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Obijective

Clarify the nature of the chiral phase transition for Nf=2
first order or second order ?
If second order, estimate critical exponents

Strategy

derive new RG scaling relations
verify whether the scaling is satisfied for data
on lattice with Ns =16, 24, 32

Results
the data excellently satisfy the scaling relations
It implies the transition is second order
the anomalous mass dimension  0.67 ~ 1.1



Stage and Tools

SU(3) gauge theories with degenerate two quarks

Action: RG improved gauge action + Wilson fermion action
Lattice size: 3273 x 16, 243 x 12, 163 x 8

Boundary conditions: periodic boundary conditions except for an
anti-periodic boundary conditions in the t direction for fermions
Algorithm: Blocked HMC for 2N and RHMC for 1 : Nf=2N + 1
Statistics: 1,000 +1,000 ~5000 trajectories

Computers: U. Tsukuba: CCS HA-PACS; KEK: SR16000



Chiral phase transition

e Bc = 2.8; Kc =0.1455 on the 3273 x 16 lattice;
e Bc = 2.6; Kc=0.149 on the 24173 x 12 lattice;
e Bc =2.3; Kc=0.1547 on the 1673 x 8 lattice.

estimated by “on Kc method”,
monitoring the number of iteration of CG inversion

From the results of spectroscopy on 16”3 x 64 |attice we obtain

Tc~ 163 (+11; -1) MeV



RG equations

At the vicinity of a critical point where the correlation
length becomes infinity, the following RG equations hold.
note: only relevant operators included

Temporal propagator N

Gt(nt; g, mq, Ns, Nt, p) = (W)_27 Gt(nt’;g’,m’'q,Ns’,Nt’, ).

Spatial propagator N

Gs(ns; g, mq, Ns, Nt, u) = (—)_27 Gs(ns’;g’,m’q,Ns’,Nt’,1’)
N

mayuse 7= Ny/N, N=N,



Scaling at IR fixed point
g=g’=g*; mg=mq’=0;
Temporal propagator /

Gt(nt; g*, ma=0, N, W) = ()"~ Gt(nt’;g*,m'q=0,N', ).

/

N

Gt(r,N)= ()" GH{7,N). - — /N

effective mass B G(ng, N)
m(ne, N) = In G(n:+1,N)

scaled

effective mass m(ng, N) = Nm(ng, N)

m(r, N) = -9, InG(r, N)



Scaling at IR fixed point

m(T, N ) — m(T, N ) Phys.Lett.B 748 (2015) 289;arXiv: 1503.02359
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SCALING AT CHIRAL PHASE TRANSITION

/

temporal mt(T,g,N) — mt(Ty glaN )

/ /
Spaﬁal mS(Tang) :mS(Tvg 7N)
Numerical data scale

the data excellently scale both for the spatial and temporal effective
masses, in the pseudo-scalar and vector channel, respectively,
except only for short distance at n=0, 1, 2

scaling curves give continuum limit

beta function is common both to spatial and temporal effective
masses



Numerical data scale

spatial
P PS: effective mass: 5=2.8, 2.6 and 2.3
40 . - - -
i f=2.8 —m—
35+ e p=2.6 —®
\ p=2.3 —A—
30
-~ 25
= 20
15
10
5 1 1 1 1
0 0.1 0.2 0.3 0.4
t/N,
temporal _
t-PS: effective mass: 5=2.8, 2.6 and 2.3
30

25

40

35 1

30

25 ¢
20
15

10

V: effective mass: 5=2.8, 2.6 and 2.3

T T T T

p=2.8 —m—

. B=26 o
\ $=2.3 A —

0.1 0.2 0.3 0.4
tN,

t-V: effective mass: 5=2.8, 2.6 and 2.3

——
{
A

0.1 0.2 0.3 0.4
1IN,



Scaling and Continuum limit

Scaling implies

mﬁ(TvgaN) — 35(7-)

independent from g and N

this is the continuum limit

ratio of vector to pseudo-scalar
Effective Mass Ratio V/PS
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Effective mass decay with a power
modified Yukawa type

an example below
fit m=0.305(7)
power=0.87(6)

effective mass enlarged: 32%x16, p=2.8, K=0.1455
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Thermodynamic Limit

Effective mass decay with a power G(t)=Aexp(—m 1) /T
modified Yukawa type

m(7; Ny) ~m+ /T m : thermodynamic limit

Increasing volume, modified Yukawa type as shown does not change

effective mass: 8x16°,8x32°,8X643, 3=2.4, K=0.150
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Hyper Scaling relations and anomalous mass dimension
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at each lattice the hyper scaling relation excellently is satisfied
However, the anomalous mass dimension does not scale well.
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Search a critical point on lattices with r=1/4

Effective mass: Nf=02; beta=7.0, K=0.144 Effective mass: Nf=02; beta=6.9, K=0.146
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Search a critical point on lattices with r=1/4
Action = one plaquette gauge action
Size = 1673x64, 12/3x48, 8"3X32

data at beta=6.8 on1673x64, beta=6.7 on 1223x48, beta=6.5 on 8A3X32
scale = >critical point (preliminary)

Nf=02;beta6.5(32), beta6.7(48), beta6.8(64)
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Summary and Discussion

Wilson’s basic idea:

in the vicinity of a critical point RG equations are satisfied
Usually it is considered that a critical point is an IR fixed point
Scaling relation at an IR fixed point

m(7, N) = m(r, N,)

If the chiral phase transition is second order, it is a critical point
Numerical data excellently satisfy RG scaling relations

m(7,9,N) =my(7,9, N) (7,9, N) =my(r,g, N)
It implies the chiral transition is second order
may suppress g, since T and aspect ratio r given, g(a) are fixed
m, (7, N) = my(r,N) m, (7, N) = my(r,N)

The same form as the scaling at IR fixed point

They imply “scale invariance”
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