Kaon semileptonic decays with $N_f = 2 + 1 + 1$ HISQ fermions and physical light quark masses

Elvira Gámiz

(on behalf of Fermilab Lattice and MILC Collaborations)

Universidad de Granada / CAFPE

The XXXIV International Symposium on Lattice Field Theory

· Southampton (UK), 24-30 July 2016 ·

1. Introduction: CKM unitarity in the first row

Check unitarity in the first row of CKM matrix

$$\Delta_u \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1$$

- * $V_{ud}=0.97417(21)$ from superallowed nuclear $\beta-$ decays Hardy & Towner, 1411.5987 and $V_{ub}\sim 0$.
 - * V_{us} from photon-inclusive decay rate for all $K \to \pi l \nu$ decay modes

$$\Gamma_{K_{l3(\gamma)}} = \frac{G_F^2 M_K^5 C_K^2}{128\pi^3} S_{\text{EW}} |V_{us}|^2 f_+^{K^0 \pi^-} (0)^2 I_{Kl}^{(0)} \left(1 + \delta_{\text{EM}}^{Kl} + \delta_{\text{SU}(2)}^{K\pi} \right)$$

with $C_K=1(1/\sqrt{2})$ for neutral (charged) K, $S_{EW}=1.0223(5)$, $I_{Kl}^{(0)}$ a phase integral depending on shape of $f_\pm^{K\pi}$, and $\delta_{\rm EM}^{Kl}$, $\delta_{\rm SU(2)}^{K\pi}$ are long-distance em and strong isospin corrections respectively

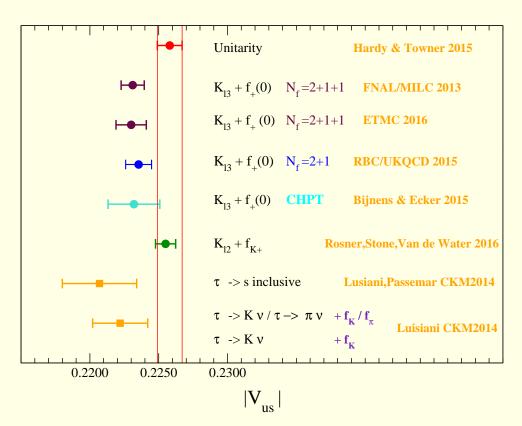
** Using experimental average from Moulson, 1411.5252 (CKM2014) (includes uncertainties from $\delta^{Kl}_{\rm EM}$, $\delta^{K\pi}_{\rm SU(2)}$.) and $N_f=2+1+1$ FNAL/MILC (1312.1228)

$$|V_{us}|f_{+}^{K\pi}(0)|_{exp} = 0.2165(\pm 0.18\%)$$
 $f_{+}^{K\pi}(0)_{FNAL/MILC} : 0.9704(\pm 0.33\%)$

1. Introduction

$$\Delta_u = -0.00126(37)_{V_{us}}(41)_{V_{ud}} \rightarrow \sim 2\sigma \text{ tension}$$

(similar results with
$$f_+(0)_{RBC/UKQCD}=0.9685(34)(14)$$
 1504.01692 and $f_+(0)_{ETMC}=0.9709(46)$ 1602.04113)



checking for SM consistency

Probe the W-boson coupling to u and d quarks via the vector current (semilept.) and the axial current (leptonic)

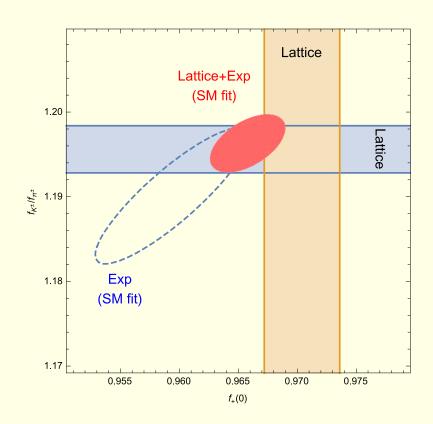
 $\sim 2.2\sigma$ tension

1. Introduction

Probe the W-boson coupling to u and d quarks via the vector current (semileptonic) and the axial current (leptonic)

