Charm quark diffusion coefficient from nonzero momentum Euclidean correlator in temporal channel

Atsuro Ikeda, Masayuki Asakawa, Masakiyo Kitazawa

Osaka University

Lattice2016

Anisotropic flow of open charm

- Large elliptic flow of open charm
 →charm flow ~ medium flow
- Rapid thermalization of charm quarks?
- Diffusion coefficient is an important quantity

Transport coefficient on the lattice

Shear viscosity

Karsch and Wyld 1987, Nakamura and Sakai 2005, Meyer 07, Haas 2013, Borsanyi et al. 2014, etc...

Ding et al. arXiv:1504.05274

Measurement of Diffusion coefficient

- Maximum entropy method
 Reconstructed spectral function has the strong correlation in whole ω-space
 - Not sensitive to low energy structure
- 2. Ansatz for spectral function
 - Depend on ansatz
 - Lattice Euclidean correlator has a lattice artifact

Our strategy

3. Structure of $G_{00}(\tau, p^2)$ (new) • $\omega^2 \rho_{00}(\omega, p) = p_i p_j \rho_{ij}(\omega, p) =$

 $p^2 \rho_L(\omega, p)$

High energy component of $\rho_{00}(\omega, p)$ is suppressed by $1/\omega^2$ comparing with $\rho_{ii}(\omega, p)$ Kubo formula $D = \frac{\pi}{3} \frac{1}{\chi} \lim_{\omega \to 0} \lim_{\vec{p} \to 0} \frac{\rho_{ii}(\omega, \vec{p})}{\omega}$ $G_{\mu\mu}^{E}(\tau, p) = \int d^{3}x \, e^{i\vec{p} \cdot \vec{x}} \left\langle j_{\mu}(\tau, \vec{x}) j_{\mu}^{\dagger}(0, \vec{0}) \right\rangle$ $= \int_{0}^{\infty} d\omega \frac{\cosh((1/2T - \tau)\omega)}{\sinh(\omega/2T)} \rho_{\mu\mu}(\omega, \vec{p})$ for $\mu = 0, 1, 2, 3$

ill-posed problem

Low energy structure of $\rho_{00}(\omega, \vec{p})$

[Kadanoff and Martin 1963]

Consider the diffusion eq. as the relaxation process

$$\left(\tau_{\text{relax}} \frac{\partial^2}{\partial t^2} + \frac{\partial}{\partial t}\right) j_0(x, t) = D\nabla^2 j_0(x, t)$$
Response lag caused by
heavy quark mass
Low energy structure of the spectral function
$$\frac{\rho_{00}^{\text{hydro}}(\omega, \vec{p})}{\omega} = \frac{1}{\pi} \frac{\chi(\vec{p})D|\vec{p}|^2}{\omega^2 + (D|\vec{p}|^2 - \tau\omega^2)^2}$$

$$\omega^2 \rho_{00}(\omega, p) = p_i p_j \rho_{ij}(\omega, p)$$
Kubo formula
$$D = \frac{\pi}{3} \frac{1}{\chi} \lim_{\omega \to 0} \lim_{\vec{p} \to 0} \frac{\rho_{ii}(\omega, \vec{p})}{\omega}$$

Assumptions

Structure of the spectral function

Mid-point expansion of $G_{00}(\tau, p)$

$$G_{00}(\tau, \vec{p}) = \int_0^\infty d\omega \left(1 + \frac{1}{2} \left(\frac{1}{2} - T\tau \right)^2 T^2 \omega^2 \right) \frac{\rho_{00}(\omega, \vec{p})}{\sinh\left(\frac{\omega}{2T}\right)} + O\left(\left(\frac{1}{2} - T\tau \right)^4 \right)$$
$$\equiv M_0(p^2) + \frac{1}{2} \left(\frac{1}{2} - T\tau \right)^2 M_2(p^2) + \cdots$$

