπ ≪ mσ < mρ  (Nf=2+1)


• Informative to investigate Nf=4


• adding η’ on the table 0 0.01 0.02 0.03 0.04 0.05 0.06
m

f

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

m

σ L=42
σ L=36
σ L=30
σ L=24
σ L=18
π

ρ(PV)



Nf=4   simulation

• β=6/g2= 3.7  and  3.8(new)


• L3xT= 203x30


• mf=0.01, 0.02, 0.03, 0.04


• (LMπ)min=3.9


• sampled MDTU  for β=3.8: 


• 15000 (mf=0.01)


•   5000 (others)


• Qtop history
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Nf=4:  scale and pions

• t0  from Symanzik flow:


• a2(β=3.7)/a2(β=3.8) ≃ 1.3


• taste symmetry violation 0 0.01 0.02 0.03 0.04
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Nf=4   topological susceptibility

• normalized with t0
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Nf=4   topological susceptibility

• normalized with t0 • x-axis: NG pion → taste singlet
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Nf=4   topological susceptibility

• normalized with t0 • x-axis: NG pion → taste singlet
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a method for flavor singlets

• statistical technique for these noisy correlation functions


• use purely gluonic operators and sample exact all to all  with Gradient Flow


• zero momentum projection is not very efficient


G(x,y,z,t) → G(t)


• average to all direction will help


G(x,y,z,t) → G(r)


• Successful applications


• 0+- glueball @ Nf=0      by Chowdhury, Harindranath, Maiti, PRD 2015  

• η’  meson @ Nf=2+1     by JLQCD (Fukaya et al) PRD 2015


• no pion “contamination” due to no use of fermion correlators



Nf=4 η’   (preliminary)

• Use topological charge density operator


• With flow time varying  0 ≤ t ≤ 3


• ensemble:  β=3.8  only  so far


• sample rate:  one in 32 * MDTU  →  ~400 samples for mf=0.01


• G(x,y,z,t) → G(r) with FFT,  r’s binned to [n-0.5,n+0.5)→n (integer)


• use for effective mass,  global r fit


• Correlation function for mf=0.01  looks…



Nf=4, η’  correlation function G(r) (preliminary)
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Nf=4, η’   (preliminary)  -  mass extraction: mf=0.01

• asymptotic form:   G(r) =
C

r
K1(Mr)
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Nf=4, η’   (preliminary)  -  mass extraction: mf=0.01

• asymptotic form:   G(r) =
C

r
K1(Mr)
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Nf=4, η’   (preliminary)  -  mass extraction: mf=0.01

• asymptotic form:   G(r) =
C

r
K1(Mr)
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Nf=4, σ   (preliminary)  -  mass extraction @mf=0.01

• Use symmetric (clover) plaquette  for the operator


• very noisy


• instead, use fermionic scalar operator 
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Nf=4, σ   (preliminary)  -  mass extraction @mf=0.01

• Use symmetric (clover) plaquette  for the operator


• very noisy


• instead, use fermionic scalar operator 
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Nf=4  spectrum   (preliminary)
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Nf=8  spectrum   (η' is preliminary)
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spectrum: Nf dependence
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spectrum: Nf dependence

approx. mass ratio
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spectrum: Nf dependence

• approx. mass ratio 

• remark:  η’/ρ ≃ 3.5  for  Nf=8


• caveat


A. Nf=2+1 σ likely not so simple


B. Nf=4  only a few mf sampled


C. Nf=4, 8: only one lattice spacing


• Nf=8  mf dependence of ratio expected to be small ( near conformality )


• caveats B and C(Nf=4) will soon be removed by additional comp.


• would be interesting to investigate Nf=12 as well
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enhancement of Mη’/Mρ for Nf=8
• approx. mass ratio 

• remark:  η’/ρ ≃ 3.5  for  Nf=8


• Discussion:


• Usual large Nc argument


• fix: Nf and nc→∞


• Witten-Venetiano: Mη’2 ~ (Nf/nc) * Λ2→0  for nc→∞


• Walking regime: need to keep (Nf/nc) non-vanishing


• “Anti-Venetiano-limit”:  keep (Nf/nc)>1 fixed & nc→∞


• Matsuzaki-Yamawaki: Mη’2 ~ (Nf/nc)2 * Λ2 

        [JHEP 2015]


• Now Nf/nc ~ 3 :  this could be responsible for the enhancement
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Figure 5. The loop diagrams contributing to the correlation function of αGµνG̃µν coming from
the gluon loop (left panel) and fermion loop (right panel). The large NC and NF scalings have also
been specified.

parametrically vanishing mass Mη′/Fπ = O(
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Thus the TD in the anti-Veneziano limit and η′ in the Veneziano limit are resemblant.

