Flavor singlet mesons in QCD with varying number of flavors

Yasumichi Aoki 🔊

for the LatKMI collaboration

- @ Lattice 2016, Southampton, UK -

July 26, 2016

LatKMI collaboration

• KMI / Nagoya Univ.

T.Aoyama, T.Maskawa, K.Nagai, K.Yamawaki

• KEK, Swansea CPT Marseille, RIKEN-BNL, LLNL, Tsukuba

Y. A, E.Bennett, M.Kurachi, K.Miura, H.Ohki, E.Rinaldi, A.Shibata, T.Yamazaki

• Especially for this talk I owe these members in LatKMI:

Lightest flavor singlet mesons

- Many Flavor Theory
 - scalar: candidate of composite Higgs
- QCD
 - scalar: $\sigma=f_0(500)$ still mysterious (particle); Lattice, difficult
 - pseudoscalar $\eta'(960)$ heavy due to U(1)_A anomaly; Lattice, challenging

- Interesting problem to tackle with.
- Try to investigate them using N_f handle, with high statistics

Simulation

- Fermion Formulation: HISQ (Highly Improved Staggered Quarks)
- Gauge Field Formulation:tree level Symanzik gauge
- all of LatKMI simulations are done in this set-up
- using MILC code v7, with modification: HMC and speed up in MD
- Computers:
 - KMI phi, CX400 at Nagoya, Kyushu &
 - HPCI(Kyushu) [project# hp140152, hp150157, hp160153]

• $N_{f}=4$ and 8 ongoing, preliminary results are shown, $N_{f}=12$ planned

N_f=8 spectrum

- a full paper about to finish includes spectrum: π , ρ , σ (, N, a0, a1, b1, f_{π}...)
- observed hierarchy of spectrum (parametrically) [LatKMI, PRD 2014] +update
 - $m_{\pi} \simeq m_{\sigma} < m_{\rho}$ (N_f=8)

- contrast to QCD (physical point)
 - $m_{\pi} \ll m_{\sigma} < m_{\rho} \ (N_f=2+1)$

- Informative to investigate N_f=4
 - adding η ' on the table

N_f=4 simulation

- $\beta = 6/g^2 = 3.7$ and 3.8(new)
- $L^3xT = 20^3x30$
- $m_f=0.01, 0.02, 0.03, 0.04$
- (LM_π)_{min}=3.9
- sampled MDTU for β =3.8:
 - 15000 (m_f=0.01)
 - 5000 (others)
- Q_{top} history

N_f=4: scale and pions

normalized with t₀

• normalized with to

• x-axis: NG pion \rightarrow taste singlet

(a la sChPT: see Billeter, DeTar, Osborn, PRD2004)

does not vanish in $M_{\pi} \rightarrow 0$?

a method for flavor singlets

- statistical technique for these noisy correlation functions
- use purely gluonic operators and sample exact all to all with Gradient Flow
- zero momentum projection is not very efficient

$$G(x,y,z,t) \rightarrow G(t)$$

• average to all direction will help

$$G(x,y,z,t) \rightarrow G(\mathbf{r})$$

- Successful applications
 - 0+- glueball @ N_f=0 by Chowdhury, Harindranath, Maiti, PRD 2015
 - η ' meson @ N_f=2+1 by JLQCD (Fukaya et al) PRD 2015
 - no pion "contamination" due to no use of fermion correlators

$N_f=4 \eta'$ (preliminary)

- Use topological charge density operator
- With flow time varying $0 \le t \le 3$
- ensemble: β =3.8 only so far
- sample rate: one in 32 * MDTU \rightarrow ~400 samples for m_f=0.01
- $G(x,y,z,t) \rightarrow G(r)$ with FFT, r's binned to $[n-0.5,n+0.5) \rightarrow n$ (integer)
 - use for effective mass, global **r** fit
- Correlation function for $m_f=0.01$ looks...