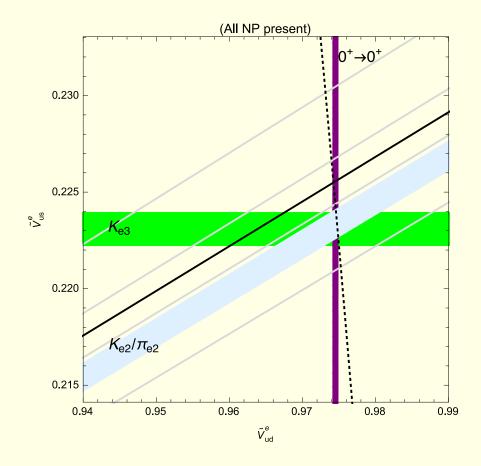
→ checking for consistency.

 $\sim 2\sigma$ tension



Plot from M.González-Alonso with f_K^+/f_π and $f_+(0)$ from FNAL/MILC, 1407.3772 and 1312.1228

1. Introduction



Plot from M.González-Alonso with f_K^+/f_π and $f_+(0)$ from FNAL/MILC, 1407.3772 and 1312.1228

Decays sensitive to NP: probes $\mathcal{O}(100)$ TeV scales.

Black solid line: SM leptonic

Black dashed line: CKM unitarity

Light blue band: Best fit with NP not absorbed

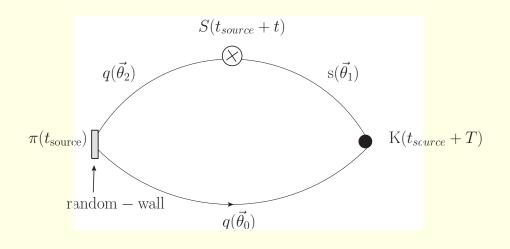
in $ilde{V}_{ud}$

^{*} Fit allows NP contributions to leptonic and semileptonic decays (electron chanel)

2. FNAL/MILC Methodology

From the vector Ward-Takahashi identity

$$f_{+}^{K\pi}(0) = f_{0}^{K\pi}(0) = \frac{m_{s} - m_{l}}{m_{K}^{2} - m_{\pi}^{2}} \langle \pi | S | K \rangle_{q^{2}=0}$$



* Twisted boundary conditions \rightarrow allow generating correlation functions with non-zero external mom. such that $q^2 \simeq 0$

Twisted boundary conditions: $\psi(x_k + L) = e^{i\theta_k}\psi(x_k)$

(with k a spatial direction and L the spatial length of the lattice).

- ightarrow the propagator carries a momentum $p_k = \pi rac{ heta_k}{L}$
- * We inject momentum in the π (moving K give noisier data).

3.1. 2013 FNAL/MILC: Simulation details

HISQ valence quarks on MILC $N_f=2+1+1$ HISQ configurations

$a(\mathrm{fm})$	m_l/m_s	Volume	$N_{conf.} imes N_{t_s}$	am_s^{sea}	$am_s^{\it val}$	
0.15	0.035	$32^3 \times 48$	1000×4	0.0647	0.0691	
0.12	0.2	$24^3 \times 64$	1053×8	0.0509	0.0535	
	0.1	$32^3 \times 64$	993×4	0.0507	0.053	
	0.1	$40^3 \times 64$	391×4	0.0507	0.053	FV check
	0.035	$48^3 \times 64$	945×8	0.0507	0.0531	
0.09	0.2	$32^3 \times 96$	775×4	0.037	0.038	
	0.1	$48^3 \times 96$	853×4	0.0363	0.038	
	0.035	$64^3 \times 96$	625×4	0.0363	0.0363	
0.06	0.2	$48^3 \times 144$	362×4	0.024	0.024	

^{*} Physical quark mass ensembles

- * HISQ action on the valence and sea: small discret. effects.
- * Charm quarks on the sea.
- * Very well tuned strange quark mass on the sea.

