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Motivation

Motivation

QCD difficult to solve. Sign problem for finite p
@ There are many ideas to deal with this, e.g. effective models
@ Sign problem in Polyakov loop models are expected to be less severe

o Problem: How do we get the effective action from a known action?
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Theory
e0
Inverse Monte-Carlo Method

Inverse Monte-Carlo Method |

Wilson action ir_1t_e%r_at_e_oijt_ _____ effective action
S[u] U Serr[x]
MC IMC
configurations calculate eff. configurations
c() =) ()
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Theory
(o] J
Inverse Monte-Carlo Method

Inverse Monte-Carlo Method I

o Take an effective action Seg(\) with yet to find coupling constants A

o Remember how DSEs are derived
oS
(),
S eff
o Demand that the effective theory approximates the full theory well, i.e.

<%(A)>fuﬂ =0 J

@ Solve this equation numerically for A
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Geometric Ward-Identities and Geometric DSEs

Geometric Ward-Identities |

o Left invariance of the Haar measure yields the (mathematical) identity

[ dute)Lanie) = 0.f € La(6).

@ For class functions F, F we obtain

/dured L-(FLF) :/dured(Fpl:'—i-ZFIf:):O

class function
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Geometric Ward-Identities and Geometric DSEs

Geometric Ward-Ildentities Il

@ Use character expansion for class functions

F(g) = F(xi(g), - xr(g)), r = rank(G)
_ OF(x)
LaF(X) = ; an(g) Lan(g)

o Set F = xp, with pe {1,...,r}
o Use

XpXv = Z C;;\VX)H Z LaXP - _CPXP(g)
A

Geometric Ward-Identity

OF (x)
Oxq(g)

(¢p + ca)XpXq — Z A CAXA — cpxp(8)F

0:/ dfired Z
@ q
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Geometric Ward-Identities and Geometric DSEs

Geometric DSEs

o Insert exp(—Sesr) and take sum over all lattice points

lz< Sk exp<+seff>cpxp,,-a-expuseff)>

ieL eff

o Take this DSE for IMC-method to calculate X via

Geometric DSEs

OF; - - -
Y < Z U exp(+Sefr (X)) — cpxp,iFi eXP(+5eff(>\))> =0

icl full

(Need dim(F) = dim(X) different class-functions F; to solve the equations for X)
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Polyakov Models: Linear and Logarithmic

Logarithmic SU(2) Polyakov Models

o Integrating out all spatial links and applying the strong coupling expansion yields

The linear Polyakov model

S= ZZ Z )\p,rXP,IXp,j7

ro <ij>=r

o Expanding the action term and applying a resummation of higher order terms
yields

The logarithmic Polyakov model

ZZ Z log 1+gp,rXplXp,J)

ro <ij>=r

[J. Langelage, S. Lottini, O. Philipsen 2010]

iya Bahrampour, Lorenz von Smekal, Bjorn Wellegehausen University of ¢ Non-Local effective SU(2) Polyakov loop model from inverse Monte-Carlo



Theory
o] ]
Polyakov Models: Linear and Logarithmic

Geometric DSEs for the Logarithmic Polyakov Model

o Neglecting terms with r > rmax, and represenations with p > pmax yields

Pmax 'max
=S — H H H exp (—Ap,rXp,iXp.j) »
p=1 r=1 <i,j>=r
v
Pmax Fmax
=S — H H H (1 + 8p,rXp,iXp,j) »
p=1 r=1 <i,j>=r
v

@ Insert into geometric DSE and set Ij_,- = F,:exp(fseff), with F, ={fori}

1 (e *)pri

fori=—
Pt 8p,r 8Xl,i

@ Now match the effective model to the full theory
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Local Polyakov Models: Linear vs. Logarithmic

Local Polyakov Models: Linear vs. Logarithmic
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@ Lin. model improves if we add represenations
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Numerical Results
oe

