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Problem with CL: using certain parameters CL results converge to
wrong results.

Two examples:

e XY model in 3 dimensions: CL fails at low 3, in the broken phase
[Aarts et al., 1005.3468]
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Problem with CL: using certain parameters CL results converge to
wrong results.

Two examples:

e XY model in 3 dimensions: CL fails at low 3, in the broken phase
[Aarts et al., 1005.3468]

e HDQCD: CL fails at low temperature, but its failure depends on 3

[Seiler et al., 1211.3709]

Question: What happens to CL results towards the continuum?

— 141 dimensional O(3) model at finite p
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The model
141 dimensional O(3) model at finite ;

The action at a finite A lattice:
S =28V = B (derge"bx + bii)
XEN

constraints: s

> ¢ki=1 VxeA

i=1
V=N,x N, 8= l/g2 and tyo is the generator of rotations in the
xy-plane.

The model has a severe sign problem due to the chemical potential.
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Severity of the sign problem

We used multi-parameter reweighting (simulating with the cluster
algorithm at u = 0):
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But the sign problem can be eliminated
by using different variables for the model.
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Dual variables and worm algorithm

But the sign problem can be eliminated
by using different variables for the model.

[Bruckmann et al., 1507.04253]
— Compare the CL results to worm results.

The complex Langevin equation
The CL equation for 3-component scalar fields using discrete timesteps:

65 ™ (n)

¢(n+1 ¢(n) g +VeEnn, i, =123

The noise satisfies

(i (T)r (7)) = 206000(7 = 7), - (1i(7)) = O,
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Dual variables and worm algorithm

But the sign problem can be eliminated
by using different variables for the model.

[Bruckmann et al., 1507.04253]
— Compare the CL results to worm results.

The complex Langevin equation
The CL equation for 3-component scalar fields using discrete timesteps:

65 (
n5¢x,i

n)
(1) _ () e, i=1,2,3.

The noise satisfies
(nx,i (7)1 j(T7)) = 200,000(T = 7'),  {(nx,i(7)) = 0.

But this equation does not preserve the length of the ¢ vectors.
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A) Spherical coordinates

In terms of spherical coordinates ¢, = (sin ¥y cos @y, sin Uy sin @y, cos Uy ),
and Z becomes

Z= /Hd@xl Hdﬂx2e_(s[</’ﬂ9]—lensinq9x)
X1 Xo
- /H dex H dﬂXZe_Seff[%ﬁ]7
X1 Xo

Then the discretized complex Langevin steps are
ex(n+1) = ox(n) + 2K (n) + VEmLE (n),

Dx(n+1) = 0x(n) + e,k (n) + VE" (n),
where K\ = —6S.4/50x and K = —6S.4 /50
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B) Group space integration exponentialized

Euler-Maruyama discretization
Using Descartes-coordinates
¢x = Ox¢o,  Ox(n+1) = R(en)Ox(n),
where ¢g is fixed, O € O(3) and

Re(en) = H exp (ta(enKax + vEnMax)) »

a€(1,2,3)
where the force is
Kax = —DaxS[0] = —0aS[e*" Ox]|a=o-
Using ¢y instead of O:

) T expl(EnKox + vEnma)t] 6.
a€(1,2,3)
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C) Direct method to include the constraint in

Descartes-coordinates standard Euler-Maruyama

discretization with Dirac-delta

= / [T dexd(@Z — 1)1 = / Hd¢xe—(5[¢]—zy|na(¢g_1))'

Dirac-delta is approximated with a sharp Gaussian:

1 (¢ —1)?
N exp{ y2b } — 5(gz5y —1), as b—0.

