Tensor Networks

Shinji Takeda

LATTICE 2016
July 26, 2016, University of Southampton, UK

What's tensor network?

$$
T_{i j k l}
$$

tensor : lattice point indices: link

What's tensor network?

A target quantity (wave function/partition function) is represented by tensor network

Why tensor networks?

Free from the sign problem
\because Probability does not enter

Tensor network approaches

Hamiltonian/Hilbert space

Quantum many-body system

Wave function of ground state/excited states

Variational method

Real time, Out-of-equilibrium, Quantum simulation

DMRG, MPS, PEPS, MERA, ...

Lagrangian/Path integral

Classical many-body system/path integral rep. of quantum system

Partition function

Approximation, Coarse graining

Useful in equilibrium system suffering from the sign problem in $M C(\mu \neq 0, \theta \neq 0$, etc.)

TRG, SRG, HOTRG, TNR, Loop-TNR, ...

Hamiltonian approach

Matrix Product State (MPS) originated from DMRG white 1992, Schollwoeck 2004

- Ansatz of Wave function (in Tensor network representation)
- Variational method to obtain ground state in 1D quantum sys. (gapped)
- Quantum entanglement is taken into account
- By using information compression (SVD), one can drastically reduce the \# of parameters $\mathrm{O}\left(2^{\mathrm{N}}\right) \rightarrow \mathrm{O}(\mathrm{N})$ while keeping accuracy reasonably

$\hat{s}| \pm\rangle= \pm| \pm\rangle$

Hamiltonian approach

Matrix Product State (MPS) originated from DMRG white 1992, schollwoeck 2004

- Ansatz of Wave function (in Tensor network representation)
- Variational method to obtain ground state in 1D quantum sys. (gapped)
- Quantum entanglement is taken into account
- By using information compression (SVD), one can drastically reduce the \# of parameters $\mathrm{O}\left(2^{\mathrm{N}}\right) \rightarrow \mathrm{O}(\mathrm{N})$ while keeping accuracy reasonably

$$
\begin{aligned}
& 2^{\mathrm{N}} \text { elements } \quad s_{i}= \pm \\
& |\psi\rangle=\sum_{s_{1}, s_{2}, \ldots, s_{N}} \frac{\psi_{s_{1}, s_{2}, \ldots, s_{N}}\left|s_{1}\right\rangle \otimes\left|s_{2}\right\rangle \otimes \cdots \otimes\left|s_{N}\right\rangle}{\downarrow \text { information compression }} \\
& \operatorname{tr}\left[A_{1}^{s_{1}} A_{2}^{s_{2}} \cdots A_{N}^{s_{N}}\right]: \text { Matrix product } \\
& 2 \mathrm{~d}^{2} \mathrm{~N} \text { elements } \quad A^{s}: d \times d \text { matrix }
\end{aligned}
$$

Hamiltonian approach

related with high energy physics

- Schwinger model, periodic BC, spectrum, DMRG Byrnes, Sriganesh, Bursill \& Hamer, PRD66(2002)013002
- Schwinger model, open BC, spectrum, MPS

Banuls, Cichy, Cirac, Jansen, JHEP11(2013)158

- Schwinger model, $\mathrm{T} \neq 0$, MPS+MPO

Banuls, Cichy, Cirac, Jansen \& Saito, PRD92(2015)034519, PRD93(2016)094512

- 2D SU(2), real time dynamics of string breaking, MPS

Kuehn, Zohar, Cirac \& Banuls, JHEPO7(2015)130

- Schwinger model with $\mathrm{N}_{\mathrm{f}} \neq 1$ and $\mu \neq 0$

Kuehn, 7/25(Mon.)17:25 TD

- Fermions with long range interaction using MPS

Szyniszewski, today's Poster

A Hamiltonian approach:TNS as ansatz for states

Test bench: Schwinger model (QED2)

$$
H=-\frac{i}{2 a} \sum_{n}\left(\phi_{n}^{\dagger} e^{i \theta_{n}} \phi_{n+1}-\text { h.c. }\right)+m \sum_{n}(-1)^{n} \phi_{n}^{\dagger} \phi_{n}+\frac{a g^{2}}{2} \sum_{n} L_{n}^{2}
$$

