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Motivation

sign problem:
S is complex −→ e−S cannot be interpreted as a probability weight
possible solution: Complex Langevin (CL) algorithm

Problem with CL: using certain parameters CL results converge to
wrong results.

Two examples:
• XY model in 3 dimensions: CL fails at low β, in the broken phase

[Aarts et al., 1005.3468]

• HDQCD: CL fails at low temperature, but its failure depends on β
[Seiler et al., 1211.3709]

Question: What happens to CL results towards the continuum?

−→ 1+1 dimensional O(3) model at finite µ
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The model

1+1 dimensional O(3) model at finite µ

The action at a finite Λ lattice:

S = 2βV − β
∑
x∈Λ

(
φx+0̂e

iµat12φx + φx+1̂φx

)
,

constraints:
3∑

i=1

φ2
x ,i = 1 ∀x ∈ Λ.

V = Nx × Nt , β = 1/g2 and t12 is the generator of rotations in the
xy -plane.

The model has a severe sign problem due to the chemical potential.
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Severity of the sign problem

We used multi-parameter reweighting (simulating with the cluster
algorithm at µ = 0):

〈O〉β,µ =
〈Ow〉β0,µ0=0

〈w〉β0,µ0=0
, where

〈O〉β,µ ≡
1

Z

∫ ∏
x

dφxδ(φ2
x − 1)e−S(β,µ)O

and w = eS(β0,µ0)−S(β,µ).
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Dual variables and worm algorithm

But the sign problem can be eliminated
by using different variables for the model.

[Bruckmann et al., 1507.04253]

−→ Compare the CL results to worm results.

The complex Langevin equation

The CL equation for 3-component scalar fields using discrete timesteps:

φ
(n+1)
x ,i = φ

(n)
x ,i − εn

δS

δφx ,i

(n)

+
√
εnη

(n)
x ,i , i = 1, 2, 3.

The noise satisfies

〈ηx ,i (τ)ηx ′,j (τ
′)〉 = 2δijδxx ′δ(τ − τ ′), 〈ηx ,i (τ)〉 = 0.
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Dual variables and worm algorithm

But the sign problem can be eliminated
by using different variables for the model.
[Bruckmann et al., 1507.04253]

−→ Compare the CL results to worm results.

The complex Langevin equation

The CL equation for 3-component scalar fields using discrete timesteps:

φ
(n+1)
x ,i = φ

(n)
x ,i − εn

δS

δφx ,i

(n)

+
√
εnη

(n)
x ,i , i = 1, 2, 3.

The noise satisfies

〈ηx ,i (τ)ηx ′,j (τ
′)〉 = 2δijδxx ′δ(τ − τ ′), 〈ηx ,i (τ)〉 = 0.

But this equation does not preserve the length of the φ vectors.
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A) Spherical coordinates

In terms of spherical coordinates φx = (sinϑx cosϕx , sinϑx sinϕx , cosϑx ),
and Z becomes

Z =

∫ ∏
x1

dϕx1

∏
x2

dϑx2e
−(S[ϕ,ϑ]−

∑
x ln sinϑx )

=

∫ ∏
x1

dϕx1

∏
x2

dϑx2e
−Seff [ϕ,ϑ],

Then the discretized complex Langevin steps are

ϕx (n + 1) = ϕx (n) + εnK
(ϕ)
x (n) +

√
εnη

(ϕ)
x (n),

ϑx (n + 1) = ϑx (n) + εnK
(ϑ)
x (n) +

√
εnη

(ϑ)
x (n),

where K
(ϕ)
x = −δSeff /δϕx and K

(ϑ)
x = −δSeff /δϑx .
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B) Group space integration exponentialized

Euler-Maruyama discretization

Using Descartes-coordinates

φx = Oxφ0, Ox (n + 1) = Rx (εn)Ox (n),

where φ0 is fixed, Ox ∈ O(3) and

Rx (εn) =
∏

a∈(1,2,3)

exp (ta(εnKax +
√
εnηax )) ,

where the force is

Kax = −DaxS [O] = −∂αS [eαtaOx ]|α=0.

Using φx instead of Ox :

φ
(n+1)
x =

∏
a∈(1,2,3)

exp [(εnKax +
√
εnηax )ta]φ

(n)
x .
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C) Direct method to include the constraint in
Descartes-coordinates standard Euler-Maruyama

discretization with Dirac-delta

Z =

∫ ∏
x

dφxδ(φ2
x − 1)e−S[φ] =

∫ ∏
x

dφxe
−(S[φ]−

∑
y ln δ(φ2

y−1)).

Dirac-delta is approximated with a sharp Gaussian:

1√
2πb

exp
{
−

(φ2
y − 1)2

2b2

}
→ δ(φ2

y − 1), as b → 0.

The force is then

Kx = β
(
φx+0̂e

iµat3 + eiµat3φx−0̂ + φx+1̂ + φx−1̂

)
− 2

b2
(φ2

x − 1)φx .

Then fields evolve according to

φ
(n+1)
x ,i = φ

(n)
x ,i + εnK

(n)
x ,i +

√
εnη

(n)
x ,i .
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Comparison of the results – the action density

µ/T = 0.25
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After taking ε→ 0 and b → 0:

• CL, spherical and CL with exp.
E-M discr. both fail at low β even
when the sign problem is mild

• CL std. E-M discr. with
Dirac-delta is correct for all β
(but the errors become larger at
small betas as the sign problem
becomes more severe)
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Comparison of the results – the action density

Below T
(S)
threshold/m the exp. E-M discretization develops wrong results for

the action.
Continuum estimate: Tthreshold/m ∼ 0.4.
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Further speculation on taking the continuum limit

towards the
continuum ?

Can wrong results become less and less wrong towards the continuum?
• trace anomaly (θ/T 2)
• particle density (n/m)

Not in this model.
(At least not with these discretizations.)
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Comparison of the results – the trace anomaly

The trace anomaly is:

θ

T 2
=
ε− p

T 2
= −Nt

Nx
a
d logZ

da
=

Nt

Nx

(am)
d(am)
dβ

〈
Sren

β

〉
.

where Sren is the renormalized action

〈Sren(β,T , µ)〉 = 〈S(β,T , µ)〉 − 〈S(β,T = 0, µ = 0)〉.
For the exp. E-M discretization:
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Comparison of the results – the density

The density is

n =
T

Vsp

∂ logZ

∂µ
=

T

Vsp

1

Z

∂Z

∂µ
= m

1

NtNx

1

am

〈
− ∂S

∂(µa)

〉
.
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Failure of Complex Langevin and the phase diagram

No spontaneous symmetry breaking in 1+1 dimensions at finite
temperature

−→ no phase transition (Coleman–Mermin–Wagner theorem).
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Summary

Complex Langevin algorithm was compared to the worm algorithm
and reweighting.

Three different implementations for CL were tested:

A) spherical coordinates,
B) group space integration (exp. E-M),
C) direct method (std. E-M discretization with Dirac-delta).

Results at low temperature:

S/V θ/T 2 n/m

A) 7 7 7

B) 7 7 7

C) 3 3 7

Continuum limit:
incorrect results at low temperature
do not improve.

Thank you for your attention!
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Backup slides
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Standard discretization with Dirac-delta
– some more figures
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Standard discretization with Dirac-delta
– some more figures
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Standard discretization with Dirac-delta
– some more figures
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