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Developments

What is the density-of-states method and what is LLR? 

Theoretical & Algorithmic developments  
[ergodicity, exponential error suppression] 

Can we simulate slush? 

Applications

Finite density QFT

Towards the SU(3) latent heat

The HDQCD showcase
What can we learn for other approaches 
[cumulant, canonical simulations?]



The density-of-states method: 

Consider the high 
dimensional integral: 

Z =

Z
D� exp{�S[�]}

The density-of-states: ⇢(E) =

Z
D� �

⇣
E � S[�]

⌘

Probabilistic 
weight

A 1-dimensional integral: Z =

Z
dE P (E)

P (E) = ⇢(E) e�E

entropy

Gibbs factor 

How do I find the density-of-states? 



…could use 
a histogram 

bad signal to 
noise ratio

waste of time! 



The LLR approach to the density-of-states: 
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[Langfeld, Lucini, Rago, PRL 109 (2012) 111601]

calculate instead 
the slope [of log   ] 
a(E) at any point E

reconstruct 

⇢

⇢(E)



LLR approach:

For small enough      : Poisson 
distribution

�E

need to find “a” !

restriction to the
action range
“window function”

re-weighting
factorobservablestandard MC

average

hhW [�]ii (a) =
1

N

Z
D� ⌦[E,�E](S[�]) W [�] e�aS[�]



Window function: 

⌦[E,�E](S) = ✓[E,�E](S)Historically [Wang-Landau] 

Also: ⌦[E,�E](S) = exp{�(S � E)

2/�E2}

Needs to be symmetric around E 

main advantage: 
can be used in HMC and LHMC 
algorithms to calculate hhW [�]iiE

[see SU(3) latent heat; this talk]

[see also talk by R Pellegrini: Tuesday, Algorithms]



LLR approach:

For small enough      : Poisson 
distribution

�E

restriction to the
action range

re-weighting
factorobservablestandard MC

average

choose: W [�] = S[�]� E

For correct a: 

hhW [�]ii (a) =
1

N

Z
D� ⌦[E,�E](S[�]) W [�] e�aS[�]

hhS[�]� Eii (a) = 0



Stochastic non-linear equation: hhS[�]� EiiE = 0

an+1 = an +
12

�E2 (n+ 1)
hh�Eii (an)

…many possibilities to solve it: 

convergence error statistical  error

Do we converge to the correct result? 

Solved by Robbins Monroe [1951]:

converges to the correct result 

truncation at n=N:               normal distributed around

a1

P (aN ) a1

bootstrap error analysis!

[Langfeld, Lucini,Pellegrini, Rago,  Eur.Phys.J. C76 (2016) no.6, 306]



Stochastic non-linear equation: hhS[�]� EiiE = 0

more results: 
monotonic function in a: hhS[�]� EiiE (a)

other iterations possible [let alone Newton Raphson]

see the Functional Fit Approach (FFA)

talk by Mario Gulliani, Tuesday, Nonzero T and Density 

[Gattringer, Toerek, PLB 747 (2015) 545]

[Langfeld, Lucini,Pellegrini, Rago,  Eur.Phys.J. C76 (2016) no.6, 306]



Showcase: SU(2) and SU(3) Yang-Mills theory
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function ⌦[E,�E]

LHMC update

20 bootstrap samples

[from Gatringer, Langfeld, arXiv:1603.09517] 



Reconstructing the density-of states: 

Remember: a(E) =
d ln ⇢(E)

dE

discrete set:

e⇢(E)

Central result: ⇢(E) = e⇢(E) exp{trunc. + stats. error}

relative error

“exponential error suppression”

[Langfeld, Lucini, Pellegrini, Rago,  Eur.Phys.J. C76 (2016) no.6, 306]



Showcase: SU(2) and SU(3) Yang-Mills theory

Density of states
over 100,000 orders
of magnitude!
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Ergodicity could be an issue….

(we confine configurations to action intervals)

Early objection: [2012]

we studied the issue in the Potts model

[see talk by B Lucini, Tuesday, 17:50, Algorithms]

use (extended) replica exchange method 
proposed in 
[Langfeld, Lucini, Pellegrini, Rago,  Eur.Phys.J. C76 (2016) no.6, 306]



(extended) Replica Exchange method:

Calculate LLR coefficients in parallel
[Swendsen, Wang,  PRL 57 (1986) 2607]

action  E

core 6
core 1

core 2

exchange

core 5

If a(E) is converged: random walk in configuration space



Showcase: q-state Potts model in 2d

Exact solution:
R.J. Baxter, J. Phys. C6 (1973) L445  

1p
V
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interface tension� :

First MC q=20 simulation: 
Multi-canonical approach

[Berg, Neuhaus, PRL 68 (1992) 9]
 [Billoire, Neuhaus, Berg, NPB (1994) 795]

10�11

�critical =
1

2
ln(1 +

p
q)

[LLR result]



Showcase: q-state Potts model in 2d
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Showcase: q-state Potts model in 2d

Tunnelling between 
LLR action intervals:

Interval size: 29

bridged 42 
intervals within 

750 sweeps

hp
750 = 27.38 . . .

i

[q=20, L=64]



Showcase: q-state Potts model in 2d [q=20, L=64]
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Applications

Enough theory.

We want to see results! 



