Non-Local effective SU(2) Polyakov loop model from inverse Monte-Carlo methods

Bardiya Bahrampour, Lorenz von Smekal, Björn Wellegehausen

University of Giessen, Germany

LATTICE 2016

Content

Motivation

2 Theory

- Inverse Monte-Carlo Method
- Geometric Ward-Identities and Geometric DSEs
- Polyakov Models: Linear and Logarithmic

3 Numerical Results

- Local Polyakov Models: Linear vs. Logarithmic
- Non-local Logarithmic Polyakov Model
- Non-local Linear Polyakov Model
- Long-Distance Behaviour of Non-Local Couplings

Conclusion and Outlook

- $\bullet\,$ QCD difficult to solve. Sign problem for finite μ
- There are many ideas to deal with this, e.g. effective models
- Sign problem in Polyakov loop models are expected to be less severe
- Problem: How do we get the effective action from a known action?

Theory 0000000 Numerical Results

Conclusion and Outlook

æ

Theory

Bardiya Bahrampour, Lorenz von Smekal, Björn Wellegehausen University of C Non-Local effective SU(2) Polyakov loop model from inverse Monte-Carlo met

<ロ> <四> <四> <日> <日> <日</p>

Motivation	Theory	Numerical Results	Conclusion and Outlook
	000000		
Inverse Monte-Carlo Method			
Inverse Monte-Carl	Nethod I		

- Take an effective action $S_{eff}(\lambda)$ with yet to find coupling constants λ
- Remember how DSEs are derived

$$\left\langle rac{\delta S}{\delta arphi}(\lambda)
ight
angle_{e\!f\!f} = 0$$

• Demand that the effective theory approximates the full theory well, i.e.

$$\left\langle \frac{\delta S}{\delta \varphi}(\lambda) \right\rangle_{full} = 0$$

• Solve this equation numerically for λ

• Left invariance of the Haar measure yields the (mathematical) identity

$$\int d\mu(g)(L_af)(g)=0, f\in L_2(G).$$

• For class functions F, \tilde{F} we obtain

$$\int d\mu_{\text{red}} \underbrace{\vec{L} \cdot (F\vec{L}\tilde{F})}_{\text{class function}} = \int d\mu_{\text{red}}(F\vec{L}^{2}\tilde{F} + \vec{L}F \cdot \vec{L}\tilde{F}) = 0$$

(日) (同) (三) (三)

$$F(g) = F(\chi_1(g), ..., \chi_r(g)), \qquad r = rank(G)$$
$$L_a F(\chi) = \sum_q \frac{\partial F(\chi)}{\partial \chi_q(g)} L_a \chi_q(g)$$

• Set
$$\tilde{F} = \chi_p$$
, with $p \in \{1, ..., r\}$
• Use

$$\chi_{\mu}\chi_{\nu} = \sum_{\lambda} C^{\lambda}_{\mu\nu}\chi_{\lambda}, \qquad \sum_{a} L^{2}_{a}\chi_{p}(g) = -c_{p}\chi_{p}(g)$$

Geometric Ward-Identity

$$0 = \int_{G} d\mu_{red} \left\{ \frac{1}{2} \sum_{q} \underbrace{\left[(c_{p} + c_{q}) \chi_{p} \chi_{q} - \sum_{\lambda} C_{\mu\nu}^{\lambda} c_{\lambda} \chi_{\lambda} \right]}_{=:K_{q}} \frac{\partial F(\chi)}{\partial \chi_{q}(g)} - c_{p} \chi_{p}(g) F \right\}$$

Motivation	Theory	Numerical Results	Conclusion and Outlook
	0000000		
Geometric Ward-Identities and Geometric DSEs			
Geometric DSEs			

• Insert $\exp(-S_{eff})$ and take sum over all lattice points

$$V^{-1}\sum_{i\in L}\left\langle \frac{1}{2}\sum_{q}K_{q,i}\frac{\partial F_{i}}{\partial \chi_{q,i}}\exp(+S_{eff})-c_{p}\chi_{p,i}F_{i}\exp(+S_{eff})\right\rangle_{eff}=0$$

