#### Absence of bilinear condensate in QED<sub>3</sub>

#### Nikhil Karthik\* and Rajamani Narayanan

Department of Physics Florida International University, Miami

(1512.02993 and 1606.04109)

#### Lattice 2016, Southampton UK

NSF grant no: 1205396 and 1515446



#### Motivation and Method



2 Parity-invariant Lattice Formulations





**Outlook and Conclusions** 

#### Table of Contents



Parity-invariant Lattice Formulations





Non-compact parity-invariant QED<sub>3</sub> on  $\ell^3$  Euclidean torus

$$L = \sum_{i=1}^{N_f} \left\{ \overline{u}_i C_{\text{reg}} u_i - \overline{d}_i C_{\text{reg}}^{\dagger} d_i \right\} + \frac{1}{4g^2} \left( \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right)^2$$

- $u, d \rightarrow$  2-component fermion field.
- Massless regulated Dirac operator: C<sub>reg</sub>
   g<sup>2</sup> → Coupling constant of dimension [mass]<sup>1</sup> Scale setting: g<sup>2</sup> = 1 ↔ specify ℓ.
- $U(2N_f)$  flavor symmetry in the continuum limit since  $C = -C^{\dagger}$ .
- N<sub>f</sub> → ∞ has an IR fixed point. What is the effect of finite N<sub>f</sub> corrections? Spontaneously break U(2N<sub>f</sub>) → U(N<sub>f</sub>)×U(N<sub>f</sub>)?

# Transition from massive to conformal phase *plausible* $N_f$ 0 $1/N_f$ expansion (Pufu et al) Free energy (Appelquist et al) $\Sigma$ as $m \to 0$ (Hands et al) 1 $\epsilon$ -expansion (Pietro et al) Running coupling (Raviv et al) 2 3 4 Gap eqn (Appelquist et al) 5 $\infty$ IRFP

QED3

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking  $\Rightarrow$  Chiral lagrangian at finite  $\ell \Rightarrow$  Random matrix theory for low eigenvalues  $(z = \Sigma \lambda \ell^3)$ 

• Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$I_2 \equiv \int \langle |\psi(x)|^4 
angle d^3 x \sim rac{1}{\ell^3}$$

• Ergodic behaviour of number-variance  $\Sigma_2(n)$ , the variance in the number of eigenvalues *n* below a value  $\lambda$ .

$$\Sigma_2(n) \sim \log(n)$$

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking  $\Rightarrow$  Chiral lagrangian at finite  $\ell \Rightarrow$  Random matrix theory for low eigenvalues  $(z = \Sigma \lambda \ell^3)$ 

• Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$\lambda \ell \sim \frac{1}{\ell^2}.$$

• IPR: eigenvectors  $\Psi_{\lambda}$  of the Dirac operator are completely delocalized  $\Rightarrow$   $l_{2} = \int \langle |\psi(\mathbf{x})|^{4} \rangle d^{3}\mathbf{x} \sim \frac{1}{2}$ 

Ergodic behaviour of number-variance 
$$\Sigma_2(n)$$
, the variance in the number of eigenvalues *n* below a value  $\lambda$ .

$$\Sigma_2(n) \sim \log(n)$$

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking  $\Rightarrow$  Chiral lagrangian at finite  $\ell \Rightarrow$  Random matrix theory for low eigenvalues  $(z = \Sigma \lambda \ell^3)$ 

• Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$\lambda \ell \sim \frac{1}{\ell^2}.$$

- IPR: eigenvectors  $\Psi_{\lambda}$  of the Dirac operator are completely delocalized  $\Rightarrow I_2 \equiv \int \langle |\psi(x)|^4 \rangle d^3x \sim \frac{1}{\ell^3}$
- Ergodic behaviour of number-variance Σ<sub>2</sub>(n), the variance in the number of eigenvalues n below a value λ.

 $\Sigma_2(n) \sim \log(n)$ 

(Shuryak and Verbaarschot '93) Spontaneous flavor symmetry breaking  $\Rightarrow$  Chiral lagrangian at finite  $\ell \Rightarrow$  Random matrix theory for low eigenvalues  $(z = \Sigma \lambda \ell^3)$ 

• Finite-size scaling of low-lying eigenvalues of the Dirac operator:

$$\lambda \ell \sim \frac{1}{\ell^2}.$$

- IPR: eigenvectors  $\Psi_{\lambda}$  of the Dirac operator are completely delocalized  $\Rightarrow \qquad l_2 \equiv \int \langle |\psi(x)|^4 \rangle d^3x \sim \frac{1}{\ell^3}$
- Ergodic behaviour of number-variance  $\Sigma_2(n)$ , the variance in the number of eigenvalues *n* below a value  $\lambda$ .

$$\Sigma_2(n) \sim \log(n)$$

#### Table of Contents



Motivation and Method







#### Parity-invariant Wilson-Dirac fermions

Regularize at the level of two-component fermions (as opposed to the equivalent four component fermions):

$$L = \overline{u}C_w u - \overline{v}C_w^{\dagger}v; \qquad C_w = C_n + B - m$$

Corresponding 4-component Hermitian Wilson-Dirac operator:

$$H_w = \begin{bmatrix} 0 & C_w(m) \\ C_w^{\dagger}(m) & 0 \end{bmatrix} \longrightarrow \text{eigenvalues } \lambda.$$

 $\textbf{m} \rightarrow$  tune mass to zero as Wilson fermion has additive renormalization.

