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What’s tensor network?
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A target quantity (wave function/partition function)
is represented by tensor network



Why tensor networks?

Free from the sign problem

"." Probability does not enter



Tensor network approaches

Hamiltonian/Hilbert space

Lagrangian/Path integral

Quantum many-body system

Classical many-body system/path integral
rep. of quantum system

Wave function of ground state/excited
states

Partition function

Variational method

Approximation, Coarse graining

Real time, Out-of-equilibrium, Quantum
simulation

Useful in equilibrium system suffering from
the sign problem in MC(u#0, 620, etc.)

DMRG, MPS, PEPS, MERA, ...

TRG, SRG, HOTRG, TNR, Loop-TNR, ...




Hamiltonian approach

Matrix Product State (MPS) originated from DMRG

Ansatz of Wave function (in Tensor network representation)
Variational method to obtain ground state in 1D quantum sys. (gapped)
Quantum entanglement is taken into account

By using information compression (SVD), one can drastically reduce the #
of parameters O(2N)->0O(N) while keeping accuracy reasonably
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Hamiltonian approach

Matrix Product State (MPS) originated from DMRG

m Ansatz of Wave function (in Tensor network representation)
m Variational method to obtain ground state in 1D quantum sys. (gapped)
m  Quantum entanglement is taken into account
m By using information compression (SVD), one can drastically reduce the #
of parameters O(2N)->0O(N) while keeping accuracy reasonably
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 Tensor network rep. of wave function/ 2d’N elements A® 1 d x d matrix




Hamiltonian approach

related with high energy physics
Schwinger model, periodic BC, spectrum, DMRG

Schwinger model, open BC, spectrum, MPS
Schwinger model, T#0, MPS+MPO

2D SU(2), real time dynamics of string breaking, MPS
Schwinger model with N1 and pz0

Fermions with long range interaction using MPS



A Hamiltonian approach: TNS as ansatz for states
Test bench: Schwinger model (QED2) from K. Cichy
2
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At T=0, ground state and low lying exutatlons can be represented as MPS
€ TG YOG G- Banuls, Cichy, Cirac, Jansen, Saito, JHEP11(2013)158; PoS LAT13, 332

*variational search Vector mass gap

¢n ¢Tb

Scalar mass gap

* reliable control of m/g MPS with OBC DMRG MPS with OBC SCE

systematic errors 0 0.56421(9) 0.56419(4) 1.1279(12)  L11(3)
performed 0.125 0.53953(5) 0.53950(7) 1.2155(28) 122(2)
* attain reliable 025  051922(5)  051918(5) 12239(22)  1.24(3)
continuum limit 0.5 0.48749(3) 0.48747(2) 1.1998(17)  1.20(3)

Sign problem is overcome: multiflavor case with chemical potential

from Stefan Kihn' s talk
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A Hamiltonian approach: TNS as ansatz for states

At finite T, thermal equilibrium states described by MPO

_B _B .
—0-0-0-0-0-0— pth(B) x e 2 Hie=2H density operator
I | I I I |
imaginary time (thermal) evolution can be observabﬁles ;
simulated with MPO-MPS techniques (O)th X tr(Oe_ 2H1e~ §H)
all error sources have been controlled
e.g. thermal evolution of chiral condensate for m/g=0
0.15f 0.06
0.1f 0.04f
0.05¢ 0.02r
0.“( I I ] 0 : I I I_
0 2 4 6 0 0.5 1 1.5 2
9p g
full physical space: truncating the electric flux per link
no truncation of electric flux up to (converged) Lecut

Banuls, Cichy, Cirac, Jansen, Saito,
PoS LAT14, 302; Phys. Rev. D92, 034519;
PoS LAT15, 283; Phys. Rev. D93, 094512



Lagrangian approach

W
Tensor Renormalization Group (TRG)