At $\mathrm{T}=0$, ground state and low lying excitations can be represented as MPS
Banuls, Cichy, Cirac, Jansen, Saito, JHEP11(2013)158; PoS LAT13, 332

- variational search
- reliable control of systematic errors performed
- attain reliable continuum limit
Sign problem is overcome: multiflavor case with chemical potential

Lohmayer, Narayanan PRD88 (2013) 105030

A Hamiltonian approach:TNS as ansatz for states

At finite T , thermal equilibrium states described by MPO

$$
\rho_{t h}(\beta) \propto e^{-\frac{\beta}{2} H} \mathbf{1} e^{-\frac{\beta}{2} H}
$$

density operator
imaginary time (thermal) evolution can be simulated with MPO-MPS techniques
observables
$\langle O\rangle_{t h} \propto \operatorname{tr}\left(O e^{-\frac{\beta}{2} H} 1 e^{-\frac{\beta}{2} H}\right)$ all error sources have been controlled
e.g. thermal evolution of chiral condensate for $m / g=0$

full physical space:
no truncation of electric flux

truncating the electric flux per link up to (converged) $L_{\text {cut }}$

Lagrangian approach

ש

Tensor Renormalization Group (TRG)

Procedures of TRG

(1) Rewrite Z in tensor network representation

Procedures of TRG

(1) Rewrite Z in tensor network representation
(2) Coarse graining Tensor

Blocking of Tensor (like spin-blocking)

- extracting important information numerically
- selection of information introduces approximation

Procedures of TRG

(1) Rewrite Z in tensor network representation
(2) Coarse graining Tensor
(3) Repeat the coarse graining and then reduce the number of tensors, finally compute Z by contraction

Procedures of TRG

(1) Rewrite Z in tensor network representation
(2) Coarse graining Tensor
(3) Repeat the coarse graining and then reduce the number of tensors, finally compute Z by contraction

(1) Tensor network rep.

$$
Z \equiv \sum_{\{s\}} e^{-\beta H[s]}=\sum_{i, j, k, l, \ldots} \ldots T_{i j k l} T_{\text {mnio }} \ldots
$$

1) Expand Boltzmann weight as in High-T expansion
2) Identify integer, which appears in the expansion, as new d.o.f. \rightarrow index of tensor

$$
\begin{aligned}
& e^{\beta s_{x} s_{y}}=\cosh \left(\beta s_{x} s_{y}\right)+\sinh \left(\beta s_{x} s_{y}\right) \\
&=\cosh \beta+s_{x} s_{y} \sinh \beta \\
&=\cosh \beta\left(1+s_{x} s_{y} \tanh \beta\right) \\
&=\cosh \beta \sum_{i_{x y}=0}^{1}\left(s_{x} s_{y} \tanh \beta\right)^{i_{x y}} \\
& \text { e.g. 2D Ising model }
\end{aligned}
$$

(1) Tensor network rep.

$$
Z \equiv \sum_{\{s\}} e^{-\beta H[s]}=\sum_{i, j, k, l, \ldots} \ldots T_{i j k l} T_{m n i o} \ldots
$$

1) Expand Boltzmann weight as in High-T expansion
2) Identify integer, which appears in the expansion, as new d.o.f. \rightarrow index of tensor
3) Integrate out spin variable (old d.o.f.)
4) Get tensor network rep.!