Advantage: All even flavors  $2N_f$  can be simulated without involving square-rooting.

# Parity-invariant overlap fermions

Start from multi-particle Hamiltonians  $\mathcal{H}_{\pm} = -a^{\dagger}H_{\pm}a$  where  $H_{+} = H_{w}$ ;  $H_{-} = \gamma_{5}$ .

With one choice of phase, the gauge-invariant overlap has an explicit formula in 3d:

$$\langle +|-\rangle = \det\left(\frac{1+V}{2}\right); \quad V = \frac{1}{\sqrt{C_w C_w^{\dagger}}}C_w.$$

Parity-invariant fermion determinant:  $\{\langle +|-\rangle\}_u \{\langle -|+\rangle\}_v$ .

Propagator with the full  $U(2N_f)$  symmetry:

$$\left[ \begin{array}{cc} 0 & \frac{1-V}{1+V} \\ \frac{1-V}{1+V} & 0 \end{array} \right] \rightarrow {\rm eigenvalues} \frac{1}{i\lambda}.$$

# Continuum limit at fixed $\ell$

- $L^3$  periodic lattice with physical volume  $\ell^3$ .
- Non-compact gauge-action:  $S_g = \frac{L}{\ell} \sum_{n} \sum_{\mu \neq \nu} (\Delta_{\mu} \theta_{\nu}(n) \Delta_{\nu} \theta_{\mu}(n))^2$
- Continuum limit at fixed  $\ell$  by taking  $L \to \infty$ .
- L = 12, 14, 16, 20, 24 at different  $4 < \ell < 250$ .
- HYP smeared  $\theta$  in Dirac operator.
- Dynamical fermion simulation using standard HMC with both massless Wilson and overlap fermions.

## Continuum limit at fixed $\ell$

 $\lambda_j \rightarrow$  eigenvalues of Hermitian Dirac operator



#### Table of Contents



Parity-invariant Lattice Formulations





#### If bilinear condensate: $\lambda \ell \sim \ell^{-2}$



# If bilinear condensate: $\lambda \ell \sim \ell^{-2}$

Likelihood of different values of p as  $\ell \to \infty$ 



Expectation when condensate:  $p = 2 \longrightarrow$  seems to be ruled out.

# Agreement between Wilson and overlap fermion formulations



On lattice, Wilson fermions break  $U(2N_f) \rightarrow U(N_f) \times U(N_f)$ . Overlap has exact  $U(2N_f)$ . The agreement shows continuum limits are under control.

#### p decreases with $N_f$



 $p \approx 1/N_f$ 

#### Fractal behavior of Inverse Participation Ratio (IPR)



Condensate:  $I_2 \sim \ell^{-3}$ ; Critical:  $I_2 \sim \ell^{-3+\eta}$ 

 $\eta = 0.38(1)$  (Critical!)

#### Number variance $\Sigma_2$ shifts away from RMT expectation



 $\eta$  from IPR July 27, 2016 13 / 16

Nikhil Karthik (FIU)

QED3

#### Further evidence for scale-invariance: Absence of mass-gap

Scalar:  $\overline{u}u(t) - \overline{v}v(t)$ 



#### Further evidence for scale-invariance: Absence of mass-gap

#### Vector: $\overline{u}\sigma_i u(t) - \overline{v}\sigma_i v(t)$



#### Table of Contents



Parity-invariant Lattice Formulations





## Exploring the $(N_f, N_c)$ plane as a possibility



Agreement with Non-chiral random matrix model in large- $N_c \Rightarrow$  condensate.  $\Sigma/\sigma = 0.10(1)$ .

#### Conclusions

- Even for  $N_f = 1$ , the low-lying eigenvalues of the Dirac operator do not scale as  $\ell^{-3} \Rightarrow$  No bilinear condensate.
- Converse:  $\lambda \sim \ell^{1+\gamma_m}$  for a scale-invariant theory  $\Rightarrow \gamma_m \approx 1$  for  $N_f = 1$  (upper bound for CFTs).
- Inverse Participation Ratio does not scale as  $\ell^{-3}$ .
- The number variance Σ<sub>2</sub>(n) does not agree with the ergodic random matrix theory behavior. Instead, the behavior is critical.
- No mass scale in the long-distance behavior of scalar and vector correlators.
- We also established the presence of condensate using the same methods in the large- $N_c$  theory. Exploring the  $(N_f, N_c)$ -plane for a line of transition from scale-invariant to broken phase seems to the interesting next step.