 $G_{00}(\tau, p)$ around mid-point is the most sensitive to the low energy structure of the spectral function $\rho_{00}(\omega, p)$ But $M_0(0) = T\chi$ and $M_2(0) = 0$

$$(\hat{d}, L)^{00}$$

 $M_0(p^2)$
 $M_2(p^2)$
 0.5 τT

Study
$$\frac{\partial M_0(p^2)}{\partial \tilde{p}^2}$$
 and $\frac{\partial M_2(p^2)}{\partial \tilde{p}^2}$ at $\tilde{p} \to 0$
 $M_n(p^2) = M_n^{low}(p^2) + M_n^{high}(p^2)$ $\tilde{p} \equiv p/T$

$$\frac{\partial M_{0}(p^{2})/\partial \tilde{p}^{2}}{\partial \tilde{p}^{2}}\Big|_{\tilde{p}^{2}=0} = h_{0}(\tau_{\text{relax}}T)\chi DT^{2} + \chi'T$$

$$h_{0}(\tau_{\text{relax}}T) \equiv \lim_{\tilde{p}^{2} \to 0} \int_{0}^{\infty} d\omega \frac{1}{\sinh\left(\frac{\omega}{2T}\right)} \frac{\partial \rho_{00}^{hydro}(\omega, p)}{\partial(Dp^{2})} \xrightarrow{0.00}{0.00} \frac{1}{\sqrt{1-100}} \frac{\partial \rho_{00}^{hydro}(\omega, p)}{\partial(Dp^{2})}$$

with
$$M_0(p^2) = M_0^{low}(p^2) + M_0^{high}(p^2)$$
 and $\frac{\partial}{\partial \tilde{p}^2} M_0^{high}(p^2) > 0$

$$D_L T \equiv \frac{1}{h_0(\tau_{\text{relax}}T)} \frac{T^2}{\chi} \left[\frac{\partial}{\partial \tilde{p}^2} \frac{M_0(p^2)}{T^3} - \frac{\chi'}{T^2} \right] \Big|_{p^2 = 0} < DT$$

$$\frac{\partial M_2(p^2)}{\partial \tilde{p}^2} \Big|_{\tilde{p}^2=0} = h_2(T\tau_{\text{relax}})\chi D$$

$$h_2(T\tau_{\text{relax}}) \equiv \lim_{\tilde{p}^2 \to 0} \int_0^\infty d\omega \frac{T^2}{\sinh\left(\frac{\omega}{2T}\right)} \frac{\partial \omega^2 \rho_{00}(\omega, p)}{\partial(Dp^2)} \int_{0}^{\frac{\omega}{2}} \int_{0}^{\frac{\omega$$

Lattice set up

Quenched lattice

• Wilson Fermion and standard Wilson gauge action $\beta = 7.0, \gamma_F = 3.476$

[Asakawa, Hatsuda 2004]

- Anisotropic lattice with
- $\xi = \frac{a_{\sigma}}{a_{\tau}} = 4$ and $N_{\sigma} = 128$

for high momentum resolution

 $L_{\sigma}/L_{\tau} = 11.5 \sim 32$

N_{τ}	T/T _c	N_{σ}	∆р/Т	Nconf
16	4.68	128	0.196	361
20	3.74	128	0.245	229
24	3.12	128	0.294	240
28	2.67	128	0.344	91
32	2.34	128	0.397	100
32	2.34	64	0.794	304
36	2.08	128	0.442	100
40	1.87	128	0.491	100
44	1.7	128	0.54	89
Blue Gene/Q@KEK Iroiro++				

 $G_{00}^E(\tau,p)$

Momentum dependence of

1. Mid-point correlator at $p \rightarrow 0$ 2. Curvature

$\partial M_0(p^2)/\partial(\tilde{p}^2)$ and $\partial M_2(p^2)/\partial(\tilde{p}^2)$

• Fit with linear function where $\widetilde{p}^2 < 1$

• From $N_{\tau} = 32$, finite volume dependence is well suppressed

Result: $D_L(\tau_{relax})T < DT < D_U(\tau_{relax})T$

- Consistent with previous works
- High energy contribution become larger for lower T
- Information on τ_{relax} is needed to determine D

Constraint on *D* and τ_{relax}

 $D_L T$ at $\tau_{relax} = 0$ is still lower limit.

τ_{relax} from Langevin dynamics

Conclusion

Constraint on *D* and τ_{relax} in (D, τ_{relax}) -plane from the p-dependence of the mid-point correlator $G_{00}^E\left(\frac{1}{2T}, p\right)$ on the lattice with basic assumptions for the spectral function $\rho_{00}(\omega, \vec{p})$.

• We obtain $\partial M_0(p^2)/\partial(\tilde{p}^2)$ and $\partial M_2(p^2)/\partial(\tilde{p}^2)$ with good statistics.