$$
\begin{aligned}
{\left[\begin{array}{cccc}
T_{0000} & T_{0001} & T_{0010} & T_{0011} \\
T_{0100} & T_{0101} & T_{0110} & T_{0111} \\
T_{1000} & T_{1001} & T_{1010} & T_{1011} \\
T_{1100} & T_{1101} & T_{1110} & T_{1111}
\end{array}\right]=} & {\left[\begin{array}{cccc}
1 & 0 & 0 & \tanh \beta \\
0 & \tanh \beta & \tanh \beta & 0 \\
0 & \tanh \beta & \tanh \beta & 0 \\
\tanh \beta & 0 & 0 & (\tanh \beta)^{2}
\end{array}\right] } \\
& \times 2(\cosh \beta)^{2}
\end{aligned}
$$

e.g. 2D Ising model
(1) Tensor network rep.

$$
Z \equiv \sum_{\{s\}} e^{-\beta H[s]}=\sum_{i, j, k, l, \ldots} \ldots T_{i j k l} T_{m n i o} \ldots
$$

1) Expand Boltzmann weight as in High-T expansion
2) Identify integer, which appears in the expansion, as new d.o.f. \rightarrow index of tensor
3) Integrate out spin variable (old d.o.f.)
4) Get tensor network rep.!

Basic procedure is common to fermion/other boson system

Boson field in compact group \rightarrow character expansion \rightarrow character : new d.o.f.

(1) Tensor network rep.

- So far, we have just rewritten Z
- Next step is to carry out the summation
- But, naïve approach costs $\propto 2^{2 V}$
- Introduce approximation and reduce the cost while keeping an efficiency by summing important part in Z

(1) Tensor network rep.

- So far, we have just rewritten Z
- Next step is to carry out the summation
- But, naïve approach costs $\propto 2^{2 V}$
- Introduce approximation and reduce the cost while keeping an efficiency by summing important part in Z

Coarse graining (renormalization, blocking)

(2) Coarse graining

Decomposition of tensor

$$
T_{i j k l}=\sum_{m}\left(S_{1}\right)_{j k m}\left(S_{3}\right)_{l i m}
$$

(2) Coarse graining

Decomposition of tensor

New d.o.f.

$$
k \frac{T}{T_{l}^{j}} i \longrightarrow k \frac{\left.S_{1}\right]_{l}^{j} \cdot m}{i} T_{i j k l}^{j}=\sum_{m}\left(S_{1}\right)_{j k m}\left(S_{3}\right)_{l i m}
$$

Singular value decomposition (SVD) u, v : unitary matrix

$$
M_{a b}=\sum_{m} u_{a m} \sigma_{m}\left(v^{\dagger}\right)_{m b} \quad \sigma_{1} \geq \sigma_{2} \geq \ldots \geq 0: \text { singular values }
$$

(2)Coarse graining

Decomposition of tensor

New d.o.f.

$$
T_{i j k l}=\sum_{m}\left(S_{1}\right)_{j k m}\left(S_{3}\right)_{l i m}
$$

Singular value decomposition (SVD) $u, v:$ unitary matrix

$$
\begin{aligned}
& M_{a b}=\sum_{m} u_{a m} \sigma_{m}\left(v^{\dagger}\right)_{m b} \\
& T_{i j k l}=M_{(k j),(i l)}^{m}=\sum_{m}^{\text {all }} \underline{u_{(k j), m} \sqrt{\sigma_{m}}} \cdot \underline{\sqrt{\sigma_{m}} v_{m,(i l)}^{\dagger}} \stackrel{\text { approx. }}{\approx} \sum_{m=1}^{\text {Dcut }} \underline{\left(S_{1}\right)_{j k m}} \underline{\left(S_{3}\right)_{l i m}}
\end{aligned}
$$

[^0]
(2)Coarse graining

(2)Coarse graining

Making new tensor by contraction

\#
\#

$$
X
$$

$$
x^{X}
$$

2D Ising model on square lattice

Cost $\propto \log ($ Lattice volume $) \times\left(D_{\text {cut }}\right)^{6} \times[\#$ temperature mesh $]$