Local Polyakov Models: Linear vs. Logarithmic

Local Polyakov Models: Linear vs. Logarithmic

log. model, 1 link int-range
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o Log. resummation seems to work quite well. No higher represenations needed.
o For small 3 the log. resummation is expected to improve results.
o Still far from the full theory for large 3. — Try non-local models
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Numerical Results
o0
Non-local Logarithmic Polyakov Model

Non-local Logarithmic Polyakov Model

log. model, 1 rep.
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o Adding larger distances for the interaction improves the result.

o We “overshoot” when we include too large distances.
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Numerical Results

oce

Non-local Logarithmic Polyakov Model

log. model with 1 rep. log. model 2 rep.
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o Larger Lattice seems to fix overshooting.
o But: Higher represenations change the result. We overshoot again.

o Logarithmic resummation not doing well for large 8 (many non-local terms)
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Numerical Results
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Non-local Linear Polyakov Model

Non-local Linear Polyakov Models

lin. model with 1 rep.
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@ Linear model does not overshoot, even on the smaller lattice.
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Numerical Results
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Non-local Linear Polyakov Model

Non-local Linear Polyakov Models

lin. model with 2 rep.
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o We get close to the full theory with 2 represenations.
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[e]e] lele}
Non-local Linear Polyakov Model

Non-local Linear Polyakov Models

lin. model with 3 rep.
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@ Adding more rep. seems not to spoil the result. Still close to full theory.

o Approaches the full theory very slowly near 8¢ (large correlation length)
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Non-local Linear Polyakov Model

Non-local Linear Polyakov Models

lin. model with 1 rep. lin. model with 2 rep.
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@ Same result for larger lattice. No overshooting. Close to full theory with 2 rep.
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Non-local Linear Polyakov Model

Non-local Linear Polyakov Models

lin. model with 3 rep.
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@ Higher represenations seem not to spoil the result.
o Adding non-local terms for large 8 works much better than for log. model
@ Approaches the full thery very slowly around fc
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Long-Distance Behaviour of Non-Local Couplings

B=2.29, I pax 2564
1.0000000 . . . . . .

0.1000000
0.0100000
0.0010000 L]

S AT T

0.0000100

e

0.0000010 L L L L

r
163 x 4 lattice, 1000 configs

o Look at long-distance behaviours of couplings to make model predictable and
compare to analytical models
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Numerical Results
-Distance Behaviour of Non-Local Couplings

Compare to Greensite's and Langfeld’s analytical model

S:cOZPX — %clzpf *2CZZPXQ(X7Y)P,V7
x X x5y

_ _ (V=V2)y |x—y| < rmax
Qx—y) = {O |x — y| > rmax
B =222
10000000 — " ; " T 0n.c,-0227 = 1® Shape agrees quite well.
() e
0.1000000 | = |e Fitted coupling
. ¢ ~ 0.227(53) does not
. agree with prediction of
0.0100000 | S 1 0.491(1)
]
0.0010000 | " {@ Maybe if we insert addtional
- i'% ¥ terms (linear P-term)?
0.0001000 | = T H |
-
0.0000100 | s W
0.0000010 L— . w . . . ‘
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Long-Distance Behaviour of Non-Local Couplings

ong-Distance Behaviour of Non-Local Couplings
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lin. model with 1 rep.

o Fitting linear part and extracting “correlation length” yields peak around
Be ~ 2.29

@ Dependence seems not to scale with the volume

o — Might suggest model becomes local again in the contiuum
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Conclusion and Outlook

Conclusion

@ IMC-method works well to fix theories

Logarithmic resummation does not work well for 8 2 B¢

Non-local linear Polyakov model seems to work well for 5 > Bc.

Difficult around B.. Need more non-local terms.

o Model might become local in the contiuum limit

Outlook

o Improvements around (¢

Maybe add addtional terms in our ansatz (linear polyakov term)

Check larger lattices and contiuum limit
@ Add fermions

o Other gauge groups (SU(3), Gp)
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Conclusion and Outlook

THANK YOU FOR YOUR ATTENTION
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