Spatial volume dependence was well suppressed even with $\frac{L_{\sigma}}{L_{\tau}} = 8$.

Future work

Can we measure
$$\chi' = \frac{\partial \chi(p^2)}{\partial (p^2)} \Big|_{p^2 = 0}$$
 on the lattice?

Other information on D and τ_{relax} ?

Estimate of high energy contribution of $\rho_{\mu\mu}(\omega, \vec{p})$ (MEM, ansatz for spectral function)

$$h_0(\tau T)$$
 and $h_2(\tau T)$

$$h_0(\tau_{\text{relax}}T) = -\frac{\log 2}{\pi} + T\tau_{\text{relax}}\left\{1 - F\left(\frac{1}{T\tau_{\text{relax}}}\right)\right\} < 0$$
$$h_2(T\tau_{\text{relax}}) = \frac{1}{T\tau_{\text{relax}}}F\left(\frac{1}{T\tau_{\text{relax}}}\right) > 0$$

$$F(a) \equiv \frac{a}{\pi} \int_0^\infty \frac{x}{x^2 + 1} \frac{1}{\sinh\frac{a}{2}x} = -1 + \frac{a\log^2}{\pi} - \frac{a}{\pi} \left[\Psi\left(\frac{a}{4\pi}\right) - \Psi\left(\frac{1}{2\pi}\right) \right]$$
$$\Psi(z) \equiv \frac{d}{dz} \log\Gamma(z)$$

Linear response theory

Consider the two relaxation process [Kadanoff and Martin 1963]

 $\partial M_0(p^2)/\partial \tilde{p}^2$

$$\frac{\partial M_0^{low}(p^2)}{\partial \tilde{p}^2} = \int_0^\infty d\omega \frac{1}{\sinh\left(\frac{\omega}{2T}\right)} \frac{\partial}{\partial(Dp^2)} \rho_{00}^{hydro}(\omega, p) \chi DT^2 + \chi'T$$

$$\int_{\substack{0.00 \\ -0.05 \\ -0.05 \\ -0.10 \\ -0.15 \\ -0.25 \\ -$$

with
$$M_0(p^2) = M_0^{low}(p^2) + M_0^{high}(p^2)$$
 and $\frac{\partial}{\partial \tilde{p}^2} M_0^{high}(p^2) > 0$

$$D_L T \equiv \frac{1}{h_0(\tau_{\text{relax}}T)} \frac{T^2}{\chi} \left[\frac{\partial}{\partial \tilde{p}^2} \frac{M_0(p^2)}{T^3} - \frac{\chi'}{T^2} \right] \Big|_{p^2 = 0} < DT$$

$$M_{2}(p^{2}): \text{Momentum dependence}$$

$$\frac{\partial}{\partial \tilde{p}^{2}} M_{2}^{low}(p^{2}) = \int_{0}^{\infty} d\omega \frac{1}{\sinh\left(\frac{\omega}{2T}\right)} \frac{\partial}{\partial(Dp^{2})} \omega^{2} T^{2} \rho_{00}(\omega, p)} \chi D + \frac{\chi'}{\chi} M_{2}^{low}(p^{2})$$

$$\stackrel{p^{2} \rightarrow 0}{\longrightarrow} h_{2}(T\tau_{\text{relax}}) = \frac{1}{T\tau_{\text{relax}}} F\left(\frac{1}{T\tau_{\text{relax}}}\right) > 0$$
with $M_{2}(p^{2}) = M_{2}^{low}(p^{2}) + M_{2}^{high}(p^{2}), \frac{\partial}{\partial \tilde{p}^{2}} M_{2}^{high}(p^{2}) > 0$

$$DT < D_{U}T \equiv \frac{1}{h_{2}(T\tau_{relax})} \frac{\partial}{\partial \tilde{p}^{2}} \frac{M_{2}(p^{2})}{\chi T} \Big|_{p^{2}=0}$$

$$D_{L}T < DT < D_{U}T \equiv \frac{1}{h_{2}(T\tau_{relax})} \frac{\partial}{\partial \tilde{p}^{2}} \frac{M_{2}(p^{2})}{\chi T} \Big|_{p^{2}=0}$$
Opposite sign of $h_{0} < 0$ and $h_{2} > 0$