3.2. 2013 FNAL/MILC: Chiral and continuum extrapolation

The form factor $f_+(0)$ can be written in ChPT as

$$f_{+}(0) = 1 + f_2 + f_4 + f_6 + \dots = 1 + f_2 + \Delta f$$

- # $f_{+}(0)$ goes to 1 in the SU(3) limit due to vector current conservation
- # Ademollo-Gatto theorem \rightarrow SU(3) breaking effects are second order in $(m_K^2 m_\pi^2)$ and f_2 is completely fixed in terms of experimental quantities.
 - * At finite lattice spacing systematic errors can enter due to violations of the dispersion relation needed to derive

$$f_{+}(0) = f_{0}(0) = \frac{m_{s} - m_{q}}{m_{K}^{2} - m_{\pi}^{2}} \langle S \rangle_{q^{2}=0}$$

Dispersion relation violations in our data are $\leq 0.1\%$.

3.2. 2013 FNAL/MILC: Chiral and continuum extrapolation

* One-loop (NLO) partially quenched Staggered ChPT + Two-loop (NNLO) continuum ChPT.

Bernard, Bijnens, E.G., 1311.7511; Bijnens & Talavera, 0303103

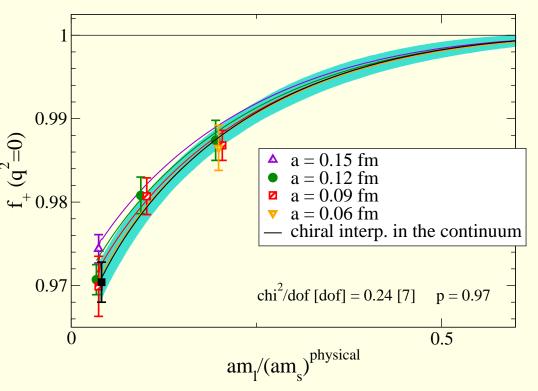
$$f_{+}(0) = 1 + f_{2}^{PQS\chi PT}(a) + f_{4}^{cont} + K_{1} a^{2} \sqrt{\overline{\Delta}} + K_{3} a^{4}$$

$$+ (m_{\pi}^{2} - m_{K}^{2})^{2} \left[C_{6} + K_{2} a^{2} \sqrt{\overline{\Delta}} + K_{2}' a^{2} \overline{\Delta} + C_{8} m_{\pi}^{2} + C_{10} m_{\pi}^{4} \right]$$

with $\bar{\Delta}$ used as a proxy of α_s^2 and $C_6 \propto \left(C_{12} + C_{34} - L_5^2\right)(\mu)$.

- ** We include leading isospin corrections in CHPT Gasser & Leutwyler, NPB250, 517 (1985).
- ** And estimate remaining isospin effects from two-loop continuum CHPT calculation Bijnens & Ghorbani, 0711.0148

3.3. 2013 FNAL/MILC: Results



Error $f_{+}(0)$ (%)		
0.24		
0.24		
0.03		
0.08		
0.2		
0.016		
0.33		

We do not see discretization effects except in the $a \approx 0.15 \ fm$ ensemble.

$$f_{+}(0) = 0.9704(24)(22) = 0.9704(32)$$

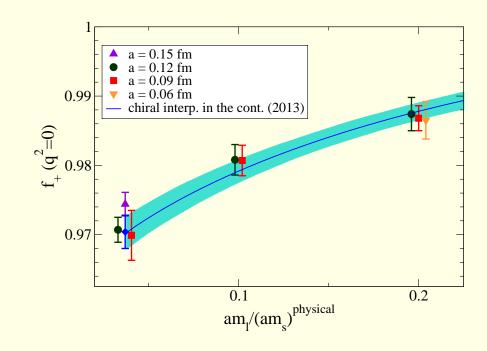
4.1. New data

Improved statistical errors and data at smaller lattice spacing.