$N_f=4$, η' correlation function G(r) (preliminary)

• asymptotic form:

$$G(r) = \frac{C}{r} K_1(Mr)$$

 \sim

$N_f=4$, η' (preliminary) - mass extraction: $m_f=0.01$

asymptotic form:

$$G(r) = \frac{C}{r} K_1(Mr)$$

$N_f=4$, η' (preliminary) - mass extraction: $m_f=0.01$

asymptotic form:

$$G(r) = \frac{C}{r} K_1(Mr)$$

$N_f=4$, η' (preliminary) - mass extraction: $m_f=0.01$

• asymptotic form:

$$G(r) = \frac{C}{r} K_1(Mr)$$

$N_f=4, \sigma$ (preliminary) - mass extraction @m_f=0.01

• Use symmetric (clover) plaquette for the operator

• instead, use fermionic scalar operator

$N_f=4, \sigma$ (preliminary) - mass extraction @m_f=0.01

• Use symmetric (clover) plaquette for the operator

• instead, use fermionic scalar operator

$N_f=4, \sigma$ (preliminary) - mass extraction @m_f=0.01

• Use symmetric (clover) plaquette for the operator

N_f=4 spectrum (preliminary)

LatKMI NEW

N_f=8 spectrum (η' is preliminary)

η': update from Lattice 2015 by Ohki

spectrum: Nf dependence

spectrum: Nf dependence

approx. mass ratio

Nf	2+1	4	8
σ/ρ	0.6	0.6	0.6
η'/ρ	1.2	1.2	3.5
@	experiment	m _f =0.01	m _f =0.015

spectrum: Nf dependence

- approx. mass ratio
- remark: $\eta'/\rho \simeq 3.5$ for N_f=8
- caveat
 - A. $N_f=2+1 \sigma$ likely not so simple
 - B. $N_f=4$ only a few m_f sampled
 - C. N_f=4, 8: only one lattice spacing
- N_f=8 m_f dependence of ratio expected to be small (near conformality)
- caveats B and C(N_f=4) will soon be removed by additional comp.

would be interesting to investigate N_f=12 as well

N _f	2+1	4	8
σ/ρ	0.6	0.6	0.6
η'/ρ	1.2	1.2	3.5
@	experiment	m _f =0.01	m _f =0.015

enhancement of $M_{\eta'}/M_{\rho}$ for $N_f=8$

- approx. mass ratio
- remark: $\eta'/\rho \simeq 3.5$ for N_f=8
- Discussion:
- Usual large Nc argument
 - fix: N_f and $n_c \rightarrow \infty$
 - Witten-Venetiano: $M_{\eta'}^2 \sim (N_f/n_c) * \Lambda^2 \rightarrow 0$ for $n_c \rightarrow \infty$
- Walking regime: need to keep (N_f/n_c) non-vanishing
 - "Anti-Venetiano-limit": keep (N_f/n_c)>1 fixed & $n_c \rightarrow \infty$
 - Matsuzaki-Yamawaki: M_η² ~ (N_f/n_c)² * Λ²
 [JHEP 2015]
 - Now $N_f/n_c \sim 3$: this could be responsible for the enhancement

DOD DOD DOD DOD

 $\alpha G_{\mu\nu} \tilde{G}^{\mu\nu}$

 $\alpha G_{\mu\nu} \tilde{G}^{\mu\nu}$

 $\sim \alpha^2 N_C^2$

Summary and Outlook

- making use of LatKMI high-statistics HISQ ensembles of QCD with Nf=4, 8
- Some early results of $N_{\rm f}$ dependence of flavor-singlet pseudoscalar and scalar masses are shown
- remarkable enhancement of $M_{\eta'}/M_{\rho}$ observed as N_f grows
- could be understood as enhancement of the fermion-loop contribution in U(1) axial current correlator
- more $m_{\rm f}$ points for $N_{\rm f}{=}4$ and 8, and another lattice spacing for $N_{\rm f}{=}4$ will be investigated soon
- N_f=12 might also be interesting to explore using LatKMI ensembles

Thank you very much for your attention !

staggered flavor (taste) symmetry for $N_f=8$ HISQ

• comparing masses with different staggered operators for π for β =3.8

excellent staggered flavor symmetry, thanks to HISQ

$N_f=8$: conformal vs chiral symm. br. with γ_{eff}

- Nf=12: universal γ towards chiral limit
- Nf=8: inconsistency of γ reduced towards lighter mass ($\gamma \rightarrow \sim 1$)
- qualitatively different
 - (note $\gamma(M_{\pi}) \rightarrow 1 / \gamma(\text{others}) \rightarrow \infty$ for Ch.Symm.Br)
- maybe promising...

$N_f=8$: conformal vs chiral symm. br. with γ_{eff}

- Nf=8: inconsistency of γ reduced towards lighter mass ($\gamma \rightarrow \sim 1$)
- qualitatively different
 - (note $\gamma(M_{\pi}) \rightarrow 1 / \gamma(\text{others}) \rightarrow \infty$ for Ch.Symm.Br)
- maybe promising...