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What’s	tensor	network?	
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What’s	tensor	network?	

A	target	quanNty	(wave	funcNon/parNNon	funcNon)	
is	represented	by	tensor	network	
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Why	tensor	networks?	

Free	from	the	sign	problem	
	

∵	Probability	does	not	enter	



Tensor	network	approaches	

Hamiltonian/Hilbert	space	 Lagrangian/Path	integral	

Quantum	many-body	system	
	

Classical	many-body	system/path	integral	
rep.	of	quantum	system	

Wave	funcNon	of	ground	state/excited	
states	

ParNNon	funcNon	

VariaNonal	method	 ApproximaNon,	Coarse	graining	

Real	Nme,	Out-of-equilibrium,	Quantum	
simulaNon	

Useful	in	equilibrium	system	suffering	from	
the	sign	problem	in	MC(μ≠0,	θ≠0,	etc.)		

DMRG,	MPS,	PEPS,	MERA,	…	 TRG,	SRG,	HOTRG,	TNR,	Loop-TNR,	…	



n  Ansatz	of	Wave	funcNon	(in	Tensor	network	representaNon)	
n  VariaNonal	method	to	obtain	ground	state	in	1D	quantum	sys.	(gapped)	
n  Quantum	entanglement	is	taken	into	account	
n  By	using	informaNon	compression	(SVD),	one	can	drasNcally	reduce	the	#	

of	parameters	O(2N)→O(N)	while	keeping	accuracy	reasonably	
	

Hamiltonian	approach	
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2N	elements	

Matrix	Product	State	(MPS)		originated	from	DMRG	White	1992,	Schollwoeck	2004	
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n  Ansatz	of	Wave	funcNon	(in	Tensor	network	representaNon)	
n  VariaNonal	method	to	obtain	ground	state	in	1D	quantum	sys.	(gapped)	
n  Quantum	entanglement	is	taken	into	account	
n  By	using	informaNon	compression	(SVD),	one	can	drasNcally	reduce	the	#	

of	parameters	O(2N)→O(N)	while	keeping	accuracy	reasonably	

Hamiltonian	approach	
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Tensor	network	rep.	of	wave	funcNon	

A1 AN

Matrix	Product	State	(MPS)		originated	from	DMRG	White	1992,	Schollwoeck	2004	

si = ±

informaNon	compression	

:	Matrix	product	



Hamiltonian	approach	
n  Schwinger	model,	periodic	BC,	spectrum,	DMRG	

Byrnes,	Sriganesh,	Bursill	&	Hamer,	PRD66(2002)013002	

n  Schwinger	model,	open	BC,	spectrum,	MPS	
Banuls,	Cichy,	Cirac,	Jansen,	JHEP11(2013)158	

n  Schwinger	model,	T≠0,	MPS+MPO	
Banuls,	Cichy,	Cirac,	Jansen	&	Saito,	PRD92(2015)034519,	PRD93(2016)094512	

n  2D	SU(2),	real	Nme	dynamics	of	string	breaking,	MPS	
Kuehn,	Zohar,	Cirac	&	Banuls,	JHEP07(2015)130	

n  Schwinger	model	with	Nf≠1	and	μ≠0	
Kuehn,	7/25(Mon.)17:25	TD	

n  Fermions	with	long	range	interacNon	using	MPS	
Szyniszewski,	today’s	Poster	

related	with	high	energy	physics	



Test	bench:	Schwinger	model	(QED2)	

A Hamiltonian approach: TNS as ansatz for states 	

At	T=0,	ground	state	and	low	lying	excitaNons	can	be	represented	as	MPS	

Vector mass gap	

m/g	 MPS with OBC	 DMRG	
0	 0.56421(9)	 0.56419(4)	
0.125	 0.53953(5)	 0.53950(7)	
0.25	 0.51922(5)	 0.51918(5)	
0.5	 0.48749(3)	 0.48747(2)	

Scalar mass gap	

MPS with OBC	 SCE	
1.1279(12)	 1.11(3)	
1.2155(28)	 1.22(2)	
1.2239(22)	 1.24(3)	
1.1998(17)	 1.20(3)	

• variaNonal	search	
• reliable	control	of	
systemaNc	errors	
performed	
• asain	reliable	
conNnuum	limit	

