Determining α_s by using the gradient flow in the quenched theory

Eliana Lambrou

in collaboration with Szabolcs Borsanyi and Zoltan Fodor

Bergische Universität Wuppertal

34th International Symposium on Lattice Field Theory
Southampton, 25th July 2016
Introduction - Motivation
Current state of α_s determinations

- Many attempts to estimate α_s and Λ parameter in literature
- Summary and combined value by Flag Working Group [arXiv:1607.00299]
- Criteria:
 - Renormalization scale: all points must have $\alpha_{\text{eff}} < 0.2$
 - Perturbative behaviour: should be verified over a range of a factor 4 change in $\alpha_{\text{eff}}^{n_{1}}$ (or $\alpha_{\text{eff}} = 0.01$ is reached)
 - Continuum extrapolation: at $\alpha_{\text{eff}} = 0.3$ have three lattice spacing with $\mu a < 0.5$ for full $\mathcal{O}(a)$ improvement.
 - Finite-size effects: scale is determined in large enough volumes
 - Topology sampling
Current State of α_s determination - quenched case

<table>
<thead>
<tr>
<th>Collaboration</th>
<th>Ren. scale</th>
<th>Pert. Behav.</th>
<th>Cont. Extrap.</th>
<th>$r_0 \Lambda_{\overline{MS}}$</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-PACS 04</td>
<td>★</td>
<td>★</td>
<td>○</td>
<td></td>
<td>Schrödinger Functional</td>
</tr>
<tr>
<td>ALPHA 98</td>
<td>★</td>
<td>★</td>
<td>○</td>
<td>0.602(48)</td>
<td>Schrödinger Functional</td>
</tr>
<tr>
<td>Lüsher 93</td>
<td>★</td>
<td>○</td>
<td>○</td>
<td>0.590(60)</td>
<td>Schrödinger Functional</td>
</tr>
<tr>
<td>Brambilla 10</td>
<td>○</td>
<td>★</td>
<td>○</td>
<td>0.637($^{+32}_{-30}$)</td>
<td>Heavy quark Potential</td>
</tr>
<tr>
<td>UKQCD 92</td>
<td>★</td>
<td>○</td>
<td>■</td>
<td>0.686(54)</td>
<td>Heavy quark Potential</td>
</tr>
<tr>
<td>Bali 92</td>
<td>★</td>
<td>○</td>
<td>■</td>
<td>0.661(27)</td>
<td>Heavy quark Potential</td>
</tr>
<tr>
<td>FlowQCD 15</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>0.618(11)</td>
<td>Lattice spacing scale</td>
</tr>
<tr>
<td>QCDSF/UKQCD 05</td>
<td>★</td>
<td>○</td>
<td>★</td>
<td>0.614(2)(5)</td>
<td>Lattice spacing scale</td>
</tr>
<tr>
<td>SESAM 99</td>
<td>★</td>
<td>■</td>
<td>■</td>
<td></td>
<td>Lattice spacing scale</td>
</tr>
<tr>
<td>Wingate 95</td>
<td>★</td>
<td>■</td>
<td>■</td>
<td></td>
<td>Lattice spacing scale</td>
</tr>
<tr>
<td>Davies 94</td>
<td>★</td>
<td>■</td>
<td>■</td>
<td></td>
<td>Lattice spacing scale</td>
</tr>
<tr>
<td>El-Khadra 92</td>
<td>★</td>
<td>■</td>
<td>○</td>
<td>0.560(24)</td>
<td>Lattice spacing scale</td>
</tr>
<tr>
<td>Sternbeck 10</td>
<td>★</td>
<td>★</td>
<td>■</td>
<td>0.62(1)</td>
<td>QCD vertices</td>
</tr>
<tr>
<td>Ilgenfritz 10</td>
<td>★</td>
<td>★</td>
<td>■</td>
<td></td>
<td>QCD vertices</td>
</tr>
<tr>
<td>Boucaud 08</td>
<td>○</td>
<td>★</td>
<td>■</td>
<td>0.59(1)(^{+2}_{-1})</td>
<td>QCD vertices</td>
</tr>
<tr>
<td>Boucaud 05</td>
<td>■</td>
<td>★</td>
<td>■</td>
<td>0.62(7)</td>
<td>QCD vertices</td>
</tr>
</tbody>
</table>