Towards the latent heat in SU(3) YM theory: 

Partition function: Z(T ) =

Z
dE P (E)

At criticality: double-peak structure of P (E)

Define          by equal height of peaks�crit

Temperature: 4⇥Ns , Ns = 20, 24, 28, 32, 36



[KL in preparation]

Towards: 
latent heat
specific heats
order-disorder 
interface tension

for                   : 
cross-over!

Ns < N crit
s
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Applications

What can the LLR approach do for 
QFT at finite densities? 



The density-of-states approach for complex theories:

Recall: theory with 
complex action

Partition function emerges from a FT:

Define the generalised density-of-states:
Could get it by 
histogramming



What is the scale of the problem?

LLR approach:

Indicative result: 

action volume

statistical errors exponentially small

Need exponential error 
suppression over the whole 
action range

[Langfeld, Lucini, Rago, PRL 109 (2012) 111601]
[Langfeld, Lucini, PRD 90 (2014) 094502]



Define the overlap between full and phase 
quenched theory

O(µ) =
Z(µ)

ZPQ(µ)
= hexp{iµSI}iPQ

Z(µ) =
Z(µ)

ZPQ(µ)
ZPQ(µ) = O(µ)ZPQ(µ)Trivially:

generically dominant!

standard Monte-Carlo
�(µ) =

T

V3

@

@µ
ln O(µ) + ⇢PQ(µ)



Anatomy of a sign problem: Heavy-Dense QCD (HDQCD)

Starting point 
QCD:

Z(µ) =

Z
DUµ exp{� SYM[U ]}DetM(µ)

SU(3) gauge theory quark determinant

Limit quark mass    ,    large,m µ µ/m ! finite

[Bender, Hashimoto, Karsch, Linke, Nakamura, Plewnia,  
 Nucl. Phys. Proc. Suppl. 26 (1992) 323] 
 

[see talk by N Garron, Tuesday,  14:40, Non-zero Temp & Density]



Here is the result from 
reweighting (black)

strong sign problem

see also [Rindlisbacher, de Forcrand, JHEP 1602 (2016) 051]

Thanks to Tobias and Philippe 
for the Mean-Field comparison!



Challenge: How do we carry out a Fourier transform the result of 
which is            and the integrand of order         is only 
known numerically? 

10�14 O(1)

Data Compression essential:

            ~ 1000 data points                     ~ 20 coefficientslnP (s) ) ci

�2/dof = O(1)

[Langfeld, Lucini, PRD 90 (2014) no.9, 094502] 

tested for the Z3 spin model at finite densities!
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[Garron, Langfeld,  arXiv:1605.02709]



What can LLR do for you? 
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[Garron, Langfeld,  arXiv:1605.02709]error bars 5 orders 
of magnitude smaller!



Objections:

remember:

How robust is the approach against the choice of fitting functions? 

Extended cumulant approach: similar to: 
[Saito, Ejiri, et al, PRD 89 (2014) no.3, 034507]

see also:
[Greensite, Myers, Splittorff, PoS 

LATTICE2013 (2014) 023]Phase of the determinant: �

Probability Distribution very close to “1”

P (�) = 1 + ✏a1 + ✏2a2 + ✏3a3 + . . .

suppressed by volume



Overlap: 

Extended cumulant approach: 

h�ni = 1

N

Z ⇡

�⇡
�n P (�) d�

M4 = h�4i � 3⇡2

5
h�2i

M6 = h�6i � 10⇡2

9
h�4i +

5⇡4

21
h�2i

M8 = h�8i � 21⇡2

13
h�6i +

105⇡4

143
h�4i � 35⇡6

429
h�2i

hei�i = �175

2⇡6
M4 +

4851 (27� 2⇡2)

8⇡10
M6 � 57915 (3⇡4 � 242⇡2 + 2145)

16⇡14
M8 + O(✏4)

hexp{i�}i = 1

N

Z ⇡

�⇡
e

i� P (�) d�

[see talk by N Garron, Tuesday,  14:40, 
Non-zero Temp & Density]

hei�i = 10�6
h
1.45(28) + 0.67(13) + 0.068(13)

i
+ O(✏4)

[µ = 1.2921]



Extended cumulant approach: 

[analysis by N Garron]



Summary: What is the LLR approach? 

Calculates the probability distribution of 
(the imaginary part of ) the action with 
exponential error suppression 
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[also talk by Pellegrini]



Summary: Can solve strong sign problems:

Z3 gauge theory at finite densities
HD QCD

[Langfeld, Lucini, PRD 90 (2014) no.9, 094502] 

[Garron, Langfeld,  arXiv:1605.02709] 

New element: 

Extended cumulant 
approach



Outlook:[immediate LLR projects very likely to succeed]

interface tensions in the q=20 Potts model (perfect 
wetting?)

thermodynamics with shifted BC in SU(2) & ….

[LLR density projects hopefully to succeed]

small volume (finite density) QCD 

[Lucini, KL]

[Pellegrini, Rago, Lucini]

[Garron, KL]

Hubbard model, FG model, Graphene [von Smekal, KL, et al.]

talk!

talk!

[other related projects:]

Topological freezing, CP(n-1): Metadynamics [Sanfilippo, Martinelli, Laio]
talk!

Jarzynski's relation [Nada, Caselle, Panero,Costagliola,Toniato]  
talk!

SU(3) interface tensions, latent heat, etc.
[KL et al.]

talk!


