Lattice 2016 - 34th International Symposium on Lattice Field Theory

The Calculation of Parton Distributions from Lattice QCD.

Christian Wiese

NIC - DESY, Zeuthen

June 25th 2016

Collaborators.

Constantia Alexandrou
Martha Constantinou
Krzysztof Cichy
Kyriakos Hadjiyiannakou
Karl Jansen
Haralambos Panagopoulos
Aurora Scapellato
Fernanda M. Steffens

Parton distributions.

- powerful tool to describe the structure of a nucleon: parton distribution functions (PDFs)
- set of three PDFs
 - momentum distribution $q(x) = q^{\uparrow}(x) + q^{\downarrow}(x)$
 - helicity distribution $\Delta q(x) = q^{\uparrow}(x) q^{\downarrow}(x)$
 - transversity distribution $\delta q(x) = q^{\top}(x) q^{\perp}(x)$
- precise quark and gluon distributions are necessary for the analysis of scattering data (LHC)
- in addition: still open questions for the nucleon structure
- → how do quarks and gluons compose the proton spin?

Obtaining PDFs.

- world-wide effort to measure relevant structure functions (CERN, SLAC, DESY, JLab)
- inclusive and semi-inclusive, different polarizations
- computation of Wilson coefficients
- fit distributions to the data
- results depend on the fitting scheme and selected data
- we need a prediction of quark distributions from first principles
- → crucial test of QCD

Quark distributions from lattice QCD.

- why is it difficult to access PDFs on the lattice?
- definition via matrix elements of light cone operator

$$q(x) = \int_{-\infty}^{\infty} \frac{d\xi^{-}}{4\pi} e^{-ix\xi^{-}P^{+}} \langle P|\bar{\psi}(\xi^{-})\gamma^{+} \frac{W(\xi^{-},0)\psi(0)|P\rangle$$

- dominated by area close to light cone $\xi^2 = 0$
- \rightarrow issue on an Euclidean lattice ($\xi^2 = \mathbf{x}^2 + t^2$)
 - new proposal: compute spatial quasi distribution (Ji, 2013)

$$\tilde{q}(x, P_3) = \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{-izk_3} \langle P|\bar{\psi}(z)\gamma_3 W_3(z, 0)\psi(0)|P\rangle$$

- has to be computed at sufficiently large momentum P₃
- → nucleon boosted in the same direction as the Wilson line
 - in this limit a connection to the light-cone distribution can be made

Necessary form factors.

form factors:

$$\langle P|\overline{\psi}(z)\gamma_3W_3(z,0)\psi(0)|P\rangle = \\ \overline{u}(P)\gamma_3\frac{h(P_3,z)u(P)}{}$$

- quasi-distribution $\tilde{q}(x, P_3) = 2P_3 \int_{-\frac{L}{2}}^{\frac{L}{2}} \frac{dz}{4\pi} e^{-izxP_3} h(P_3, z)$
- apply one-loop matching (Xiong, Ji, Zhang, Zhao 2014)
- apply target mass corrections

Latest results.

- latest results are computed on the B55.32 ETMC ensemble
- $N_f = 2 + 1 + 1$, $V = 32^3 \times 64$, $m_{PS} \approx 370 \, \text{MeV}$, $a \approx 0.082 \, \text{fm}$
- 1000 gauge configurations with 15 source positions each and 2 sets of stochastic samples
- → 30 000 measurements
 - for now rather small source-sink separation of $t_s = 8a$
 - we apply 5 steps of HYP smearing to the gauge links in the operator
- → preliminary way to reduce the linear divergence from the Wilson line (ongoing effort to treat this rigorously)

Results for momentum distribution.

- antiquark distribution can be related to the negative x region by the crossing relation
- $\bar{q}(x) = -q(-x)$
- negative $x \Rightarrow \bar{d} \bar{u}$

The helicity distribution.

- important tool to understand the spin structure of the nucleon
- $\Delta q(x) = q^{\uparrow}(x) q^{\downarrow}(x)$
- contains crucial form factors, e.g. $\int dx \Delta u(x) \Delta d(x) = g_A^{(3)}$
- obtained by polarized scattering experiments
- on the lattice, we can use the same tools as for the momentum distribution

(COMPASS Collaboration, arXiv:1503.08935)

$$\Delta \tilde{q}(x, P_3) = \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{-izk_3} \langle P | \bar{\psi}(z) \gamma_5 \gamma_3 W_3(z, 0) \psi(0) | P \rangle$$

Results for the helicity distribution.

- crossing relation: $\Delta \bar{q}(x) = \Delta q(-x)$
- negative *x* region $\Rightarrow \Delta \bar{u} \Delta \bar{d}$

The transversity distribution.

- $\delta q(x) = q^{\top}(x) q^{\perp}(x)$
- · purely non-singlet quantity
- → no gluon contribution
 - so far only parametrization with large uncertainties
 - no parametrization for antiquark distribution available

$$\delta \tilde{q}(x, P_3) = \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{-izk_3} \langle P|\bar{\psi}(z)\gamma_j\gamma_3 W_3(z, 0)\psi(0)|P\rangle$$

Results for the transversity distribution.

- crossing relation: $\delta \bar{q}(x) = -\delta q(-x)$
- negative x region $\Rightarrow \delta \bar{d} \delta \bar{u}$

Momentum smearing.

- we would like to study the behavior for larger momenta
 - problem: for the standard methods the signal is lost in noise for $P_3 > 6\pi/L$
 - extrapolation is rather unfeasible
- possible solution presented by Bali et al. in arXiv:1602.05525
- idea: alter Gaussian smearing so that the used momentum is modeled

[arXiv:1602.05525]

• in practice we use the standard Gaussian smearing with a modified Gauge field $\tilde{U}_i(x,k)=e^{ik\hat{j}}U_i(x)$

Results for momentum smearing.

- Results for momentum smearing on 50 configurations
- → 150 measurements

Results for momentum smearing.

- Results for momentum smearing on 50 configurations
- → 150 measurements

Results for momentum smearing.

Summary & Outlook.

Achievements

- we successfully employed Ji's method to obtain quark quasi-distributions from lattice QCD calculations and related them to quark distributions via a matching procedure and target mass corrections
- the obtained distributions show a qualitative, not yet quantitative agreement with phenomenological distributions
- momentum smearing is a powerful tool that allows us to access larger momenta

Challenges

- identify and remove further systematic effects
- e.g. compute distributions at a physical pion mass
 - proper renormalization of the operator