In this talk: α_s in the quenched case using the gradient flow
Gradient Flow - Setting the scale

- Gradient Flow has many applications (scale setting, operator relation, topology etc...) \textit{Lüscher (2010)}
- Simplest gauge invariant quantity: action density
 \[E(t, x) = \frac{1}{4} G_a^{\mu\nu} G_a^{\mu\nu} \]
- Its expectation value \(\langle E(t, x) \rangle \) serves as a non-perturbative definition of a reference scale
- \(t_0 \) first introduced as a reference scale \textit{Lüscher (2010)}
 \[t^2 \langle E(t) \rangle \bigg|_{t=t_0} = 0.3 \]
- \(w_0 \) can also be used as a reference scale \textit{BMW Collaboration (2012)}
 \[t \frac{d}{dt} t^2 \langle E(t) \rangle \bigg|_{t=w_0^2} = 0.3 \]
Gradient Flow - Perturbative relation

Perturbative relation for its expectation value for QCD \((N_A = 8)\) in \(\overline{\text{MS}}\) scheme up to NNLO

\[
t^2 \langle E(t) \rangle = \frac{3\alpha_s}{4\pi} \left(1 + \alpha_s k_1 + \alpha_s^2 k_2 + O(\alpha_s^3) \right)
\]

\(k_1 = 1.09778674\) \(\text{L"uscher (2010)}\)

\(k_2 = -0.9822456\) \(\text{Harlander and Neumann (2016)}\)
Brute-Force determination of α_5
Procedure

Simulation details

- Use fine-lattices at $T = 0$
- Keep the physical volume constant $L^c T_c \simeq 2$
- Periodic Boundary Conditions
- Tree-level Symanzik action, Wilson flow, Clover-leaf definition of observable
- $Q = 0$ configurations selected

- $w_0^{Q=0}/w_0 = 0.992(4)$
- Use w_1 to set the scale: $t \frac{d}{dt} t^2 \langle E(t) \rangle \big|_{t=w_1^2} = 0.03$
- $w_1/r_0 = 0.115(2)$

Lattices used

<table>
<thead>
<tr>
<th>β</th>
<th>N</th>
<th>a (in r_0)</th>
<th># cfgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3570</td>
<td>48</td>
<td>0.05651</td>
<td>529</td>
</tr>
<tr>
<td>5.3669</td>
<td>48</td>
<td>0.05583</td>
<td>4680</td>
</tr>
<tr>
<td>5.4500</td>
<td>56</td>
<td>0.05011</td>
<td>215</td>
</tr>
<tr>
<td>5.4700</td>
<td>56</td>
<td>0.04911</td>
<td>222</td>
</tr>
<tr>
<td>5.5000</td>
<td>56</td>
<td>0.04690</td>
<td>197</td>
</tr>
<tr>
<td>5.5830</td>
<td>64</td>
<td>0.04178</td>
<td>161</td>
</tr>
<tr>
<td>5.6000</td>
<td>64</td>
<td>0.04115</td>
<td>200</td>
</tr>
<tr>
<td>5.8000</td>
<td>80</td>
<td>0.03229</td>
<td>400</td>
</tr>
<tr>
<td>5.9500</td>
<td>96</td>
<td>0.02699</td>
<td>234</td>
</tr>
<tr>
<td>6.0500</td>
<td>112</td>
<td>0.02395</td>
<td>100</td>
</tr>
<tr>
<td>6.1500</td>
<td>128</td>
<td>0.02138</td>
<td>50</td>
</tr>
<tr>
<td>6.3600</td>
<td>160</td>
<td>0.01648</td>
<td>103</td>
</tr>
</tbody>
</table>
• Discretization correction terms at tree-level Fodor et al. (2014)

\[t^2 \langle E(t) \rangle = \frac{3 \alpha_s}{4\pi} \left(C(a^2/t) + \mathcal{O}(\alpha_s) \right) \]

where

\[C(a^2/t) = 1 + \sum_{m=1}^{\infty} C_{2m} \frac{a^{2m}}{t^m} \]