The force is then

i i 2
Kv = B (¢x+6e Hats t+e uat3¢x—@ + ¢x+i + ¢X—i) - E((bi - 1)¢X'

Then fields evolve according to

o = 60 4 ek 4 el
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Comparison of the results — the action density

wu/ T =0.25

1.28 |71 T 1 1
56x14

Ha=0.018

1.24 [

Re (S) /V

1.08 —\ wom \ ! ! \ \ ! !
0.9 1 11 12 13 14 15 16 1.7 1.8
B

Csaba Torok Comparison of algorithms for solving the sign problem... 10 / 28



Comparison of the results — the action density

Re (S) /V

Csaba Torok

1.28

1.24

wu/ T =0.25

I I I I I
56x14

[a=0.018

worm

|_.\_| CH, sphe‘rical, ‘E=0.0(‘)02, 8‘L|M=1‘e-5 |

09 1 11 12 13 14 15 16 17

B

Comparison of algorithms for solving the sign problem...

11/ 28



Comparison of the results — the action density
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Comparison of the results — the action density
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After taking e — 0 and b — 0:

e CL, spherical and CL with exp.
E-M discr. both fail at low 5 even
when the sign problem is mild

e CL std. E-M discr. with
Dirac-delta is correct for all 8
(but the errors become larger at
small betas as the sign problem
becomes more severe)
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Comparison of the results — the action density

Below Tt(,f’rlshold/m the exp. E-M discretization develops wrong results for
the action.
Continuum estimate: Tipreshold/m ~ 0.4.

T I T T
14 32x8 4
o 4oxto =
LS I
£ 64x16 F—— |
3 L - 72x1g
g 08} L soxe0 e
@5 0.6 L ; I : S cont tme
= R P R i
Bl B A -----:-_:‘.::::::-§ T
02 —
0 | | | | | | | |

Csaba Torok Comparison of algorithms for solving the sign problem... 15 / 28



Further speculation on taking the continuum limit

towards the
continuum
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Further speculation on taking the continuum limit

towards the
continuum

Can wrong results become less and less wrong towards the continuum?
e trace anomaly (0/T?)
e particle density (n/m)

Not in this model.

(At least not with these discretizations.)
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Comparison of the results — the trace anomaly

The trace anomaly is:
0 e—p_ N dlogZ N (am)<5,e,,>

T2 T2 TN da _de(%é") 3

where S,e, is the renormalized action

(Sren(B, T, 1)) = (S(B, T, p)) = (S(B, T =0, n = 0)).
For the exp. E-M discretization:
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Comparison of the results — the density

The density is
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Failure of Complex Langevin and the phase diagram

No spontaneous symmetry breaking in 141 dimensions at finite
temperature
— no phase transition (Coleman—Mermin—-Wagner theorem).
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Failure of Complex Langevin and the phase diagram

No spontaneous symmetry breaking in 141 dimensions at finite
temperature
— no phase transition (Coleman—Mermin—-Wagner theorem).
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Failure of Complex Langevin and the phase diagram

No spontaneous symmetry breaking in 141 dimensions at finite
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Summary

Complex Langevin algorithm was compared to the worm algorithm

and reweighting.
Three different implementations for CL were tested:

A) spherical coordinates,
B) group space integration (exp. E-M),
C) direct method (std. E-M discretization with Dirac-delta).

Results at low temperature:

S/V 1 6/T? | n/m| Continuum limit:
A)| X X X incorrect results at low temperature

B)| X X X do not improve.
Ol v | 7/ | X

Csaba Torok

Comparison of algorithms for solving the sign problem... 24 /28



Summary

Complex Langevin algorithm was compared to the worm algorithm

and reweighting.
Three different implementations for CL were tested:

A) spherical coordinates,
B) group space integration (exp. E-M),
C) direct method (std. E-M discretization with Dirac-delta).

Results at low temperature:

S/V16/T* [ n/m| Continuum limit:
A)| X X X incorrect results at low temperature

B)| X X X do not improve.
Q| v v X

Thank you for your attention!

Csaba Torok

Comparison of algorithms for solving the sign problem... 24 /28



Backup slides

Csaba Torok Comparison of algorithms for solving the sign proble



Standard discretization with Dirac-delta
— some more figures
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Standard discretization with Dirac-delta
— some more figures
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Standard discretization with Dirac-delta
— some more figures
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