Procedures of TRG

@ Rewrite Z in tensor network representation

/= G_BH[S] = Z ---Tijlemnio---  Analytic
{s}

/ ,L"j’k’l’x "exact
Spins will be explained soon New degrees of freedom

e.g. 2D Ising model



Procedures of TRG

@ Rewrite Z in tensor network representation
@ Coarse graining Tensor

Blocking of Tensor (like spin-blocking)

4 T N
» 7(1)
o /

e extracting important information numerically
* selection of information introduces approximation



Procedures of TRG

@ Rewrite Z in tensor network representation

@ Coarse graining Tensor

(3 Repeat the coarse graining and then reduce the
number of tensors, finally compute Z by contraction

71)
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Procedures of TRG

@ Rewrite Z in tensor network representation

@ Coarse graining Tensor

(3 Repeat the coarse graining and then reduce the

number of tensors, finally compute Z by contraction
7 Z Ti(r’n')’ for Periodic BC
Jt]
i, N J
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@ Tensor network rep.

[ = ZB_BH[S] = Z ---Tijlemnio---
s}

ig.k,1,...
1) Expand Boltzmann weight as in High-T expansion

2) ldentify integer, which appears in the expansion, as
new d.o.f. = index of tensor

/eﬁsxsy = cosh(fBszsy) + Sinh(ﬁsxsy)\
= cosh 3+ sy, sinh 3 Sy = £1
= cosh B(1 + s;s, tanh )

1
= coshp Z (525, tanh 3)"=v

N N

e.g. 2D Ising model

new d.o.f.



@ Tensor network rep.

/= ZG_BH[S] = Z ---Tijlemnio---
s}

ig.k,1,...
1) Expand Boltzmann weight as in High-T expansion

2) ldentify integer, which appears in the expansion, as
new d.o.f. = index of tensor

3) Integrate out spin variable (old d.o.f.)

4) Get tensor network rep. |
Toooo Tooor Tooio Toot1 { 1 0 0 tanh 3 }
To100 Toror Toruo Tornn | _ 0 tanh 3 tanh 0

Ti000 Tioo1 Tioto Thotn
Ti1100 Thi01 Ti110 Thiin

0 tanh 3 tanh 0
tanh 0 0 (tanh 3)?

x2(cosh 3)?
e.g. 2D Ising model



@ Tensor network rep.

[ = 26_61—[[8] = Z ---Tijlemnz’o---
s}

ig.k,1,...
1) Expand Boltzmann weight as in High-T expansion

2) ldentify integer, which appears in the expansion, as
new d.o.f. = index of tensor

3) Integrate out spin variable (old d.o.f.)
4) Get tensor network rep. |

Basic procedure is common to fermion/other boson system

Boson field in compact group — character expansion = character : new d.o.f.



@ Tensor network rep.

Y zglemnzo T
klmno

So far, we have just rewritten Z

Next step is to carry out the summation
But, naive approach costs oc 22V

Introduce approximation and reduce the cost while
keeping an efficiency by summing important partin Z



@ Tensor network rep.

Y zglemnzo T
klmno

So far, we have just rewritten Z

Next step is to carry out the summation
But, naive approach costs oc 22V

Introduce approximation and reduce the cost while
keeping an efficiency by summing important partin Z

[ Coarse graining (renormalization, blocking) ]




@Coarse graining

Decomposition of tensor
J 5.]7
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@Coa

rse graining

Decomposition of tensor

[

k+z —) g Tijrr = Z(Sl)jkm(SS)lim
. ZE

m

Singular value decomposition (SVD) W,V : unitary matrix

Mab — Z UamOm (UT)mb

o1 > 09 > ... > 0 :singular values



@Coarse graining

Decomposition of tensor
J kil]

kli—z = R Tijrr = Z(Sl)jkm(SS)lim
. ZE —

[

Singular value decomposition (SVD) W,V : unitary matrix

M, = § uamo'm mb o1 > 09 > ... > 0 :singular values
all approx
Lijrr = Mgy, i) = Zu(kj),m Om Um”U zl)@ 1)k (53)1im
m

[Tensor (matrix) is approximated by low-rank tensor = information compression]




@Coarse graining
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@Coarse graining

Making new tensor by contraction

all
Z (51)i1a(52) jiv (S3)kje (Sa)ika = Loy

N
AN 1 integrate out old d.o.f. ] Renormalization-like!
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Specific heat

2D Ising model on square lattice

3.5 L=il- I I T T T _ i i T2 8 In Z
3 tigg i L2 0T oT
19 N pal

L=1024

25 | . \/

2 b . numerical derivative
15 .