Coefficients known up to \(\mathcal{O}(a^8) \)

• Finite-Volume correction Fodor et al. (2012)

\[t^2 \langle E \rangle = \frac{3 \alpha_s}{4\pi} \left(1 + \delta(t/L^2) \right) \]

where

\[\delta = 1 - \frac{64t^2\pi}{3L^2} + 8e^{-L^2/8t} + 24e^{-L^4/4t} + \ldots \]
Improved vs Unimproved flow

\[\beta = 6.05 \]
\[\beta = 6.05 \text{ improved} \]
\[\beta = 6.15 \]
\[\beta = 6.15 \text{ improved} \]
\[\beta = 6.36 \]
\[\beta = 6.36 \text{ improved} \]
Improvement

\[t^2 E \]

\(\sqrt{8t}/w_1 = 1.0, \text{ unimproved} \)

\(\sqrt{8t}/w_1 = 1.0, \text{ improved} \)

\(\sqrt{8t}/w_1 = 0.6, \text{ unimproved} \)

\(\sqrt{8t}/w_1 = 0.6, \text{ improved} \)
1. $t^2 \langle E(t) \rangle \Rightarrow \alpha_s$ from perturbative relation
2. Use 4-loop β-function in the $\overline{\text{MS}}$-scheme to run α_s at a high scale

Ritbergen, Vermaseren, Larin (1997)

$$t^2 \langle E(t) \rangle = \frac{3\alpha_s}{4\pi} \left(1 + \alpha_s k_1 + \alpha_s^2 k_2 + \mathcal{O}(\alpha_s^3) \right)$$
\[t^2 \langle E(t) \rangle = \frac{3\alpha_s}{4\pi} (1 + \alpha_s k_1 + \alpha_s^2 k_2 + \alpha_s^3 k_3 + O(\alpha_s^4)) \]

\(\Lambda \)-parameter from flow including \(k_3 \)

- \(k_3 = -2.0 \)
- \(k_3 = 0.0 \)
- \(k_3 = 2.0 \)
We want to eliminate k_3 contribution

$$A(t) \equiv (t^2\langle E \rangle)^2 + C \left(t \frac{dt^2\langle E \rangle}{dt} \right)$$

$$= \alpha_s^2 \left(\frac{9}{(4\pi)^2} + \frac{3\beta_0 C}{(4\pi)^2} \right) + \alpha_s^3 \left(\frac{18k_1}{(4\pi)^2} + C \left(\frac{3\beta_1}{(4\pi)^3} + \frac{6k_1\beta_0}{(4\pi)^2} \right) \right) + \alpha_s^4 \left(\frac{9(k_1^2 + 2k_2)}{(4\pi)^2} + C \left(\frac{3\beta_2}{(4\pi)^4} + \frac{6k_1\beta_1}{(4\pi)^3} + \frac{9k_2\beta_0}{(4\pi)^2} \right) \right) + \alpha_s^5 \left(\frac{9(2k_1k_2 + 2k_3)}{(4\pi)^2} + C \left(\frac{3\beta_3}{(4\pi)^5} + \frac{6k_1\beta_2}{(4\pi)^4} + \frac{9k_2\beta_1}{(4\pi)^3} + \frac{12k_3\beta_0}{(4\pi)^2} \right) \right)$$

By requiring combination of k_3-terms to be zero $\Rightarrow C = -0.13636364$
We follow the same procedure as previously but now α_s determined via $A(t)$ function

\[r_0 \Lambda = 0.664(14) \]
Step-scaling
Step-Scaling procedure

- Lattice sizes 14, 16, 20, 24, 28, 32, 40, 48
- Choose c-value $(0.1, 0.12) \Rightarrow t = (cN)^2$
- For each β of pairs $(N, 2N)$ find the difference

$$D(t^2\langle E \rangle|_\mu) = \frac{1}{t^2\langle E \rangle|_{2\mu}} - \frac{1}{t^2\langle E \rangle|_\mu}$$