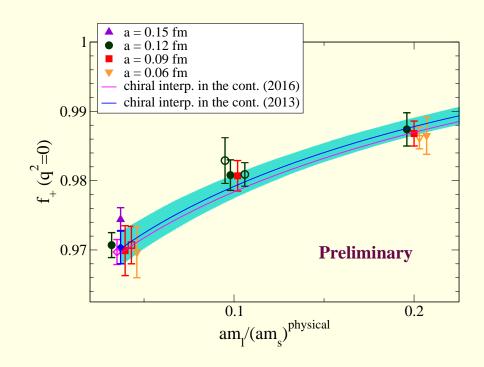
$a(\mathrm{fm})$	m_l/m_s	Volume	$N_{conf.} imes N_{t_s}$	am_s^{sea}	$am_{_S}^{val}$
0.15	0.035	$32^3 \times 48$	1000×4	0.0647	0.0691
0.12	0.2	$24^3 \times 64$	1053×8	0.0509	0.0535
	0.1	$24^3 \times 64$	1020×8	0.0507	0.053
	0.1	$32^3 \times 64$	993×4	0.0507	0.053
	0.1	$40^{3} \times 64$	1029×8	0.0507	0.053
	0.035	$48^{3} \times 64$	945×8	0.0507	0.0531
0.09	0.2	$32^3 \times 96$	773×4	0.037	0.038
	0.1	$48^3 \times 96$	853×4	0.0363	0.038
	0.035	$64^{3} \times 96$	950×8	0.0363	0.0363
0.06	0.2	$48^3 \times 144$	1000×8	0.024	0.024
	0.035	$96^3 \times 192$	692×6	0.022	0.022
0.042	0.2	$64^{3} \times 192$	432×12	0.0158	0.0158

^{*} New (since 2013) data in red.

4.1. New data



FNAL/MILC 2013 (1312.1228)



FNAL/MILC 2016

Updated values of: r_1/a , taste-splittings, f_π

Open symbols: New data.

Not included yet: ensemble with $\approx 0.042~\mathrm{fm}$

and $m_l/m_s = 0.2$.

Preliminary: Reduction of Statistics + discretization + chiral interpolation error under 0.2%.

4.2. Finite volume effects

2013 estimate: Compare results for L=32,40 ensembles and see no difference within statistics: took statistical error of most precise value as our FV uncertainty: 0.2%

Issue: Finite volume effects are modified when using twisted boundary conditions. They could be larger than with periodic boundary conditions.

Current values with different volumes for $a pprox 0.12 \ \mathrm{fm}$ and $m_l = 0.1 m_s$

Preliminary

L	24	32	40
$f_{+}(0)$	0.9829(33)	0.9808(22)	0.9809(17)
variation	+0.2%	0%	\sim 0%

Use CHPT to remove leading **FV** effects

Sachrajda & Villadoro, 2004, Jiang & Tiburzi, 2007, Bijnens & Relefors, 2014

See J. Bijnens talk

Partial twisting: At FV there are more form-factors since Lorentz-invariance is broken.

$$\langle \pi^+(p')|V_{\mu}|K^0(p)\rangle = f_+(p_{\mu} + p'_{\mu}) + f_-q_{\mu} + \frac{h_{\mu}}{\mu}$$

4.2. Finite volume effects

Partial twisting: At FV there are more form-factors since Lorentz-invariance is broken

$$\langle \pi^{-}(p')|V_{\mu}|K^{0}(p)\rangle = f_{+}(p_{\mu} + p'_{\mu}) + f_{-}q_{\mu} + \frac{h_{\mu}}{\mu}$$

→ Ward identity gets modified at FV

$$\rho \equiv (m_s - m_l) \langle \pi | S | K \rangle_{q^2} = (\tilde{m}_{K^0}^2 - \tilde{m}_{\pi^-}^2) f_+(q^2) + q^2 f_-(q^2) + q_\mu h_\mu$$

with $\tilde{m}_{K^0}^2 - \tilde{m}_{\pi^-}^2$ including one-loop FV corrections.