Banuls,	Cichy,	Cirac,	Jansen,	Saito,	JHEP11(2013)158;	PoS	LAT13,	332	

Sign problem is overcome:	mulNflavor	case	with	chemical	potenNal		
from	Stefan	Kühn’s	talk	

Lohmayer,	Narayanan	PRD88	(2013)	105030	

analyNcal	m/g=0	

MPS results	

from	K.	Cichy	



At	finite	T,	thermal	equilibrium	states	described	by	MPO	

Banuls,	Cichy,	Cirac,	Jansen,	Saito,		
PoS	LAT14,	302;	Phys.	Rev.	D92,	034519;	
PoS	LAT15,	283;	Phys.	Rev.	D93,	094512	

imaginary	Nme	(thermal)	evoluNon	can	be	
simulated	with	MPO-MPS	techniques	
all	error	sources	have	been	controlled	

observables	

e.g.	thermal	evoluNon	of	chiral	condensate	for	m/g=0	

full	physical	space:	
no	truncaNon	of	electric	flux	

truncaNng	the	electric	flux	per	link		
up	to	(converged)	Lcut	

density	operator	

A Hamiltonian approach: TNS as ansatz for states 	
from	K.	Cichy	



Lagrangian	approach	
	

Tensor	RenormalizaNon	Group	(TRG)	
	

∋
	

Levin	&	Nave	PRL99,120601(2007)	



①  Rewrite	Z	in	tensor	network	representaNon	
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Procedures	of	TRG	

New	degrees	of	freedom	Spins	

・AnalyNc	
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e.g.	2D	Ising	model	



Procedures	of	TRG	

T
T (1)

Blocking	of	Tensor	(like	spin-blocking)	

•  extracNng	important	informaNon	numerically	
•  selecNon	of	informaNon	introduces	approximaNon	

①  Rewrite	Z	in	tensor	network	representaNon	
②  Coarse	graining	Tensor	



Procedures	of	TRG	

①  Rewrite	Z	in	tensor	network	representaNon	
②  Coarse	graining	Tensor	
③  Repeat	the	coarse	graining	and	then	reduce	the	

number	of	tensors,	finally	compute	Z	by	contracNon	

T (2)

T (1)T



Procedures	of	TRG	

①  Rewrite	Z	in	tensor	network	representaNon	
②  Coarse	graining	Tensor	
③  Repeat	the	coarse	graining	and	then	reduce	the	

number	of	tensors,	finally	compute	Z	by	contracNon	
Z �
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T (n)
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for	Periodic	BC	



①	Tensor	network	rep.	
Z �

�

{s}

e��H[s] =
�

i,j,k,l,...

...TijklTmnio...

sx = ±1

x y

ixy

e�sxsy = cosh(�sxsy) + sinh(�sxsy)
= cosh� + sxsy sinh�

= cosh�(1 + sxsy tanh �)

= cosh�
1�

ixy=0

(sxsy tanh �)ixy

new	d.o.f.	

1)  Expand	Boltzmann	weight	as	in	High-T	expansion	
2)  IdenNfy	integer,	which	appears	in	the	expansion,	as	

new	d.o.f.		→		index	of	tensor 

e.g.	2D	Ising	model	



①	Tensor	network	rep.	
Z �
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{s}

e��H[s] =
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...TijklTmnio...
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1)  Expand	Boltzmann	weight	as	in	High-T	expansion	
2)  IdenNfy	integer,	which	appears	in	the	expansion,	as	

new	d.o.f.		→		index	of	tensor 
3)  Integrate	out	spin	variable	(old	d.o.f.)	
4)  Get	tensor	network	rep.	!	

e.g.	2D	Ising	model	
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①	Tensor	network	rep.	
Z �

�

{s}

e��H[s] =
�

i,j,k,l,...

...TijklTmnio...

1)  Expand	Boltzmann	weight	as	in	High-T	expansion	
2)  IdenNfy	integer,	which	appears	in	the	expansion,	as	

new	d.o.f.		→		index	of	tensor 
3)  Integrate	out	spin	variable	(old	d.o.f.)	
4)  Get	tensor	network	rep.	!	

Basic	procedure	is	common	to	fermion/other	boson	system		

Boson	field	in	compact	group	➞	character	expansion	➞	character	:	new	d.o.f.	

