

Quark masses and coupling constant with Highly-Improved Staggered Quarks

Yu Maezawa (YITP, Kyoto University)

with Peter Petreczky (Brookhaven National Lab.)

arXiv:1606.08798

Heavy meson correlators

Long distance + experiments

Short distance + perturbation

) precise
$$m_c^{
m lat}$$
 & $m_c/m_s\,,~m_b/m_c$

$$ightarrow lpha_s(\mu)$$
 and $m_c(\mu)$ at $\mu=m_c$

in the lowest energy scale

Introduction

Fundamental parameters of QCD: coupling constant & quark masses $lpha_s ~~m_u,~m_d,~m_s,~m_c,~m_b,~m_t$

Determination: most elemental quest in the lattice QCD simulations

Lattice simulations

HotQCD gauge configurations

PRD90 (2014) 094503

- ✓ Highly Improved Staggered Quarks
- ✓ Tree-level improved gluons
- ✓ (2+1)-flavor QCD
 - > Strange quark m_s : physical
 - > Light quark: $m_l = m_s/20$
 - Charm quark: valence

> Scale:
$$r_1 = 0.3106(18) \text{ fm}$$

via pion decay constant

<u>Our approach</u>

1. Tuning the charm mass via meson correlators with wall sources

 $\rightarrow m_c/m_s, m_b/m_c$

2. Measuring the moments via meson correlators with point sources

 $\rightarrow \alpha_s(m_c), \ m_c(m_c)$

β	Lattice	TU*	a^{-1} [GeV]
6.740	48^{4}	$8\mathrm{K}$	1.81
6.880	48^{4}	$8\mathrm{K}$	2.07
7.030	48^{4}	10K	2.39
7.150	$48^3 \times 64$	$8\mathrm{K}$	2.67
7.280	$48^3 \times 64$	$8\mathrm{K}$	3.01
7.373	$48^3 \times 64$	$9\mathrm{K}$	3.28
7.596	64^{4}	$9.5\mathrm{K}$	4.00
7.825	64^{4}	$9.5\mathrm{K}$	4.89

*molecular dynamic time units

(c.f. covers at T=150--400 MeV on Nt=12)

Quark masses from meson masses

Ground state charmonia

Quark masses on the lattice A Meson masses in experiments

Unmixed $S\overline{S}$ eta

 $M_{\eta_{s\bar{s}}} = \sqrt{2M_K^2 - M_\pi^2} \qquad \overline{M} = \frac{1}{4} \left(3M_{J/\psi} + M_{\eta_c} \right)$

Tuning quark masses

$$M_{\eta_{s\bar{s}}}^2 = B \, m_s \qquad \qquad \overline{M} = d + b \, m_c$$

$$M_{\eta_h} = d^h + b^h m_h$$
$$(m_c < m_h \lesssim m_b)$$

Bottomonium

 M_{η_b}

Experimental values from PDG

 $M_{\eta_{s\bar{s}}} = 686.00(92) \text{ MeV}$ $\overline{M} = 3.067(3) \text{ GeV}$ $M_{\eta_b} = 9.398(3) \text{ GeV}$ PRD70, 114501 PRD83.074504 uncertainties: absence of EM effects and disconnected diagram Determine $m_c^{
m lat}$ Determination $m_s^{\rm lat}$ Estimate m_{h}^{lat} within 0.4--0.7% errors done by HotQCD partly using extrapolation hyper-fine splitting from $am_h < 1.0$ to m_b reproduced in continuum

Quark masses ratios

Scheme and scale independent: $m_c^{
m lat}/m_s^{
m lat}=m_c/m_s$

 ✓ a² and a²+a⁴ fits well done and show similar results

 $\frac{m_c}{m_s} = 11.877(56)_{\text{stat.}}(69)_{r_1}(15)_{\eta_{s\bar{s}}}(12)_{\overline{M}}$ $\frac{m_c}{m_s} = 11.877(91)$

 ✓ only four finest β points
 ✓ systematic error due to extrapolation to M_{η_b} : gray shadow
 $\frac{m_b}{m_c} = 4.528(50)_{\text{stat.}}(26)_{r_1}(04)_{\overline{M}}(02)_{M_{\eta_b}}$ $\frac{m_b}{m_c} = 4.528(57)$

Moments

Pioneered by HPQCD and Karlsruhe groups:

$$G_n = \sum_t (t/a)^n G(t): \text{ n-th order with } G(t) = a^6 \sum_{\mathbf{x}} (am_{c0})^2 \langle j_5(\mathbf{x}, t) j_5(0, 0) \rangle$$

Perturbation theory in $\overline{\text{MS}}$ scheme

$$G_n=\frac{g_n(\alpha_s(\mu),\mu/m_c)}{am_c^{n-4}(\mu)}$$
 , $\qquad g_n$ known up to 4-loop (α_s^3)

Reduced moments: useful to cancel lattice artifacts

$$R_n = \left(rac{G_n}{G_n^{(0)}}
ight)^{1/(n-4)}$$
, with moments of free correlators: $G_n^{(0)}$

$$R_{n} = \begin{cases} r_{4} & (n = 4) \\ r_{n} \cdot \left(m_{c}^{\text{lat}} / m_{c}(\mu) \right) & (n \ge 6) \end{cases}, \quad r_{n} = 1 + \sum_{j=1}^{3} r_{nj}(\mu, m_{c}) \alpha_{s}^{j}(\mu) \\ \hline \text{Numerical numbers} \\ \text{at } \mu = m_{c} (N_{f} = 4) \end{cases}$$