• Take this DSE for IMC-method to calculate $\vec{\lambda}$ via

Geometric DSEs

$$V^{-1}\sum_{i\in L}\left\langle \frac{1}{2}\sum_{q}K_{q,i}\frac{\partial\vec{F}_{i}}{\partial\chi_{q,i}}\exp(+S_{eff}(\vec{\lambda}))-c_{p}\chi_{p,i}\vec{F}_{i}\exp(+S_{eff}(\vec{\lambda}))\right\rangle_{full}=0$$

(Need dim $(\vec{F}) = \dim(\vec{\lambda})$ different class-functions F_i to solve the equations for $\vec{\lambda}$)

 Motivation
 Theory
 Numerical Results
 Conclusion and Outlook

 Polyakov Models: Linear and Logarithmic
 Conclusion and Outlook
 Conclusion and Outlook

• Integrating out all spatial links and applying the strong coupling expansion yields

The linear Polyakov model

$$S = \sum_{p} \sum_{r} \sum_{\langle i,j \rangle = r} \lambda_{p,r} \chi_{p,i} \chi_{p,j},$$

• Expanding the action term and applying a resummation of higher order terms yields

The logarithmic Polyakov model

$$S = -\sum_{p} \sum_{r} \sum_{\langle i,j \rangle = r} \log \left(1 + g_{p,r} \chi_{p,i} \chi_{p,j} \right)$$

[J. Langelage, S. Lottini, O. Philipsen 2010]

イロト イポト イヨト イヨト

 Motivation
 Theory
 Numerical Results
 Conclusion and Outlook

 000000
 00000000000
 0000000000

 Polyakov Models: Linear and Logarithmic
 Energy
 Conclusion and Outlook

 Geometric DSEs for the Logarithmic Polyakov Model
 Energy
 Conclusion and Outlook

• Neglecting terms with $r \ge r_{max}$, and representations with $p \ge p_{max}$ yields

$$e^{-5} = \prod_{p=1}^{p_{max}} \prod_{r=1}^{r_{max}} \prod_{\langle i,j\rangle = r} \exp\left(-\lambda_{p,r}\chi_{p,i}\chi_{p,j}\right),$$

$$e^{-S} = \prod_{p=1}^{p_{max}} \prod_{r=1}^{r_{max}} \prod_{< i,j > = r} (1 + g_{p,r} \chi_{p,i} \chi_{p,j}),$$

• Insert into geometric DSE and set $\vec{F}_i = \vec{f}_i \exp(-S_{eff})$, with $\vec{f}_i = \{f_{p,r,i}\}$

$$f_{p,r,i} = \frac{1}{g_{p,r}} \frac{\partial (e^{-S})_{p,r,i}}{\partial \chi_{1,i}}$$

Now match the effective model to the full theory

I heory

Numerical Results

Conclusion and Outlook

NUMERIC RESULTS

Bardiya Bahrampour, Lorenz von Smekal, Björn Wellegehausen University of C Non-Local effective SU(2) Polyakov loop model from inverse Monte-Carlo met

< 17 ▶

→ ∃ → < ∃</p>

Theory

Numerical Results

Conclusion and Outlook

Local Polyakov Models: Linear vs. Logarithmic

Local Polyakov Models: Linear vs. Logarithmic

lin. model, 1 link int-range

Lattice: $20^3 \times 4$, Configs: 10,000

• Lin. model improves if we add represenations

Theory

000

Numerical Results

Conclusion and Outlook

Local Polyakov Models: Linear vs. Logarithmic

Local Polyakov Models: Linear vs. Logarithmic

- Log. resummation seems to work quite well. No higher represenations needed.
- \bullet For small β the log. resummation is expected to improve results.
- Still far from the full theory for large β . \rightarrow Try non-local models

Theory

Numerical Results

Conclusion and Outlook

Non-local Logarithmic Polyakov Model

Non-local Logarithmic Polyakov Model

- Adding larger distances for the interaction improves the result.
- We "overshoot" when we include too large distances.