Meurice	et	al.,	PRD88,056005(2013)	



①	Tensor	network	rep.	

n  So	far,	we	have	just	rewrisen	Z	
n  Next	step	is	to	carry	out	the	summaNon	
n  But,	naïve	approach	costs	∝	22V	
n  Introduce	approximaNon	and	reduce	the	cost	while	

keeping	an	efficiency	by	summing	important	part	in	Z	

Z =
�

..,i,j,k,l,m,n,o,..

· · ·TijklTmnio · · ·



①	Tensor	network	rep.	

Z =
�

..,i,j,k,l,m,n,o,..

· · ·TijklTmnio · · ·

Coarse	graining	(renormalizaNon,	blocking)	

n  So	far,	we	have	just	rewrisen	Z	
n  Next	step	is	to	carry	out	the	summaNon	
n  But,	naïve	approach	costs	∝	22V	
n  Introduce	approximaNon	and	reduce	the	cost	while	

keeping	an	efficiency	by	summing	important	part	in	Z	



②Coarse	graining	
DecomposiNon	of	tensor	 New	d.o.f.	

S1

S3

m T ijkl =
�

m

(S1)jkm(S3)lim
T



Singular	value	decomposiNon	(SVD)	

②Coarse	graining	
DecomposiNon	of	tensor	

S1

S3

m

New	d.o.f.	

�1 � �2 � ... � 0

u, v : unitary	matrix	

:	singular	values	

T ijkl =
�

m

(S1)jkm(S3)lim
T

Mab =
�

m

uam�m(v†)mb



Singular	value	decomposiNon	(SVD)	

②Coarse	graining	
DecomposiNon	of	tensor	

S1

S3

m

New	d.o.f.	

�1 � �2 � ... � 0

approx.	

u, v : unitary	matrix	

Tensor	(matrix)	is	approximated	by	low-rank	tensor	=	informaNon	compression	

:	singular	values	
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②Coarse	graining	
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②Coarse	graining	
Making	new	tensor	by	contracNon	

S1

S2S3

S4

a

bc

d

T new

a

bc

d

integrate	out	old	d.o.f.	

all�

i,j,k,l

(S1)ila(S2)jib(S3)kjc(S4)lkd = T new
abcd

=	

RenormalizaNon-like!	
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2D	Ising	model	on	square	laJce	

Dcut=32	
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L=4
L=16
L=64

L=1024

only	one	day	use	of	this	MBA	

Cost	∝	log(LaJce	volume)	×	(Dcut)6	×	[#	temperature	mesh]	

Tc = 2/[ln(1 +
�

2)]
= 2.269...

numerical	derivaNve	

C =
1
L2

�

�T

�
T 2 � lnZ

�T

�



Status	of	Lagrangian	approach	
n  2D	system	

n  Spin	model	:	Ising	model		Levin	&	Nave	2007,		X-Y	model		Meurice	et	al.	
PRE89,013308(2014),		X-Y	model	with	Fisher	zero	Meurice	et	al.	PRD89,016008(2014),	
O(3)	model	Unmuth-Yockey	et	al.	LATTICE2014,		X-Y	model	+	μ		Meurice	et	al.	
PRE93,012138(2016)	

n  Abelian-Higgs	Bazavov	et	al.	LATTICE2015	
n  φ4	theory	Shimizu	Mod.Phys.Les.A27,1250035(2012)	
n  QED2,	QED2	+	θ	Shimizu	&	Kuramashi	PRD90,014508(2014)	&	PRD90,074503(2014)	
n  Gross-Neveu	model	+	μ	ST	&	Yoshimura	PTEP2015,043B01	
n  CP(N-1)	+	θ	Kawauchi	&	ST	PRD93,114503(2016),	Kawauchi	7/25(Mon)17:05	TD	
n  Towards	Quantum	simulaNon	of	O(2)	model	Zou	et	al,	PRA90,063603	
n  TRG	and	quantum	simulaNon	Meurice	7/26(Tue.)15:40	TD	

n  3D	system,		Higher	order	TRG(HOTRG)	:	a	coarse	graining	method	
applicable	for	any	dimensional	system		Xie	et	al.	PRB86,045139(2012)	
n  3D	Ising,	Poss	model		Wan	et	al.	CPL31,070503(2014)	
n  3D	Fermion	system		Sakai	7/26(Tue.)18:10	TD	

n  Decorated	tensor	network	renormalizaNon		Wisrich	et	al.	New	J.Phys.
18,053009(2016)	