What about the η′ in the anti-Veneziano limit, then? (No TD exists in the Veneziano

limit, since it is not a walking theory.) From eq. (4.2) and figure 5, we see the fermion loop

dominates the gluon loop, contrary to the Veneziano limit. Then we infer

M2
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F ∼ NF
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mF ≫ mF , (4.14)

where we have again subtracted the perturbative contribution to the U(1)A anomaly. This

could be tested on the lattice simulation [110]. In the anti-Veneziano limit the η′ mass does

not go to zero and hence has no NG boson nature in contrast to the TD. In the walking
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which is in accord with [69] based on the improved ladder result (with the two-loop cou-

pling as the input coupling). It was first pointed out in ref. [35] that this ladder PCDC
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the gluon loop (left panel) and fermion loop (right panel). The large NC and NF scalings have also
been specified.

parametrically vanishing mass Mη′/Fπ = O(
√
NF /NC) < Mη′/ΛQCD = O(

√
NF /NC) → 0

in the large NC limit with NF /NC fixed (≪ 1) in the ordinary QCD (original Veneziano

limit), a la Witten-Veneziano. In fact the anomalous chiral WT identity for A0
µ(x) =∑NF

i=1 q̄i(x)γµγ5qi(x) reads:

NFF
2
πM

2
η′ = F .T .

〈
T
(
∂µA0

µ(x) · ∂µA0
µ(0)

)〉
= F .T .

〈
T
(
NF

α

4π
GµνG̃µν(x) ·NF

α

4π
GµνG̃µν(0)

)〉

∼ N2
Fα

2 ×
[
N2

C (gluon loop , figure 5) +N3
CNF α

2 (fermion loop , figure 5)
]
. (4.12)

In the Veneziano limit NF /NC ≪ 1 the gluon loop dominates the fermion loop, and hence

we have

M2
η′ ∼

NF

F 2
π
Λ4
QCD ∼ NF

NC
Λ2
QCD ≪ Λ2

QCD

M2
η′

F 2
π

∼ NF

N2
C

≪ 1 . (4.13)

Thus the TD in the anti-Veneziano limit and η′ in the Veneziano limit are resemblant.

What about the η′ in the anti-Veneziano limit, then? (No TD exists in the Veneziano

limit, since it is not a walking theory.) From eq. (4.2) and figure 5, we see the fermion loop

dominates the gluon loop, contrary to the Veneziano limit. Then we infer

M2
η′ ∼ N3

CNF α2m2
F ∼ NF

NC
mF ≫ mF , (4.14)

where we have again subtracted the perturbative contribution to the U(1)A anomaly. This

could be tested on the lattice simulation [110]. In the anti-Veneziano limit the η′ mass does

not go to zero and hence has no NG boson nature in contrast to the TD. In the walking

case with NC/NF ≫ 1 and mF ≪ ΛTC, a simple scaling suggests that M2
φ = O(m2

F ) and

M2
η′ = O(N2

F /N
2
C)m

2
F (≫ M2

φ).

For the phenomenological studies, the PCDC in eq. (4.1) together with the Pagels-

Stokar formula in eq. (4.9) yields a more concrete result:

M2
φ ≃

(vEW
2

)2
·
(
5 vEW
Fφ

)2

·
[

8

NF

4

NC

]
. (4.15)

which is in accord with [69] based on the improved ladder result (with the two-loop cou-

pling as the input coupling). It was first pointed out in ref. [35] that this ladder PCDC

– 34 –



Summary and Outlook

• making use of LatKMI high-statistics HISQ ensembles of QCD with Nf=4, 8


• Some early results of Nf dependence of flavor-singlet pseudoscalar and scalar 
masses are shown


• remarkable enhancement of Mη’/Mρ observed as Nf grows


• could be understood as enhancement of the fermion-loop contribution in U(1) 
axial current correlator


• more mf points for Nf=4 and 8, and another lattice spacing for Nf=4 will be 
investigated soon


• Nf=12 might also be interesting to explore using LatKMI ensembles



Thank you very much for your attention !



staggered flavor (taste) symmetry for Nf=8 HISQ

• comparing masses with different staggered operators for π  for β=3.8


• excellent staggered flavor symmetry, thanks to HISQ
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Nf=8: conformal vs chiral symm. br. with γeff

• Nf=12: universal γ towards chiral limit


• Nf=8:   inconsistency of γ reduced towards lighter mass  (γ→~1)


• qualitatively different


• (note γ(Mπ)→1 /  γ(others)→∞   for Ch.Symm.Br)


• maybe promising…



Nf=8: conformal vs chiral symm. br. with γeff

• Nf=12: universal γ towards chiral limit


• Nf=8:   inconsistency of γ reduced towards lighter mass  (γ→~1)


• qualitatively different


• (note γ(Mπ)→1 /  γ(others)→∞   for Ch.Symm.Br)


• maybe promising…

0 0.05 0.1 0.15 0.2 0.25
mf

0.2

0.3

0.4

0.5

0.6

0.7

g e
ff

F
/

M
/

M
l

MN

Comparison between Nf=8 and 12

0 0.05 0.1
mf

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

g e
ff

F
/

M
/

M
l

MN

Nf=8 Nf=12

Nf=12:  Large fermion mass dependence in γ(Fπ).  
             Universal γ ~0.35-0.4 in the smallest mass region.  
             Consistent with the ratio study.
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