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Introduction

We present our ongoing computation of the running
of the twisted Yang-Mills coupling using gradient flow
techniques.

In particular, we use the gradient flow method with
twisted boundary conditions to perform a

perturbative expansion of the expectation value of
the Yang-Mills energy density up to fourth order at

Additionally, we will show our ongoing computation
of the aforementioned integrals in the particular case
of a two-dimensional twist.

finite flow time, and regularise the resulting integrals.

Computing <E>/N in
perturbation theory

 The observable was computed in perturbation
theory up to order g,* :
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 The fields were be expanded in a basis [(p) in
momentum space with structure constants F(p,q):
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Starting point

* The hypothesis of volume independence states
that that in a SU(N) theory on a d-dimensional
twisted torus, the physical size and the size of the
gauge group are related in such a way that, up to
N-2 corrections, they are always combined in an
effective length:
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Where k and L, are two coprime integers, and d,
stands for the number of dimensions with twisted
boundary conditions. We consider a torus with

length /in the twisted directions, and [ inthe
non-twisted ones, which yields a volume:

Vo= [t

 The Twisted Gradient Flow (TGF) scheme was used
in order to obtain the running of the renormalised
‘t Hooft coupling in terms of the effective size and
an arbitrary parameter c :

ATOF ([) = N7 (c)
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The normalisation constant was obtained by
matching the coupling to the tree level bare one.
It is given after some computations by:

At (d—1) g /.
N (c) = TRl 05" (0,imc?)

x {65 (0,imc”) — 05 (0,imc*L]) }

Where 0; denotes the Jacobi theta function:

03 (0,it) = Y e ™™

meL
e £(t)is computed in terms of the gradient flow field
B,(x,t), which is defined as a field following the
flow equations:

0B, (z,t) = D,G,, (z,t)
+D,0,B, (z,t)

With the initial condition that Bu matches the usual
A ,gauge field for t=0 .
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* The observable can be expressed as a combination
of several integrals:
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A few representative examples of these integrals
include:
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NF?(r,p)
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The presence of the NF?(r,p) terms will be crucial to
what follows, and specific to finite volume.

A =

e After replacing t by its value in terms of ¢, and
rescaling the integration variables, the integrals
can be rewritten in terms of Siegel theta functions:
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The theta functions can then be reabsorbed into an

auxiliary function:
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* This structure of a difference of two theta
functions comes directly from expanding the sin
function from the F?(r,p) form factors in complex

exponentials.
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Numerical Simulations

* |n order to compute the integrals, a numeric code using trapezoid integration was
prepared to compute and integrate the F_functions and their flow time derivatives.

* The simulations were run for a two-dimensional twist, and for ¢ = 0.7, k = 1, L,=3
 Some temporary results include:

I; = [ xdxF. (2,2, 2) = 0.008538263 (9)
PoS LATTICE2011 (2011) 249, arXiv:1110.3522 ]7 — f[)l xdch (2? 2? 513') — 0.003242711 (3)
Ilg — fol dx fol ydyFC (2j 2:% (CC — 1) y) = (0.00541510 (13)

 The computation of the rest of the integrals is ongoing.

Regularisation

* Interms of . functions and after some algebra,
some of the previous examples of the integrals to
compute read:

I = fol dz [" ydyF. (2+2y,2+ (1 —2)y, 1)
I, = fol dx fooo dyF,.(2,2x + vy, x)

[- = fol vdxF,. (2,2x, 1)
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e There is an alternative formula for the theta
functions using the inverse:

© (O\iA (S,u,v, é)) — (det A)~"? Ze—’”MtA_lM
M

This diverges for det A=0, which occurs for u=v=0
(or in points that can be taken there through a
momentum shift).

* |n order to make the divergence more manifest,
we partially inverted the theta function:

O (O\iA (s,u,fu,é)) — ((’Eu)_% Zexp {—Wést}
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* And then the divergence occurs for n=0 and for
two different situations:

c 0 =0 ,\

- m=L,m m € 7

* Defining:
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* The finite part is then given by:
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* Dimensional regularisation is feasible by expressing
the divergent part in terms of Jacobi theta
functions. For instance, for a four-dimensional
twist:

F& (s,u,0) = (¢éu) "2 {64 (0]a) — 6% (0]aL?)}

(H (s,u,v,0)

a,:%(su—fUQ) d=4—2e¢

In dimensional regularisation, the term
proportional to 1/ reproduces the universal one-
loop divergence of the bare coupling as expected.

A determination of the A parameter in this scheme
IS ongoing.