- Find the function D in the continuum

$$\frac{1}{t^2\langle E \rangle|_{2\mu}} - \frac{1}{t^2\langle E \rangle|_\mu} = \frac{4\pi}{3} \left(\frac{1}{\alpha_s(2\mu)} - \frac{1}{\alpha_s(\mu)} + (2k_1^2 - k_2)(\alpha(2\mu) - \alpha(\mu)) \right)$$

$$= \frac{4\pi}{3} \left[\frac{2\beta_0}{\pi} \ln 2 + \frac{2\beta_1}{\pi^2} \ln 2 \frac{4\pi}{3} t^2\langle E \rangle|_\mu + \ldots \right]$$

- Keep w_1/L fixed and use 14, 16, 20, 24 to do step scaling
Step-scaling function D for $c = 0.1$
\(\Lambda \) parameter from \(T = 0 \) and step-scaling

\[\Lambda = \text{parameter using step scaling} \]

- \(\Lambda = 0.10 \) from \(w_1/L = 0.10 \)
- \(\Lambda = 0.10 \) from \(w_1/L = 0.20 \)
- \(\Lambda = 0.12 \) from \(w_1/L = 0.10 \)
- \(\Lambda = 0.12 \) from \(w_1/L = 0.20 \)

\[\langle E \rangle = 0.0107 \] for \(\alpha_s < 0.01 \)

\[\langle E \rangle = 0.0102 \]

\[\langle E \rangle = 0.0109 \]

\[\langle E \rangle = 0.0103 \]
Conclusions

- We present a way of determining the Λ-parameter (and \(\alpha_s \)) using the gradient flow.
- By brute-force elements we find a good plateau for the Λ-parameter that meets the criteria of a good \(\alpha_s \) determination.
 \[r_0 \Lambda = 0.664(14) \]
- Step-scaling results are also in a good agreement with those from \(T = 0 \) simulations.
- Still work in progress so... be patient for final results soon.
Thank you for your attention!
w_1 to w_0 and r_0 relations

- $w_1/w_0^{Q=0} = 0.340(7)$
- $w_0/r_0 = 0.341(2)$ Sommer et al. (2014)
Continuum function D-Sketch of analytic derivation up to NLO

From $d\alpha_s/d\ln\mu$ we can find

$$\frac{d(1/\alpha_s)}{d\ln\mu} = -\frac{1}{\alpha_s^2} \frac{d\alpha_s}{d\ln\mu} = \frac{2\beta_0}{\pi} + \frac{2\beta_1}{\pi^2}\alpha_s + \frac{2\beta_2}{\pi^3}\alpha_s^2$$

Then we can find the difference

$$\frac{1}{\alpha_s(2\mu)} - \frac{1}{\alpha_s(\mu)} = \int_{\ln\mu}^{\ln2\mu} \frac{d(1/\alpha_s)}{d\ln(\mu'/\mu)} d\ln(\mu'/\mu)$$

$$= \frac{2\beta_0}{\pi} \ln\mu + \frac{2\beta_1}{\pi^2} \int_0^{\ln2} \alpha_s(\mu')d\ln(\mu'/\mu) + \frac{2\beta_2}{\pi^3} \int_0^{\ln2} \alpha_s^2(\mu')d\ln(\mu'/\mu)$$

Using similar procedure we find $\alpha_s(2\mu) - \alpha_s(\mu)$

Then we fit using

$$5.0831 + 15.71x + ax^2 + bx^3 + cx^4 + dx^2 \frac{1}{N^2} + ex^3 \frac{1}{N^2} + fx^4 \frac{1}{N^2} + g(5.0831 + 15.71x) \frac{1}{N^2}$$