Status of Lagrangian approach

- 2D system

■ Spin model : Ising model Levin \& Nave 2007, X-Y model Meurice et al. PRE89,013308(2014), X-Y model with Fisher zero Meurice et al. PRD89,016008(2014), O(3) model Unmuth-Yockey et al. LATTICE2014, X-Y model $+\mu$ Meurice et al. PRE93,012138(2016)

- Abelian-Higgs Bazavov et al. LATTICE2015
- ϕ^{4} theory Shimizu Mod.Phys.Lett.A27,1250035(2012)
- QED $_{2}$, QED $_{2}+\theta$ Shimizu \& Kuramashi PRD90,014508(2014) \& PRD90,074503(2014)
- Gross-Neveu model $+\mu$ ST \& Yoshimura PTEP2015,043B01
- CP(N-1) $+\theta$ Kawauchi \& ST PRD93,114503(2016), Kawauchi 7/25(Mon)17:05 TD
- Towards Quantum simulation of O(2) model Zou et al, PRA90,063603
- TRG and quantum simulation Meurice 7/26(Tue.)15:40 TD
- 3D system, Higher order TRG(HOTRG) : a coarse graining method applicable for any dimensional system xie et al. PRB86,045139(2012)
- 3D Ising, Potts model Wan et al. CPL31,070503(2014)
- 3D Fermion system Sakai 7/26(Tue.)18:10 TD
- Decorated tensor network renormalization wittrich et al. New J.Phys. 18,053009(2016)

Application to $\mathrm{CP}(\mathrm{N}-1)+\theta$

Toy model of QCD
Strong CP problem schierholtz 1994,Plefka etal. 1997, Imachi etal. 1999, Plefra e tal. 1999

Application to $\mathrm{CP}(1)+\theta$

Haldane's conjecture : mass gap of $O(3)$ vanishes at $\theta=\pi$ Haldane 1983

$\mathrm{O}(3)+\theta$ was intensively studied by MC and Haldane's conjecture is confirmed Universality class is also consistent with each other

Application to $\mathrm{CP}(1)+\theta$

Azcoiti et al, PRL98,257203(2007) CP(1) MC, imaginary θ

However, the universality class is not fixed to the expected one ($\mathrm{k}=1$ WZNW model) and critical exponent is continuously changing

Application to $\mathrm{CP}(1)+\theta$

Kawauchi 7/25(Mon)17:05 TD
Tensor network rep. is obtained thanks to character-like expansion TRG is used as coarse graining

TRG does not work well near critical region
\Rightarrow Tensor Network Renormalization should be used in future Evenbly \& Vidal 2014, Gu et al., 2015

MC
Boltzmann weight is interpreted as probability
Importance sampling
Statistical errors
Sign problem may appear
Critical slowing down

Tensor network rep. of partition function (no probability interpretation)
Compression of tensor by SVD, Variational approach
Systematic errors
No sign problem \because no probability
Efficiency of compression gets worse around criticality

can be improved by TNR, Loop-TNR in 2D system
Evenbly \& Vidal 2014, Gu et al., 2015

Summary

- Tensor network has No sign problem
- Key of point: information compression based on SVD
- Various 1D/2D systems are under investigation in Hamiltonian/Lagrangian approach
- Higher dimensional system is still hard...

Future prospects

- Long way to go 4D QCD $+\mu \& \theta$
- Cost: $\mathrm{O}\left(\mathrm{D}_{\text {cut }}{ }^{15}\right)$, Memory: $\mathrm{O}\left(\mathrm{D}_{\text {cut }}{ }^{8}\right)$ for 4D system (HOTRG)
- Non-Abelian gauge theory

Character expansion \Rightarrow Tensor network rep. is OK but internal d.o.f. is huge!!!