ApplicaNon	to	CP(N-1)	+	θ	

�

�0

ConNnuum	limit	

� � 1/g2

1st	PT	

Toy	model	of	QCD	
Strong	CP	problem	Schierholtz	1994,Ple�a	et	al.	1997,	Imachi	et	al.	1999,	Ple�a	et	al.	1999	

2�

�

Seiberg	1984	
Strong	coupling	limit	



ApplicaNon	to	CP(1)	+	θ	

�

�0

1st	PT	

2�

�

?	2
nd	PT	

Haldane’s	conjecture	:	mass	gap	of	O(3)	vanishes	at	θ=π	
≅CP(1)	

O(3)	+	θ	was	intensively	studied	by	MC	and	Haldane’s	conjecture	is	confirmed	
Universality	class	is	also	consistent	with	each	other	
Bietenholtz	et	al.	1995,	Wiese	et	al.	2012,	de	Forcrand	et	al.	2012,	AzcoiN	et	al.	2012,	Alles	et	al.	2014	

Haldane	1983	

� � 1/g2



ApplicaNon	to	CP(1)	+	θ	

�

�0 � � 1/g2

1st	PT	

2�

�

CP(1)		MC,	imaginary	θ		AzcoiN	et	al,	PRL98,257203(2007)	

However,	the	universality	class	is	not	fixed	to	the	expected	one	
	(k=1	WZNW	model)	and	criNcal	exponent	is	conNnuously	changing	

0.5	

Wess	&	Zumino	1971,	Novikov	1981,	Wisen	1984	

2nd	PT	



  Truncation dependence of

The truncation dependence does not 
converge in the region β ≧ 0.4.
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ApplicaNon	to	CP(1)	+	θ	

TRG	does	not	work	well	near	criNcal	region	
⇒	Tensor	Network	RenormalizaNon	should	be	used	in	future	

Tensor	network	rep.	is	obtained	thanks	to	character-like	expansion	
TRG	is	used	as	coarse	graining	

topological	suscepNbility	

�

�0 � � 1/g2

1st	PT	

2�

�
2nd	PT	?	

0.3	

OK	 Not	yet	confirmed	

Ple�a	et	al.	1997	

CP(1)	at	θ=π	

Kawauchi	7/25(Mon)17:05	TD	

current	status	of	TRG	study	

Evenbly	&	Vidal	2014,	Gu	et	al.,	2015		



MC	 TRG	
Boltzmann	weight	is	
interpreted	as	probability	

Tensor	network	rep.	of	
parNNon	funcNon	(no	
probability	interpretaNon)	

Importance	sampling	
	

Compression	of	tensor	by	SVD,	
VariaNonal	approach	

StaNsNcal	errors	 SystemaNc	errors	

Sign	problem	may	appear	
	

No	sign	problem	
∵	no	probability	

CriNcal	slowing	down	 Efficiency	of	compression	gets	
worse	around	criNcality	

can	be	improved	by	TNR,	Loop-TNR	in	2D	system	
Evenbly	&	Vidal	2014,	Gu	et	al.,	2015		



Summary	

n  Tensor	network	has	No	sign	problem	
n  Key	of	point:	informaNon	compression	based	on	
SVD	

n  Various	1D/2D	systems	are	under	invesNgaNon	in	
Hamiltonian/Lagrangian	approach	

n  Higher	dimensional	system	is	sNll	hard…	



Future	prospects	
n  Long	way	to	go	4D	QCD	+	μ	&	θ	

n  Cost：O(Dcut
15),	Memory：O(Dcut

8)	for	4D	system	(HOTRG)	
n  Non-Abelian	gauge	theory	

Character	expansion	⇒	Tensor	network	rep.	is	OK	but	
internal	d.o.f.	is	huge!!!		

n  Beser	coarse	graining	method	in	4D?	(TNR,	Loop-TNR)	
n  Efficient	parallelizaNon?	

n  Low	dim.	system	suffering	from	the	sign	problem	?	
n  LaJce	SUSY,	LaJce	chiral	gauge	theory,….	

n  Combining	with	stochasNc	method	to	reduce	cost	



Good	and	Bad	points	

n  Free	from	the	sign	problem	
n  Large	volume	is	easy	to	do	

Cost	∝	log(Volume)	×	(Dcut)const.	×	Dim.	×	#DOF	

n  Higher	dimensionality	is	hard	(2,	3	is	OK	but	4	is	hard)	
n  Larger	#	of	internal	degree	of	freedom	is	also	hard		