Need FV corrections to $\frac{\rho}{\tilde{m}_{K^0}^2 - \tilde{m}_{\pi^-}^2}$ (output of the correlator fits) with:

- * Twisted boundary conditions for the valence u quark: $\vec{\theta}_u = (\theta, \theta, \theta)$
- * Staggered fermions.

In progress: NLO (p^4) ChPT calculation of f_+ , f_- and h_μ including finite volume, arbitrary twisted boundary conditions, partial quenching and staggered effects (also in the continuum)

C. Bernard, J. Bijnens, E.G., J. Relefors, see J.Bijnens talk

4.2. Finite volume effects

Preliminary

FV corrections in our data are < 0.05%

J. Bijnens talk

(for the smallest volume the correction is $\sim 0.08\%$, but we only use it for checking purposes)

 \rightarrow incorporating FV corrections at NLO in SChPT in our chiral-continuum extrapolation/interpolation will eliminate the dominant effects ($\leq 0.05\%$) and make negligible remaining effects.

5. Conclusions and outlook

FNAL/MILC $N_f = 2 + 1 + 1$ calculation with HISQ valence and sea quarks and four lattice spacings

$$f_{+}(0) = 0.9704 \pm 0.0024 \pm 0.0022$$

(this gives $|V_{us}|=0.22311\pm0.00074_{f_+(0)}\pm0.00040_{V_{ud}}$, $\sim2.2\sigma$ lower than unitarity value and leptonic extraction of $|V_{us}|$)

- * Physical light quark masses
- * Same action on the valence and sea sectors.
- * Very good tuning of sea quark masses
- * Include sea charm quark effects

Error dominated by statistical+discretization+chiral and finite volume corrections.

5. Conclusions and outlook

* Statistical+discretization+chiral: increase statistics in key ensembles and data on new ensembles (in particular, $a\approx 0.06~{\rm fm}$ with phys. quark masses)

$$0.24\%$$
 \rightarrow $< 0.2\%$

* Finite Volume: NLO partially quenched SChPT finite size effects incorporated to chiral-continuum extrap./interp.

C. Bernard, J. Bijnens, E.G., J. Relefors

$$0.2\%$$
 \rightarrow $\sim 0\%$

Work to do:

- * Optimize correlator fits for new data and include $\approx 0.042~\mathrm{fm}$ ensemble
- * Include leading FV corrections → extrapolation to infinite volume

Final goal: total error $\sim 0.2\%$ to match experimental error

* Study $f_+(0)/(f_K/f_\pi)$ (dependence on $|V_{us}|$ cancels) \to Consistency check of SM/ $|V_{ud}|$ N. Brown [MILC], work in progress

3.2. 2013 FNAL/MILC: Chiral and continuum extrapolation

Even when simulations at physical quark masses are available, use of CHPT for the extrapolation is useful because

- * Allow the inclusion of data at $m_{\pi} > m_{\pi}^{\rm phys}$ (computationally cheaper and thus typically more precise) \to reduce final statistical errors.
- * Correction of small mass mistunings and partially quenched effects $(m_s^{val} \neq m_s^{sea})$
- * Dominant discretization effects can be analytically incorporated to CHPT expressions and thus removed in the extrapolation.
- Ideal framework to analytically incorporate (and remove) dominantfinite volume effects.

Combined chiral+continuum+infinite volume extrapolation.

CHPT interpolation found to give smaller errors also in f_D, f_{D_s} calculation <code>FNAL/MILC</code>, 1407.3772