] | D_,=32
0.5 | S———— T. = 2/[In(1+v2)]

0 ' ' ' ' ' ' = 2.269...

16 1.8 2 22 24 26 28 3

only one day use of this MBA

Cost o< |og(Lattice volume) x (D

.t)® X [# temperature mesh]




Status of Lagrangian approach

m 2D system
m Spin model : Ising model , X-Y model
, X-Y model with Fisher zero
O(3) model X-Y model +
m Abelian-Higgs
m ¢*theory
= QED,, QED,+ 8
m Gross-Neveu model +
m CP(N-1)+6
m Towards Quantum simulation of O(2) model
m TRG and quantum simulation

m 3D system, Higher order TRG(HOTRG) : a coarse graining method
applicable for any dimensional system

m 3D Ising, Potts model
m 3D Fermion system

m Decorated tensor network renormalization



Application to CP(N-1) + ©

Toy model of QCD

Strong CP problem

27

Strong coupling limit

s

0

Bo1/g®

0@

Continuum limit



Application to CP(1) + 6

Haldane’s conjecture : mass gap of O(3) vanishes at 0=m

. =CP(1)
15t PT
O S
2nd pT
5 ?
0 Box1/g >

O(3) + 6 was intensively studied by MC and Haldane’s conjecture is confirmed
Universality class is also consistent with each other



Application to CP(1) + 6

CP(1) MC, imaginary 6

27
|
1
|
|
1t PT :
7"' #
1 2ndpT
0 |
|
!
0 0.5 Bul/g? 00

However, the universality class is not fixed to the expected one
(k=1 WZNW model) and critical exponent is continuously changing



Application to CP(1) + 6
Kawauchi 7/25(Mon)17:05 TD
Tensor network rep. is obtained thanks to character-like expansion

TRG is used as coarse graining

~

., topological susceptibility
Truncation dependence of{ Xmax >< Lv I

g =2 D ;g current status of TRG study
2.2 1 D217, D=3 ' 2 :
2.1 :
e . 15t pT! 2nd pT ?
~ 1.9} b > ! )
1.8 f CP(].) at e=T[ ﬂ- !
L _ 0 OK i Not yet confirmed
The truncation dependence does not | < >i€ >
L6 converge in the region B = 0 4, :
e 0 0.1 0.2 0.3 0l 4 0.5 0.6 0l 7 0.8 O ﬁ 1/ 2 OO
. . . . . . . . “
5 0.3 g

TRG does not work well near critical region
= Tensor Network Renormalization should be used in future



Boltzmann weight is Tensor network rep. of
interpreted as probability partition function (no
probability interpretation)

Importance sampling Compression of tensor by SVD,
Variational approach

Statistical errors Systematic errors

Sign problem may appear No sign problem
"." no probability

Critical slowing down Efficiency of compression gets

worse around criticality
|

!

can be improved by TNR, Loop-TNR in 2D system
Evenbly & Vidal 2014, Gu et al., 2015




Summary

m Tensor network has No sign problem

m Key of point: information compression based on
SVD

m Various 1D/2D systems are under investigation in
Hamiltonian/Lagrangian approach

m Higher dimensional system is still hard...