Theory

Numerical Results

Conclusion and Outlook

Non-local Logarithmic Polyakov Model

Non-local Logarithmic Polyakov Model

- Larger Lattice seems to fix overshooting.
- But: Higher represenations change the result. We overshoot again.
- Logarithmic resummation not doing well for large β (many non-local terms)

Motivation	Theory	Numerical Results	Conclusion and Outlook
		0000000000	
Non-local Linear Polyakov Model			
Non-local Linear Po	olyakov Models		

• Linear model does not overshoot, even on the smaller lattice.

Motivation	Theory	Numerical Results	Conclusion and Outlook
		00000000000	
Non-local Linear Polyakov Model			
Non-local Linear Po	olyakov Models		

• We get close to the full theory with 2 represenations.

Motivation	Theory	Numerical Results	Conclusion and Outlook
		00000000000	
Non-local Linear Polyakov Model			
Non-local Linear P	olvakov Models		

- Adding more rep. seems not to spoil the result. Still close to full theory.
- Approaches the full theory very slowly near β_c (large correlation length)

Motivation	Theory	Numerical Results	Conclusion and Outlook
		00000000000	
Non-local Linear Polyakov Model			
Non-local Linear	Polvakov Models		

• Same result for larger lattice. No overshooting. Close to full theory with 2 rep.

Motivation	Theory	Numerical Results	Conclusion and Outlook
		0000 0000 0000	
Non-local Linear Polyakov Mod	el		
Non-local Linea	r Polvakov Models		

- Higher represenations seem not to spoil the result.
- $\bullet\,$ Adding non-local terms for large β works much better than for log. model
- Approaches the full thery very slowly around $\beta_{\rm c}$

I heory

Numerical Results

Conclusion and Outlook

Long-Distance Behaviour of Non-Local Couplings

Long-Distance Behaviour of Non-Local Couplings

• Look at long-distance behaviours of couplings to make model predictable and compare to analytical models

Long-Distance Behaviour of Non-Local Couplings

Compare to Greensite's and Langfeld's analytical model

$$S = c_o \sum_{x} P_x - \frac{1}{2} c_1 \sum_{x} P_x^2 - 2c_2 \sum_{x,y} P_x Q(x-y) P_y,$$
$$Q(x-y) = \begin{cases} (\sqrt{-\nabla^2})_{xy} & |x-y| \le r_{max} \\ 0 & |x-y| > r_{max} \end{cases}$$

 $\beta = 2.22$

Theory

Numerical Results

Conclusion and Outlook

Long-Distance Behaviour of Non-Local Couplings

Long-Distance Behaviour of Non-Local Couplings

- $\bullet\,$ Fitting linear part and extracting "correlation length" yields peak around $\beta_c\approx 2.29$
- Dependence seems not to scale with the volume
- $\bullet \rightarrow \mathsf{Might}$ suggest model becomes local again in the continum

Motivation	

Theory

化原因 化原因

-

Conclusion

- IMC-method works well to fix theories
- Logarithmic resummation does not work well for $\beta \gtrsim \beta_c$
- Non-local linear Polyakov model seems to work well for $\beta > \beta_c$.
- Difficult around β_c . Need more non-local terms.
- Model might become local in the continum limit

Outlook

- Improvements around β_c
- Maybe add addtional terms in our ansatz (linear polyakov term)
- Check larger lattices and contiuum limit
- Add fermions
- Other gauge groups $(SU(3), G_2)$

Theory

Numerical Results

Conclusion and Outlook

THANK YOU FOR YOUR ATTENTION

Bardiya Bahrampour, Lorenz von Smekal, Björn Wellegehausen University of C Non-Local effective SU(2) Polyakov loop model from inverse Monte-Carlo met

< A >

< ∃ >

-

э