- Better coarse graining method in 4D? (TNR, Loop-TNR)
- Efficient parallelization?
- Low dim. system suffering from the sign problem ?
- Lattice SUSY, Lattice chiral gauge theory,....
- Combining with stochastic method to reduce cost

Good and Bad points

Good

- Free from the sign problem
- Large volume is easy to do

Bad

- Higher dimensionality is hard (2,3 is OK but 4 is hard)
- Larger \# of internal degree of freedom is also hard

Cost $\propto \log ($ Volume $) \times\left(\mathrm{D}_{\text {cut }}\right)^{\text {const. } \times \text { Dim } \times \# \text { DOF }}$

"Good" algorithm can reduce it

Hierarchy of singular value

2D Ising model

$$
\begin{aligned}
& \mathbf{D}_{\mathrm{cut}}=32 \\
& \begin{aligned}
T_{c} & =2 /[\ln (1+\sqrt{2})] \\
& =2.269 \ldots
\end{aligned}
\end{aligned}
$$

Entanglement entropy

$$
S=-\sum_{i} \tilde{\sigma}_{\uparrow} \ln \tilde{\sigma}_{i}
$$

normalized singular value

- Off criticality: good hierarchy (small S)
- Near criticality: hierarchy gets worse (large S)
like critical slowing down in MC

Tensor network renormalization (TNR) Evenbly\&Vidal 2014 can cure the situation

Numerical aspect of TRG and Task

- Main computation (For HOTRG, n-dim system)
- Decomposition \Rightarrow SVD(EVD): $O\left(D_{\text {cut }}{ }^{6}\right)$
- Contraction \Rightarrow matrix-matrix product: $O\left(D_{\text {cut }}{ }^{4 n-1}\right)$ Hot spot
- Memory
- \# elements of tensor: $O\left(D_{\text {cut }}{ }^{2 n}\right)$
- internal d.o.f. \Rightarrow more memory

- matrix-matrix product: Level 3 BLAS > SVD
- Better coarse graining with small $\mathrm{D}_{\text {cut }}$ (highly compression)?

Hamiltonian approach

Density matrix renormalization group (DMRG) White 1992
Schollwoeck 2004

- 1D quantum gapped system (e.g. N sites system)
- Target: Wave function
- Efficient way of choosing GOOD basis by using Schmit decomposition (like SVD)
- small \# of basis = information compression
- Before this appears, limited to $N=30$. But DMRG enables $N=100$

Improvement of Coarse graining algorithm

- Tensor Entanglement Filtering Renormalization Gu et al. 2008
- Removing short range correlation (partially)
- works in off-critical point but not near criticality
- Second TRG xie et al., 2009
- Optimization including environment (TRG: locally optimal)
- works in off-critical point but not near criticality
- Tensor Network Renormalization (TNR) Evenbly \& Vidal 2014
- Firstly remove short correlation (entanglement) by using disentangler, and then coarse graining is performed
- Even around criticality, sustainable coarse graining is realized

■ Loop Tensor Network renormalization (Loop TNR) Gu et al., 2015

- Robustness around the criticality is comparable with TNR
- Less cost $\mathrm{O}\left(\mathrm{D}_{\text {cut }}{ }^{6}\right)$ while TNR costs $\mathrm{O}\left(\mathrm{D}_{\text {cut }}{ }^{7}\right)$

Application to $\mathrm{CP}(\mathrm{N}-1)+\theta$

toy model of QCD
Strong CP problem

MC CP(3)
Schierholtz 1994
$Z(\theta)=\sum_{Q} e^{i \theta Q} P(Q)$

Seiberg 1984
Strong coupling limit

Continuum limit

Application to $\mathrm{CP}(\mathrm{N}-1)+\theta$

toy model of QCD
Strong CP problem

$$
Z(\theta)=\sum_{Q} e^{i \theta Q} P(Q)
$$

Continuum limit

[^0]: Tensor (matrix) is approximated by low-rank tensor = information compression