Good	

Bad	

“Good”	algorithm	can	reduce	it	



Hierarchy	of	singular	value	

•  Off	criNcality:	good	hierarchy	(small	S)	
•  Near	criNcality:	hierarchy	gets	worse	(large	S)	

Tc = 2/[ln(1 +
�

2)]
= 2.269...
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T=1.70  L=32
T=1.70  L=1024
T=2.27  L=32
T=2.27  L=1024
T=2.70  L=32
T=2.70  L=1024

like	criNcal	slowing		
down	in	MC	

S = �
�

i

�̃i ln �̃i

normalized	singular	value	

Tensor	network	renormalizaNon	(TNR)	Evenbly&Vidal		2014	can	cure	the	situaNon	

Dcut=32	

Entanglement	entropy	

2D	Ising	model	



Numerical	aspect	of	TRG	and	Task	

n  matrix-matrix	product：Level	3	BLAS　≫　SVD	
n  Beser	coarse	graining	with	small	Dcut	(highly	compression)?	

n  Main	computaNon（For	HOTRG,	n-dim	system）	
n  DecomposiNon　⇒　SVD(EVD)：O(Dcut

6)	
n  ContracNon　⇒　matrix-matrix	product：O(Dcut

4n-1)	

n  Memory	
n  #	elements	of	tensor：O(Dcut

2n)	
n  internal	d.o.f.	⇒	more	memory	

Hot	spot	



n  1D	quantum	gapped	system	(e.g.	N	sites	system)	
n  Target:	Wave	funcNon	
n  Efficient	way	of	choosing	GOOD	basis	by	using	Schmit	

decomposiNon	(like	SVD)	
n  small	#	of	basis	=	informaNon	compression	
n  Before	this	appears,	limited	to	N=30.	But	DMRG	enables	N=100	
n  Tensor	renormalizaNon	group	(TRG)	Levin	&	Nave	2007	

n  Target：ParNNon	funcNon	of	classical	Stat.	system	
n  Express	parNNon	funcNon	in	tensor	network	rep.,	compress	tensor	by	

using	SVD	and	coarse	graining	tensor	
n  In	2D	system,	very	powerful	

Hamiltonian	approach	

s1 s2 sN

· · ·

· · · · · · · · ·

Density	matrix	renormalizaNon	group	(DMRG)		White	1992	
Schollwoeck	2004	



Improvement	of	Coarse	graining	algorithm	
n  Tensor	Entanglement	Filtering	RenormalizaNon		

n  Removing	short	range	correlaNon	(parNally)		
n  works	in	off-criNcal	point	but	not	near	criNcality	

n  Second	TRG	
n  OpNmizaNon	including	environment	(TRG:	locally	opNmal)	
n  works	in	off-criNcal	point	but	not	near	criNcality	

n  Tensor	Network	RenormalizaNon	(TNR)	
n  Firstly	remove	short	correlaNon	(entanglement)	by	using	
disentangler,	and	then	coarse	graining	is	performed	

n  Even	around	criNcality,	sustainable	coarse	graining	is	realized	
n  Loop	Tensor	Network	renormalizaNon	(Loop	TNR)	

n  Robustness	around	the	criNcality	is	comparable	with	TNR	
n  Less	cost	O(Dcut

6)	while	TNR	costs	O(Dcut
7)	

Gu	et	al.	2008	

Xie	et	al.,	2009	

Evenbly	&	Vidal	2014	

Gu	et	al.,	2015	



ApplicaNon	to	CP(N-1)	+	θ	

�

�0

ConNnuum	limit	

confinement	

deconfinement	

� � 1/g2

Ple�a	et	al.	1997	Seiberg	1984	

Schierholtz	1994	

1st	PT	

Z(�) =
�

Q

ei�QP (Q)

toy	model	of	QCD	

Strong	CP	problem	

2�

�

Strong	coupling	limit	

MC		CP(3)	

Strong	coupling	
expansion	O(β10)	
support	the	scenario	



ApplicaNon	to	CP(N-1)	+	θ	

�

�0

ConNnuum	limit	

confinement	

deconfinement	

� � 1/g2

Imachi	et	al.	1999	
Ple�a	et	al.	1999	

1st	PT	

Z(�) =
�

Q

ei�QP (Q)

toy	model	of	QCD	

Strong	CP	problem	

2�

�

MC		CP(2)	

?	
?	

MC		CP(3)	