Effects of charm loops: 0.7% for R₄ estimated in perturbation theory PRD78, 054513

 \rightarrow correct lattice R₄ in our 2+1 flavor simulations

4-th Moments and coupling constant

"trun.": truncation errors coming from $lpha_s^4$ terms

6-th Moments and charm quark mass

From
$$m_c(m_c) = rac{r_6(lpha_s;\mu=m_c)}{R_6/m_c^{\mathrm{lat}}}$$

we obtain charm quark mass:

 $m_c(\mu = m_c, n_f = 3) = 1.2668(33)_{\text{stat.}}(34)_{\text{trun.}}(70)_{\alpha_s}(73)_{\text{scale GeV}}$

Summary

via meson masses: $m_c/m_s = 11.877(91)$, $m_b/m_c = 4.528(57)$ via moments: $\alpha_s(\mu = m_c, n_f = 3) = 0.3945(75)$, $m_c(\mu = m_c, n_f = 3) = 1.267(11)$ GeV evolving with 4-loops PT in $\overline{\text{MS}}$ scheme: RunDeC package $\begin{cases} \alpha_s(M_Z, n_f = 5) = 0.11622(75) \\ m_s(\mu = 2 \text{ GeV}, n_f = 3) = 92.0(1.5) \text{ MeV} \\ m_b(\mu = m_b, n_f = 5) = 4.184(83) \text{ GeV} \end{cases}$

Summary

arXiv:1606.08798

✓ Quark mass ratio: no significant deviations

slight deviation? $m_c/m_s(N_f = 4) \lesssim m_c/m_s(N_f = 3)$

ummary

HPOCD'15

our study

JLQCD'16

Bazavov'14

HPQCD'10

0.12

 $\alpha_s(M_Z)$

0.118

ETMC'14

crucial uncertainties due to finite volume in our study, as well as perturbative truncation

Further investigation: higher moments, different scale, different approach, etc...

Backup slides...

Unmixed
$$SS$$
 eta $M_{\eta_{s\bar{s}}} = \sqrt{2M_K^2 - M_\pi^2}$

Assign errors for EM effects and absence of disconnected diagram $M_{\pi}^2 = M_{\pi^0}^2$ $M_{K}^2 = \frac{1}{2}(M_{K^0}^2 + M_{K^+}^2 - (1 + \Delta_E)(M_{\pi^+}^2 - M_{\pi^0}^2))$ $M_{\eta_{s\bar{s}}} = 686.00(92) \text{ MeV} (\Delta_E = 0-2)$

Aubin et al (MILC), PRD 70 (2004) 114501

c.f.) HPQCD: 0.6858(38)(12), 0.6885(22) GeV

Meson masses to quark masses

Charmonium correlators with wall sources Spin averaged mass

$$\bar{M} = \frac{1}{4} \left(3M_{J/\psi} + M_{\eta_c} \right)$$

Quark mass

Experiments:

$$\overline{M} = 3.067(3) \,\,\mathrm{GeV}$$

uncertainties:

neglecting disconnected and EM

Charmonia

Charmonium states in continuum $M_{\rm PS} = 2.982(12)~{
m GeV}$ $M_{\rm V} = 3.095(12)~{
m GeV}$

<u>Hyperfine splitting</u> $M_{\rm V} - M_{\rm PS}$

$$= 113.5(18)(7) \text{ MeV}$$

Experiments:

 $M_{J/\psi} - M_{\eta_c}$ = 113.3(6) MeV experiments: $M_{\eta_c} = 2.9836(6) \text{ GeV}$ $M_{J/\psi} = 3.09692(1) \text{ GeV}$

Heavy quark mass

Heavier masses (am_h) up to bottom quarks: difficult $am_b > 1.0 > am_h$

adjusting : $M_{\eta_b} = 9.398(3) \text{ GeV}, \quad M_{\Upsilon} = 9.4603(3) \text{ GeV}$

Interpolation: $0.7 \le am_h \le 0.9$ at highest beta

Extrapolation: necessary for other beta -> systematic errors

Moments in Nf=3

$$R_{n} = \begin{cases} r_{4} \\ r_{n} \cdot (m_{c}^{\text{lat}}/m_{c}(\mu)) \\ r_{n} \cdot (m_{c}^{\text{lat}}/m_{c}(\mu)) \\ \text{Perturbation} \end{cases}, r_{n} = 1 + \sum_{j=1}^{3} \frac{r_{nj}(\mu, m_{c})\alpha_{s}^{j}(\mu)}{N_{\text{Iumerical numbers}}} \\ \text{Numerical numbers} \\ \text{at } \mu = m_{c} (N_{f} = 3) \end{cases}$$

$$R_{4} = 1.2654(39)$$

$$R_{4} = 1.2654(39)$$

$$R_{4} = 1.2654(39)$$

$$R_{4} = r_{4}(\alpha_{s}; \mu = m_{c}, n_{f} = 3) \\ R_{4} = 1.2654(39)$$

$$R_{4} = 1.2654(39)$$

$$R_{5} = 0.3638(54)(28) : a^{2}$$

$$a_{s}(m_{c}) = 0.3697(54)(15) : a^{2}$$

$$a_{s}(m_{c}) = 0.3773(72)(16) : a^{2} + a^{4}$$

Comparison of mc(mc)