Future prospects

m longwaytogo4dDQCD+pn &6
m Cost:0(D_,'), Memory:0O(D_,®) for 4D system (HOTRG)
m Non-Abelian gauge theory

cut

Character expansion = Tensor network rep. is OK but
internal d.o.f. is huge!!!

m Better coarse graining method in 4D? (TNR, Loop-TNR)
m Efficient parallelization?

m Low dim. system suffering from the sign problem ?
m Lattice SUSY, Lattice chiral gauge theory,....

m Combining with stochastic method to reduce cost



Good and Bad points

Good

m Free from the sign problem

m Large volume is easy to do

Bad

m Higher dimensionality is hard (2, 3 is OK but 4 is hard)
m Larger # of internal degree of freedom is also hard

Cost o< |Og(Vqume) X (D )const. x Dim. x #DOF

cut

“Good” algorithm can reduce it



Hierarchy of singular value

2D Ising model
10 D_.=32
' ' T=1.70 L=32 cut
1k T=1.70 L=1024  ===--=- |
T=2.27 [=32 _
LT T=2.07 L=1024  ------- T. = 2/[In(1+ \/5)]
L i e S T=2.70 L=32 7
b e T=2.70 L=1024  ------- = 2.2069...
0% T e .
Q‘_ 10_3 i '-----::-,““_‘ ______________ |
& | Entanglement entropy
10 - ~ ~
.\ S =— 0, ln o;
10 B ‘l‘ "’\‘ 7 -
temmns - (/
6 | : g ] . :
10 -. normalized singular value
10-7 ] ] i 1Ly 1
0 20 40 60 80 100

e Off criticality: good hierarchy (small S)

* Near criticality: hierarchy gets worse (large ) like critical slowing

down in MC

Tensor network renormalization (TNR) can cure the situation



Numerical aspect of TRG and Task

m Main computation (For HOTRG, n-dim system)
m Decomposition = SVD(EVD):0O(D_,°)
m Contraction = matrix-matrix product:O(D_,*"1) HOt spot

m Memory

m # elements of tensor:O(D_.2")

cut

m internal d.o.f. = more memory

¥

m matrix-matrix product:Level 3 BLAS > SVD
m Better coarse graining with small D_, (highly compression)?



Hamiltonian approach

Density matrix renormalization group (DMRG)

m 1D quantum gapped system (e.g. N sites system)
m Target: Wave function

m Efficient way of choosing GOOD basis by using Schmit
decomposition (like SVD)

m small # of basis = information compression
m Before this appears, limited to N=30. But DMRG enables N=100

‘ ‘ l l l | bIoIkS | (z)Sitg | bloi:kE
A

S 1 S92 . superblock

| system é environment |
new block S new block E




Improvement of Coarse graining algorithm

m Tensor Entanglement Filtering Renormalization
m Removing short range correlation (partially)
m works in off-critical point but not near criticality
m Second TRG
m Optimization including environment (TRG: locally optimal)
m works in off-critical point but not near criticality

m Tensor Network Renormalization (TNR)

m Firstly remove short correlation (entanglement) by using
disentangler, and then coarse graining is performed

m Even around criticality, sustainable coarse graining is realized

m Loop Tensor Network renormalization (Loop TNR)

m Robustness around the criticality is comparable with TNR
m Less cost O(D,.°) while TNR costs O(D_,’)

cut



Application to CP(N-1) + ©

toy model of QCD
Strong CP problem

MC CP(3)

Z(0) =) €'“P(Q)
2T / \ <

Strong coupling limit \ // |
Strong coupling

\ 15 PT expansion O(B1°)

7T support the scenario

0

confinement

0 Box1/g® OO\

Continuum limit

..
o
~
~
~
L2
~
~
~
~
o
~
o
~
~
~
~
~
~
~
~
~
~
~
~
..
b




Application to CP(N-1) + 0

toy model of QCD

Strong CP problem Z(0) = Z e P(Q)
Q
2T :
MC CP(Z) ““““““““
MC CP(3) .
15t PT
76
deconfinement
N
confinement el
0 0.0
2
Bocl/g

Continuum limit



